
Matrix-Vector and Matrix-Matrix Operations
Prototype name: FLA_XXYY

Matrix types (XX)
 Ge – General
Sy – Symmetric
Tr – Triangular

Operations (YY)
 mv – matrix-vector multiply
r – rank-1 update
r2 – rank-2 update
sv – solve
mm – matrix-matrix multiply
rk – rank-k update
r2k – rank-2k update
sm – solve with multiple right-hand sides

Options
trans_ - FLA_NO_TRANSPOSE
 FLA_TRANSPOSE
 FLA_CONJ_TRANSPOSE
uplo - FLA_UPPER_TRIANGULAR
 FLA_LOWER_TRIANGULAR
diag - FLA_NONUNIT_DIAG
 FLA_UNIT_DIAG
 FLA_ZERO_DIAG
side - FLA_LEFT
 FLA_RIGHT
 (A or op(A) on the left or on the right of B)

Constants (can be used for parameters alpha or beta)
-1 - FLA_MINUS_ONE
 0 - FLA_ZERO
 1 - FLA_ONE

Output
All routines return integer constant
FLA_SUCCESS or FLA_FAILURE.

Funding
The FLAME project has been sponsored in part by
numerous NSF grants as well as grants and gifts from
industry. For additional funding information visit
http://www.cs.utexas.edu/users/flame/.

References
C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear

Algebra Subprograms for Fortran Usage,” ACM Trans. on Math.
Soft. 5 (1979) 308-325

J.J. Dongarra, J. DuCroz, S. Hammerling, and R. Hanson, “An
Extended Set of Fortran Basic Linear Algebra Subprograms,”
ACM Trans. on Math. Soft. 14, 1 (1988) 1-32

J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling, “A Set of
Level 3 Basic Linear Algebra Subprograms,” ACM Trans. on
Math. Soft. 16, 1 (1990) 1-17

Paolo Bientinesi, Enrique Quintana-Orti, and Robert van de Geijn,
“Representing Linear Algebra Algorithms in Code: The FLAME
APIs.” ACM Trans. on Math. Soft. 31, 1 (2005) 27-59

Field G. Van Zee, libflame: The Complete Reference. www.lulu.com,
2009. www.cs.utexas.edu/users/field/docs/libflame.pdf.

This brochure was patterned after similar brochures produced as part
of the LAPACK project.

More Information http://www.cs.utexas.edu/users/flame/

Example (Unblocked Cholesky factorization)
int Chol_unb_var3(FLA_Obj A)
{
 FLA_Obj ATL, ATR, A00, a01, A02,
 ABL, ABR, a10t, alpha11, a12t,
 A20, a21, A22;

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL)<FLA_Obj_length(A)){

 FLA_Repart_2x2_to_3x3(
 ATL, ATR, &A00, &a01, &A02,
 &a10t, &alpha11, &a12t,
 ABL, ABR, &A20, &a21, &A22,
 1, 1, FLA_BR);
 /*--*/

 if (FLA_Sqrt(alpha11) != FLA_SUCCESS)
 return FLA_FAILURE;
 FLA_Inv_scal(alpha11, a21);
 FLA_Syr(FLA_LOWER_TRIANGULAR,
 FLA_MINUS_ONE, a21, A22);

 /*--*/
 FLA_Cont_with_3x3_to_2x2(
 &ATL, &ATR, A00, a01, A02,
 a10t, alpha11, a12t,
 &ABL, &ABR, A20, a21, A22, FLA_TL);
 }
 return FLA_SUCCESS;
}

Generate code skeleton with Spark:
http://www.cs.utexas.edu/users/flame/Spark/

FFFLLLAAAMMMEEE
C Language Interface

BBBasic

LLLinear

AAAlgebra

SSSubprograms

A Quick Reference Guide

MISCELLANEOUS OPERATIONS

FLA_Copy (A, B) B ß A
FLA_Copyt (trans, A, B) B ß trans(A)
FLA_Swap (A, B) B ↔ A
FLA_Swapt (trans, A, B) B ↔ trans(A)
FLA_Axpy (alpha, A, B) B ß α A + B
FLA_Axpyt (trans, alpha, A, B) B ß α trans(A) + B
FLA_Scal (alpha, A) A ß α A
FLA_Inv_scal(alpha, A) A ß A / α

VECTOR-VECTOR OPERATIONS

FLA_Dot (x, y, delta) δ ß xT y
FLA_Dots (alpha, x, y, beta, delta) δ ß α xT y + β δ
FLA_Nrm2 (x, delta) δ ß ║ x ║2
FLA_Asum (x, delta) δ ß ║ x ║1
FLA_Iamax (x, i) i ß 1st k s.t. | xk | = max j (| xj |)

MATRIX-VECTOR OPERATIONS

FLA_Gemv (trans, alpha, A, x, beta, y) y ß α A x + β y, y ß α AT x + β y, y ß α AH x + β y
FLA_Symv (uplo, alpha, A, x, beta, y) y ß α A x + β y
FLA_Trmv (uplo, trans, diag, A, y) y ß A y, y ß AT y, y ß AH y
FLA_Trmvsx (uplo, trans, diag, alpha, A, x, beta, y) y ß α A x + β y, y ß α AT x + β y, y ß α AH x + β y
FLA_Trsv (uplo, trans, diag, A, y) y ß A-1 y, y ß A-T y, y ß A-H y
FLA_Trsvsx (uplo, trans, diag, alpha, A, x, beta, y) y ß α A-1 x + β y, y ß α A-T x + β y, y ß α A-H x + β y

FLA_Ger (alpha, x, y, A) A ß α x yT + A
FLA_Syr (uplo, alpha, x, A) A ß α x xT + A
FLA_Syr2 (uplo, alpha, x, y, A) A ß α (x yT + y xT) + A

MATRIX-MATRIX OPERATIONS

FLA_Gemm (transA, transB, alpha, A, B, beta, C) C ß α op(A) op(B) + β C, op(X) = X, X T, X H
FLA_Symm (side, uplo, alpha, A, B, beta, C) C ß α A B + β C, C ß α B A + β C, A = AT
FLA_Syrk (uplo, trans, alpha, A, beta, C) C ß α A AT + β C, C ß α AT A + β C, C = CT
FLA_Syr2k (uplo, trans, alpha, A, B, beta, C) C ß α (A BT + B AT) + β C, C ß α (AT B + BT A) + β C, C = CT
FLA_Trmm (side, uplo, trans, diag, alpha, A, B) B ß α op(A) B, B ß α B op(A), op(X) = X, X T, X H
FLA_Trmmsx (side, uplo, trans, diag, alpha, A, B, beta, C) C ß α op(A) B + β C, C ß α B op(A) + β C, op(X) = X, X T, X H

FLA_Trsm (side, uplo, trans, diag, alpha, A, B) B ß α op(A-1) B, B ß α B op(A-1), op(X) = X, X T, X H
FLA_Trsmsx (side, uplo, trans, diag, alpha, A, B, beta, C) C ß α op(A-1) B + β C, C ß α B op(A-1) + β C, op(X) = X, X T, X H

For additional routines available consult Field Van Zee. libflame: The Complete Reference. Available from
http://www.lulu.com or download from http://www.cs.utexas.edu/users/field/docs/libflame.pdf.

	Quickguide_Page1
	Quickguide_Page2

