
Retargeting PLAPACK to Clusters

with Hardware Accelerators

FLAME Working Note #42

Manuel Fogué∗ Francisco D. Igual∗ Enrique S. Quintana-Ort́ı∗

Robert van de Geijn†

February 11, 2010

Abstract

Hardware accelerators are becoming a highly appealing approach to boost the raw performance as
well as the price-performance and power-performance ratios of current clusters. In this paper we present
a strategy to retarget PLAPACK, a library initially designed for clusters of nodes equipped with general-
purpose processors and a single address space per node, to clusters equipped with graphics processors
(GPUs). In our approach data are kept in the device memory and only retrieved to main memory when
they have to be communicated to a different node. Here we benefit from the object-based orientation of
PLAPACK which allows all communication between host and device to be embedded within a pair of
routines, providing a clean abstraction that enables an efficient and direct port of all the contents of the
library. Our experiments in a cluster consisting of 16 nodes with two NVIDIA Quadro FX5800 GPUs
each show the performance of our approach.

1 Introduction

Dense linear algebra operations lie at the heart of many scientific and engineering applications. The large
dimensions of many of the problems arising in these applications, and the cubic computational cost of the
algorithms for dense linear algebra operations, led to the development of high performance libraries like LA-
PACK [1] for single processors and shared-memory platforms, and ScaLAPACK [4] for distributed-memory
(i.e., message-passing) parallel architectures. LAPACK and ScaLAPACK are written in Fortran-77, with lit-
tle concessions to high-level abstractions and much less to object-oriented programming. On the other hand,
our “object-based” alternative library libflame [8], for multi-core processors and in general shared-memory
platforms, encapsulates information like data layout in memory, avoiding the error-prone manipulation of in-
dices. PLAPACK [7] (which inspired libflame) further exercises this object-based approach to also abstract
the user from the distribution of the data among the memory spaces of a distributed-memory platform.

While existing libraries like ScaLAPACK and PLAPACK provide efficient codes for the solution of large-
scale dense linear algebra operations on clusters of computers, the incorporation of hardware accelerators
in these platforms appears as a new challenge for library developers. Hardware accelerators are increas-
ingly becoming a cheap alternative to accelerate applications that are intensive in floating-point arithmetic.
Sony+Toshiba+IBM Cell B.E., NVIDIA and AMD/ATI GPUs, ClearSpeed ASICs and FPGAs from different
vendors are all targeting the high performance computing market with different approaches, from the hetero-
geneous Cell to the many-core GPUs. The RoadRunner supercomputer, ranked #2 in the November 2010
Top500 list (http://www.top500.org), employs this accelerator technology to deliver more than 1 PFLOPS
(1 PFLOPS = 1015 floating-point arithmetic operations –flops– per second) and almost 445 MFLOPS/W [5].

∗Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain.
{figual,quintana}@icc.uji.es.
†Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712. rvdg@cs.utexas.edu

1

It is thus natural that many other platforms, from medium-sized clusters to supercomputers, will follow this
trend in the near future.

Programming dense linear algebra algorithms for message-passing parallel architectures is a task for
experts. The complexity arises from the existence of multiple separate address spaces (one per node in the
cluster), the need to synchronize the processes collaborating in the computation so as to minimize idle times,
and the importance of reducing the amount of communication as well as hiding message-passing latency.
The use of hardware accelerators to build hybrid clusters may exacerbate the complexity of programming
these platforms, by introducing a new separate memory space in the accelerator (or the device) different
from that of the host (i.e., the main memory of the node). How to easily “rewrite” message-passing dense
linear algebra libraries, like ScaLAPACK and PLAPACK, to deal with hybrid clusters is the question we
address in this paper.

A straight-forward approach to retarget codes from existing dense linear algebra libraries to hybrid
clusters is to hide the presence of the hardware accelerators inside the routines that perform the “local”
computations. In this approach matrices are kept in the host memory most of the time. Then, when a
computation is off-loaded to the device, only the data that are strictly necessary are transferred there, exactly
at that moment, and the results are retrieved back to the host memory immediately after the computation is
completed. Data transfers between the memories of host and device can thus be easily encapsulated within
wrappers to the BLAS and LAPACK routines that perform local computations. This is partly done implicitly
in ClearSpeed accelerators: Routines from ClearSpeed implementation of the matrix-matrix product and a
few other basic linear algebra operations assume that data are stored in the host memory and perform the
transfers transparently to the user.

The invocation of kernels from NVIDIA CUBLAS, on the other hand, requires explicit handling of
the transfers, though developing wrappers for this library is relatively simple. The major advantage of
this approach is that no change other than developing these simple wrappers is necessary to retarget the
library to a hybrid cluster. In other words, this approach leads to an almost transparent port of most of
the contents of ScaLAPACK and PLAPACK to hybrid clusters. While straight-forward, the approach can
incur a nonnegiblible number of data transfers between the memories of the host and the device, degrading
performance. For example, if the same chunk of data is involved in two consecutive local computations, its
transfer between host and device is unnecessarily repeated. To tackle this problem, our approach to port
dense linear algebra codes to hybrid clusters places the data in the accelerators memory most of the time
(this has been independently done in [5] for a cluster equipped with Cell B.E. accelerators). A data chunk
is recovered to the host memory only when it is to be sent to a different node, or when it is involved in an
operation that is to be computed by the host. Following PLAPACK object-based approach, all these data
movements are encapsulated within PLAPACK copy and reduce communication operations, thus leading
also to an almost transparent port of the contents of this library to hybrid clusters.

The paper is structured as follows. In Section 2 we employ the Cholesky factorization to briefly overview
the high-level approach to coding dense linear algebra operations intrinsic to PLAPACK. In Section 3 we
describe how to make an almost transparent retarget of PLAPACK, while attaining high-performance. In
Section 4 we illustrate the benefits of this approach, providing experimental results on a 16-node cluster
equipped with NVIDIA Quadro FX5800 GPUs. Section 5 summarizes the concluding remarks.

2 Computing the Cholesky Factorization in PLAPACK

The Cholesky factorization is usually computed as the first step in solving the linear system Ax = b, where
A ∈ Rn×n is a (dense) symmetric positive definite (SPD) matrix. This factorization is defined as

A = LLT , (1)

where L ∈ Rn×n is a lower triangular matrix known as the Cholesky factor of A.
The PLAPACK blocked algorithm for the Cholesky factorization is given in routine PLA Chol in Figure 1.

(We have modified this code slightly to hide irrelevant details for the following discussion.) The code
sample illustrates the object-based approach of PLAPACK: all data are encapsulated in PLA Obj objects

2

1 int PLA_Chol(int nb_alg, PLA_Obj A)
2 {
3 PLA_Obj ABR = NULL,
4 A11 = NULL, A21 = NULL;
5 /* ... */
6
7 /* View ABR = A */
8 PLA_Obj_view_all(A, &ABR);
9

10 while (TRUE) {
11 /* Partition ABR = / A11 || * \
12 * | ===== ===== |
13 * \ A21 || ABR /
14 * where A11 is nb_alg x nb_alg */
15 PLA_Obj_split_4(ABR, nb_alg, nb_alg,
16 &A11, PLA_DUMMY,
17 &A21, &ABR);
18
19 /* A11 := L11 = Cholesky Factor(A11) */
20 PLA_Local_chol(PLA_LOWER_TRIANGULAR, A11);
21
22 /* Update A21 := L21 = A21 * inv(L11’) */
23 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANGULAR,
24 PLA_TRANSPOSE, PLA_NONUNIT_DIAG,
25 one, A11,
26 A21);
27
28 /* Update A22 := A22 - L21 * L21’ */
29 PLA_Syrk(PLA_LOWER_TRIANGULAR, PLA_NO_TRANS,
30 minus_one, A21,
31 one, ABR);
32 }
33 /* ... */
34 }

Figure 1: (Simplified version of) PLAPACK right-looking blocked algorithm for computing the Cholesky
factorization.

and accessed only via PLAPACK routines PLA Obj view all, PLA Obj split 4, PLA Local chol, PLA Trsm,
and PLA Syrk.

Following common practice, the factorization algorithm in Figure 1 overwrites the lower triangular part of
the array A with the entries of L, while the strictly upper triangular part of the matrix remains unmodified.
The code proceeds as follows. Initially, ABR is created as a view to A (line 8). (A view in PLAPACK is an
object that references the same data as the parent object or view from which it was derived. Thus, A and
ABR both reference the same data.) The while loop then iterates to split ABR into four quadrants (lines
15-17), as in

ABR →
(

A11 ?

A21 A22

)
,

where the algorithmic block size b is assumed to match the distribution block size, so that of A11 resides on
a single processor, and ABR is reused to hold A22. The computations in the loop body correspond to the
right-looking variant of the Cholesky factorization: A11 is first decomposed as A11 = L11L

T
11 (line 20), and

the remaining blocks are updated as A21 := A21L
−1
11 (lines 23-26) and A22 := A22 − A21A

T
21 (lines 29-31)

via, respectively, a triangular system solve (with multiple right-hand sides) and a symmetric rank-nb alg
update.

3 PLAPACK for Hybrid Clusters

We describe in this section our approach to retarget PLAPACK to a cluster equipped with hardware accel-
erators. To reduce the number of data transfers between the memory spaces of host and device, we propose
to keep all data in the device memory most of the time. Given that current NVIDIA accelerator boards
include a RAM of 4 GBytes, we do not expect that the size of the device memory becomes a limiting factor
for most applications. Otherwise, one could still handle the device memory as a cache of the host memory,
by implementing a software coherence protocol as, e.g., in [6].

3

3.1 Communicating data in PLAPACK

The primary vehicles for communication in PLAPACK are the copy and reduce operations. The approach
in this library is to describe the distribution for the input and output using linear algebra objects, and then
to copy or to reduce from one to the other.

Thus, a prototypical communication is given by the call PLA Copy(A, B) where included in the de-
scriptors A and B is the information for the respective distributions. Inside of the PLA Copy routine it is
determined how data must be packed, what collective communication must be called to redistribute, and
how the data must be unpacked after the communication. What this means is that, with the addition of
memory local to an accelerator, the necessary data movement with the host processors that perform the
communication needs to be added. This can be accomplished by hiding the details completely within the
PLA Copy routine. The PLA Reduce routine similarly allows contributions from different processors to be
consolidated.

3.2 Data movement in the Cholesky factorization

Let us focus on the call PLA Trsm(..., A11, A21). In the particular implementation of the Cholesky
factorization given in Figure 1, to start, A11 exists within one processor and A21 within one column of
processors, with all elements of a given row of A21 assigned to the same processor. Inside this routine,
A11 is broadcast so that all processors that own part of A21 receive a copy, after which local triangular
solves complete the desired computation. The call to PLA Syrk performs similar data movements and local
computations.

We note that PLAPACK includes more complex implementations that require more complex data move-
ments. We purposely focus on a simple implementation since it captures the fundamental issues.

3.3 Changes to PLAPACK

In this section we describe how porting to an exotic architecture, like accelerators with local memories, is
facilitated by a well-layered, object-based library like PLAPACK. We do so by exposing a small sampling of
the low-level code in PLAPACK and discussing how this code had to be changed. We stress that the changes
were made by the coauthor on this paper who had no experience with PLAPACK without any direct or
indirect help from the coauthor who wrote PLAPACK.

We will employ the copy from a PLAPACK object of matrix type to a second object, of the same
type, in order to illustrate the modular structure of PLAPACK and the series of changes that had to
be made to accommodate the use of accelerators in PLAPACK. This copy is implemented in routine
PLA Copy from matrix to matrix, which we transformed into CUPLA Copy from matrix to matrix.

Several cases are treated within the copy routine. For example, when both matrices are aligned to the
same template (i.e., the contents are distributed among the nodes following the same pattern), local copies
from the buffer containing the elements of the source matrix to the one with those of the target matrix
suffice, as shown in the following excerpt of PLAPACK code:

1 /∗ PLAPACK PLA Copy between a l i gned matr i ce s ∗/
2 i f (a l i g n c o l f r om == a l i g n c o l t o) {
3 i f (a l i gn row f rom == a l i gn r ow to){
4 PLA Local copy (Obj from , Obj to) ;
5 done = TRUE;
6 }
7 }

In PLAPACK, the local copy inside PLA Local copy is performed using (several invocations to) the
BLAS-1 routine scopy; in CUPLAPACK we call the analogous copy counterpart from the CUDA runtime
to move data between different positions of the device memory.

A more elaborate case occurs when the two matrices feature different alignments. For simplicity, consider
that the matrices share the same column alignment but differ in the row alignment. Thus, each column
process has to send the corresponding block to each one of the processes in the same column. For efficiency,
before these blocks are sent, they are packed in an auxiliary buffer to hide part of the communication latency
by increasing the granularity of messages. This is done in PLAPACK as follows:

4

1 /∗ PLAPACK PLA Copy between column a l i gned matr i ce s ∗/
2 whi le (TRUE){
3 PLA Obj sp l i t s i z e (from cur , PLA SIDE TOP ,
4 &s ize f rom , &owner from) ;
5 PLA Obj sp l i t s i z e (to cur , PLA SIDE TOP ,
6 &s i z e t o , &owner to) ;
7

8 i f (0 == (s i z e = min (s i z e f rom , s i z e t o)))
9 break ;

10

11 PLA Obj horz sp l i t 2 (from cur , s i z e ,
12 &from 1 , &from cur) ;
13 PLA Obj horz sp l i t 2 (to cur , s i z e ,
14 &to 1 , &to cu r) ;
15

16 i f (myrow == owner from &&
17 owner from == owner to){
18 PLA Local copy (from 1 , to 1) ;
19 }
20 e l s e {
21 i f (myrow == owner from) {
22 PLA Obj get loca l content s (
23 from 1 , PLA NO TRANS,
24 &dummy, &dummy,
25 buf fer temp , s i z e , 1) ;
26

27 MPI Send (
28 BF(buf fe r temp) ,
29 s i z e ∗ l o ca l w id th , datatype ,
30 owner to , 0 , comm col) ;
31 }
32 i f (myrow == owner to) {
33 MPI Recv (
34 BF(buf fe r temp) ,
35 s i z e ∗ l o ca l w id th , datatype ,
36 owner from , MPI ANY TAG, comm col ,
37 &sta tu s) ;
38

39 PLA Obj se t l o ca l content s (
40 PLA NO TRANS, s i z e , l o ca l w id th ,
41 buf fer temp , s i z e , 1 , to 1) ;
42 }
43 }
44 }
45 PLA free (buf fe r temp) ;

In PLAPACK, routine PLA Obj get local contents copies the local contents of the object into a buffer:

1 /∗ PLAPACK PLA Obj get loca l content s ∗/
2

3 i n t PLA Obj get loca l content s (
4 PLA Obj obj , i n t trans ,
5 i n t ∗ rows in buf , i n t ∗ c o l s i n bu f ,
6 void ∗buf , i n t l ead ing d im buf ,
7 i n t s t r i d e b u f)
8 /∗ . . . ∗/
9 f o r (j =0; j<n ; j++){

10 tempp loca l = bu f l o c a l + j ∗ l e ad ing d im buf ∗ t yp e s i z e ;
11 tempp obj = bu f ob j + j ∗ ldim∗ t yp e s i z e ;
12 memcpy(tempp local , tempp obj , m∗ t yp e s i z e) ;
13 }
14 /∗ . . . ∗/

An equivalent effect is achieved in CUPLAPACK with a simple invocation to CUBLAS routine cublasGetMatrix,
which packs the data into a contiguous buffer while simultaneously retrieving it from the device memory:

1 /∗ CUPLAPACK PLA Obj get loca l content s ∗/
2

3 i n t CUPLA Obj get local contents (
4 PLA Obj obj , i n t trans ,
5 i n t ∗ rows in buf , i n t ∗ c o l s i n bu f ,
6 void ∗buf , i n t l ead ing d im buf ,
7 i n t s t r i d e b u f)
8 /∗ . . . ∗/
9 cublasGetMatrix (m, n , types i z e ,

10 buf obj , ldim ,

5

Table 1: Detailed features of the Longhorn cluster. Peak performance data only consider the raw perfor-
mance delivered by the CPUs in the cluster, excluding the GPUs.

Per Node Per System (256 nodes)
Number of cores 8 2,048

CPU Intel Xeon Nehalem @ 2.53 GHz
Available memory 48 Gbytes 13.5 TBytes

Interconnection network QDR Infiniband
Graphics system 128 NVIDIA Quadro Plex S4s

GPU 2 x NVIDIA Quadro FX5800 512 x NVIDIA Quadro FX5800
Interconnection bus PCI Express 2.0 (8x)

Available video (device) memory 8 Gbytes DDR3 2 TBytes DDR3
Peak performance (SP) 161.6 GFLOPS 41.40 TFLOPS
Peak performance (DP) 80.8 GFLOPS 20.70 TFLOPS

11 bu f l o c a l , l ead ing d im buf) ;
12 /∗ . . . ∗/

Analogous changes are needed in the remaining cases of PLA Copy and PLA Reduce, the other key routine
to data duplication and consolidation in PLAPACK, which together embed all data communication (transfer)
in PLAPACK.

4 Experimental Results

The goal of the experiments in this section is twofold. First, to report the raw performance that can be
attained with the accelerated version of the PLAPACK library for two common linear algebra operations:
the matrix-matrix multiplication and the Cholesky factorization. Second, to illustrate the scalability of the
proposed solution by executing the tests on a moderate number of GPUs.

Longhorn is a hybrid CPU/GPU cluster designed for remote visualization and data analysis. The
system consists of 256 dual-socket nodes, with a total of 2,048 compute cores (Nehalem quad-core), 512
GPUs (128 NVIDIA Quadro Plex S4s, each containing 4 NVIDIA FX5800), 13.5 TBytes of distributed
memory and a 210 TBytes global file system. The detailed specifications of the cluster can be found in
Table 1.

On the software side, MKL 10.2 was employed for all computations performed on the Intel cores; NVIDIA
CUBLAS (version 2.2) built on top of the CUDA application programming interface (version 2.2) provided
the necessary linear algebra kernels for the GPUs; PLAPACK (release 3.2) was the base for our experiments
and development of the GPU-accelerated codes; and MVAPICH2 (version 1.4) was the implementation of
MPI. Single-precision arithmetic was employed in all experiments as the GPU is not competitive in double
precision, due to the much smaller number of cores dedicated to this and the lack of an optimized double-
precision implementation of BLAS. At this point, it is worth noting that refinement from single to double
precision in the context of linear systems is well understood and has been reported as a practical approach
for the solution of dense linear systems on GPUs in [2, 3]. Furthermore, Fermi (NVIDIA next generation of
GPUs) promises to decrease the single- to double-precision gap in performance from the current factor of 8
to one of 2.

In our experiments we only employ 16 compute nodes from Longhorn. The results for 1, 2, 4, 8 and 16
GPUs make use of one of the GPUs in each node, with one MPI process per computing node. The results
on 32 GPUs (there are two GPUs per node) were obtained using two MPI processes per node. This setup
also illustrates the capability of the accelerated version of PLAPACK to deal with systems equipped with
more than one accelerator per node (e.g., in a configuration with nodes connected to Tesla S1070 servers).

The matrix-matrix multiplication is frequently abused as a showcase of the highest attainable performance
of the target architecture. Following this trend, we have developed an implementation of this operation

6

based on the PLAPACK PLA Gemm routine. The performance results for the matrix-matrix multiplication
are shown in Figure 2 (left plot). The highest performance attained for the matrix multiplication is slightly
over 8 TFLOPS when using 32 GPUs for matrices of dimension 61, 440× 61, 440.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10000 20000 30000 40000 50000 60000

G
F

L
O

P
S

Matrix size (m=n=k)

CUPLAPACK. Matrix-matrix multiplication on longhorn

32 Quadro FX5800
16 Quadro FX5800

8 Quadro FX5800
4 Quadro FX5800
2 Quadro FX5800
1 Quadro FX5800

0

1000

2000

3000

4000

5000

0 20000 40000 60000 80000 100000

G
F

L
O

P
S

Matrix size

CUPLAPACK. Cholesky factorization on longhorn

32 Quadro FX5800
16 Quadro FX5800

8 Quadro FX5800
4 Quadro FX5800
2 Quadro FX5800
1 Quadro FX5800

Figure 2: Performance of the PLAPACK-based accelerated codes for the matrix-matrix multiplication on
Longhorn.

A similar experiment has been carried out for the Cholesky factorization. In our implementation of the
PLAPACK routine PLA Chol, the factorization of the diagonal blocks (routine PLA Local Chol in Figure 1)
is computed in the CPU using the general-purpose cores and all remaining operations are performed on the
GPUs. This hybrid strategy has been successfully applied in previous studies [2, 3, 6]. Figure 2 (right plot)
reports the performance of the Cholesky routine on Longhorn, which delivers 4.4 TFLOPS for matrices of
dimension 102, 400× 102, 400.

A quick comparison between the top performance of the matrix-matrix multiplication using the acceler-
ated version of PLAPACK (≈ 8 TFLOPS) and the (theoretical) peak performance of the CPUs of the entire
system (41.40 TFLOPS in single-precision arithmetic) reveals the advantages of exploiting the capabilities
of the GPUs: using only a 6% of the graphics processors available in the cluster (32 out of 512 GPUs) it is
possible to attain 20% of the peak performance of the machine if one used exclusively the available CPUs.

Figure 3 illustrates the scalability of the PLAPACK-based matrix-matrix multiplication routine: com-
pared with the performance of the “serial” tuned implementation of the matrix-matrix product routine in
CUBLAS, our routine achieves a speedup 22x is achieved on 32 GPUs, which demonstrates the scalability
of the solution. Two main reasons account for the performance penalty: the Infiniband interconnect and
the PCI Express bus (specially when 32 GPUs/16 nodes are employed as the bus is then shared by the two
GPUs in each node).

The plots in Figure 4 evaluate the performance of the original PLAPACK implementation and the
GPU-accelerated version of the library for the matrix-matrix multiplication (left plot) and the Cholesky
implementation (right plot). Results are only shown on 16 nodes of Longhorn. Thus, the plots report
the performance of the PLAPACK implementation using 128 Intel Nehalem cores (8 cores per node) versus
those of the accelerated library using 16 and 32 GPUs (that is, one or two GPUs per each node). For the
matrix-matrix multiplication, the highest performance for PLAPACK is 2.3 TFLOPS, while the accelerated
version of the library attains 3.6 TFLOPS for 16 GPUs and 6.4 TFLOPS for 32 GPUs. Thus, the speedups
obtained by the accelerated routines are 1.56x and 2.78x, respectively. For the Cholesky implementation,
the PLAPACK routine attains a peak performance of 1.6 TFLOPS, compared with the 2.6 and 4.5 TFLOPS
achieved by the accelerated versions of the routines on 16 and 32 GPUs, respectively. In this case, the
speedups are 1.66x and 2.81x, respectively.

The benefits of using an approach in which data is kept in the GPU memory during the whole computation
are shown in Figure 5. The results report the performance of the “simple” approach, in which data is stored

7

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000

S
p

e
e

d
u

p

Matrix size (m=n=k)

CUPLAPACK. Matrix-matrix multiplication on longhorn

32 Quadro FX5800
16 Quadro FX5800

8 Quadro FX5800
4 Quadro FX5800
2 Quadro FX5800
1 Quadro FX5800

Figure 3: Scalability of the PLAPACK-based codes for the matrix-matrix multiplication on Longhorn.
The reference for the scalability results is the performance of CUBLAS SGEMM on one GPU, provided it
could deal with matrices of the tested dimensions.

in the main memory of each node and transferred to the GPU when it is strictly necessary, and the “tuned”
approach, in which data is kept (most of the time) in the GPU memory. The benefits of the second approach,
in terms of higher performance, are clear, especially for large matrices. On the other hand, in the simple
approach the size of the problem that can be solved is restricted by the amount of main memory in the
system, which is usually larger than the available video memory (see the tested sizes for the matrix-matrix
multiplication in Figure 5). In principle, this can be solved transparently to the programmer in the tuned
approach, by handling the device memory as a cache of the host memory [6].

5 Concluding Remarks

We have presented an approach to mechanically port the routines of the dense linear algebra message-passing
library PLAPACK to a hybrid cluster consisting of nodes equipped with hardware accelerators. By initially
placing all data in the memory of the accelerators, the number of PCI Express transfers between the memories
of the host and the device is reduced and performance is increased. All data transfers are embedded inside
PLAPACK communication (copy) and consolidation (reduce) routines so that the retarget of the library
routines is mostly automatic and transparent to the user.

The experimental results have demonstrated that the integration of GPUs in the nodes of a cluster is an
efficient, cheap and scalable solution for the acceleration of large dense linear algebra problems.

Acknowledgments

The researchers at UJI were supported by the Spanish Ministry of Science and Innovation/FEDER (contract
no. TIN2008-06570-C04-01).

We thank Nvidia for the generous donation of part of the graphics hardware used in the experiments.
We also thank the Texas Advanced Computing Center (TACC) of The University of Texas at Austin for
granting access to the platform where the experiments reported in this paper were conducted.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

8

0

1000

2000

3000

4000

5000

6000

7000

0 5000 10000 15000 20000 25000 30000 35000 40000

G
F

L
O

P
S

Matrix size (m=n=k)

CUPLAPACK. Matrix-matrix multiplication on longhorn (16 nodes)

CUPLAPACK - 32 Quadro FX5800
CUPLAPACK - 16 Quadro FX5800

PLAPACK - 128 Intel Xeon Nehalem Cores

0

500

1000

1500

2000

2500

3000

3500

0 10000 20000 30000 40000 50000 60000

G
F

L
O

P
S

Matrix size

CUPLAPACK. Cholesky factorization on longhorn (16 nodes)

CUPLAPACK - 32 Quadro FX5800
CUPLAPACK - 16 Quadro FX5800

PLAPACK - 128 Intel Xeon Nehalem Cores

Figure 4: Comparison between PLAPACK and the accelerated version of PLAPACK for the matrix-matrix
multiplication (top) and the Cholesky factorization (bottom) on 16 nodes of Longhorn.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20000 40000 60000 80000 100000

G
F

L
O

P
S

Matrix size

CUPLAPACK. Simple vs. Tuned implementation on longhorn

Tuned Gemm - 32 Quadro FX5800
Simple Gemm - 32 Quadro FX5800

Tuned Cholesky - 32 Quadro FX5800
Simple Cholesky - 32 Quadro FX5800

Figure 5: Comparison between the simple and tuned implementation of PLAPACK for the matrix-matrix
multiplication and the Cholesky factorization on 16 nodes of Longhorn (using 32 GPUs).

[2] Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, and Enrique S. Quintana-Ort́ı. Solv-
ing dense linear systems on graphics processors. In Euro-Par ’08: Proceedings of the 14th international
Euro-Par conference on Parallel Processing, pages 739–748, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ort́ı, and
Gregorio Quintana-Ort́ı. Exploiting the capabilities of modern GPUs for dense matrix computations.
Concurr. Comput. : Pract. Exper., 21(18):2457–2477, 2009.

[4] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[5] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton. Petascale computing with accelerators. In PPoPP
’09: The 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
241–150, Raleigh, NC, USA, 2009.

9

[6] Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Solving
dense linear algebra problems on platforms with multiple hardware accelerators. In PPoPP ’09: The
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 121–129,
Raleigh, NC, USA, 2009.

[7] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[8] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

10

