
Elemental: A New Framework for Distributed Memory Dense

Matrix Computations

Jack Poulson∗

Bryan Marker†

Jeff R. Hammond‡

Nichols A. Romero§

Robert A. van de Geijn¶

June 11, 2010
Revised Jan. 24, 2011

Abstract

Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject
and generally considered to be among the best understood domains of parallel computing. Two packages,
developed in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of
many-core architectures, which may very well take the shape of distributed memory architectures within
a single processor, these packages must be revisited since it will likely not be practical to use MPI-based
implementations. Thus, this is a good time to review lessons learned since the introduction of these two
packages and to propose a simple yet effective alternative. Preliminary performance results show the
new solution achieves competitive, if not superior, performance on large clusters (i.e., on two racks of
Blue Gene/P).

1 Introduction

With the advent of widely used commercial distributed memory architectures in the late 1980s and early
1990s came the need to provide libraries for commonly encountered computations. In response two packages,
ScaLAPACK [5, 3, 8, 3, 9] and PLAPACK [29, 1, 26], were created in the mid-1990s, both of which provide a
substantial part of the functionality offered by the widely used LAPACK library [2]. Both of these packages
still enjoy loyal followings.

One of the authors of the present paper contributed to the early design of ScaLAPACK and was the
primarily architect of PLAPACK. This second package resulted from a desire to solve the programmability
crisis that faced computational scientists in the early days of massively parallel computing much like the
programmability problem that now faces us as multicore architectures evolve into many-core architectures.
After major development on the PLAPACK project ceased around 2000, many of the insights were brought
back into the world of sequential and multi-threaded architectures (including SMP and multicore), yielding
the FLAME project [13], libflame library [27], and SuperMatrix runtime system for scheduling dense linear
algebra algorithms to multicore architectures [6, 21]. With the advent of many-core architectures that may
soon resemble “distributed memory clusters on a chip”, like the Intel 80-core network-on-a-chip terascale
∗Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712,

jack.poulson@gmail.com.
†Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, bamarker@gmail.com.
‡Argonne National Laboratory, 9700 South Cass Avenue, LCF/Building 240, Argonne, IL 60439, jhammond@anl.gov.
§Argonne National Laboratory, 9700 South Cass Avenue, LCF/Building 240, Argonne, IL 60439, naromero@anl.gov.
¶Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, rvdg@cs.utexas.edu.

1



Algorithm: A := Chol blk(A) Variant 3: down-looking

Partition A→
„

ATL ATR

? ABR

«
where ATL is 0× 0

while m(ATL) < m(A) do
b = min(m(ABR), balg)
Repartition„

ATL ATR

? ABR

«
→

0@ A00 A01 A02

? A11 A12

? ? A22

1Awhere A11 is b× b

A11 := Chol(A11)

A12 := A−H
11 A12 (Trsm)

A22 := A22 −AH
12A12 (Herk)

Continue with

„
ATL ATR

? ABR

«
←

0@ A00 A01 A02

? A11 A12

? ? A22

1A
endwhile

Figure 1: Blocked algorithms for computing the Cholesky factorization.

research processor [19] and the recently announced Intel Single-chip Cloud Computer (SCC) research pro-
cessor with 48 cores in one processor [16], the research comes full circle: distributed memory libraries may
need to be mapped to single-chip environments.

This seems an appropriate time to ask what we would do differently if we had to start all over again
building a distributed memory dense linear algebra library. In this paper we attempt to answer this question.
This time the solution must truly solve the programmability problem for this domain. It cannot compromise
(much) on performance. It must be easy to retarget from a conventional cluster to a cluster with hardware
accelerators to a distributed memory cluster on a chip.

Both the ScaLAPACK and PLAPACK projects generated dozens of papers. Thus, this paper is merely
the first in what we expect to be a series of papers that together provide the new design. As such it is
heavy on vision and somewhat light on details. It is structured as follows: in Section 2, we review how
matrices are distributed to the memories of a distributed memory architecture using two-dimensional cyclic
data distribution as well as the communications that are inherently encountered in parallel dense matrix
computations. In Section 3, we discuss how distributed memory code can be written so as to hide many of the
indexing details that traditionally make libraries for distributed memory difficult to develop and maintain.
In Section 4, we show that elegance does not mean that performance must be sacrificed. Concluding remarks
follow in the final section. Two appendices are included. One describes the data distributions that underly
Elemental in more detail while the other illustrates the parallel Cholesky factorization that is the model
example used throughout the paper.

2 Distribution and Collective Communication

A key insight that underlies scalable dense linear algebra libraries for distributed memory architectures is
that the matrix must be distributed to MPI processes (processes hereafter) using a two-dimensional data
distribution [23, 24, 14]. The p processes in a distributed memory architecture are logically viewed as a
two-dimensional r × c mesh with p = rc. Subsequently, communication when implementing dense matrix
computations can be cast (almost) entirely in terms of collective communication within rows and columns
of processes, with an occasional collective communication that involves all processes.

2.1 Motivating Example

In much of this paper, we will use the Cholesky factorization as our motivating example. An algorithm
for this operation, known as the down-looking variant, that lends itself well to parallelization is given in
Figure 1.

2



2.2 Two-dimensional (block) cyclic distribution

Matrix A ∈ Rm×n is partitioned into blocks,

A =

 A0,0 · · · A0,N−1

...
...

AM−1,0 · · · AM−1,N−1

 ,

where Ai,j is of a chosen (uniform) block size. A two-dimensional (Cartesian) block-cyclic matrix distribution
assigns

A =

 As,t As,t+c · · ·
As+r,t As+r,t+c · · ·

...
...


to process (s, t).

2.3 ScaLAPACK

While in theory ScaLAPACK allows blocks Ai,j to be rectangular, in practice they are chosen to be square.
The design decisions that underly ScaLAPACK link the distribution block size, bdistr, to the algorithmic
block size, balg (e.g., the size of block A11 in Figure 1). Predicting the best distribution block size is often
difficult because there is a tension between having block sizes that are large enough for local Basic Linear
Algebra Subprogram (BLAS) [10] efficiency, yet small enough to avoid inefficiency due to load-imbalance.

The benefit of linking the two is that, for example, the A11 block in Figure 1 is owned by a single process
allowing it to be factored by one process. After this factoring, it only needs to be broadcast within the row of
processes that owns A12, and then those processes can independently perform their part of A12 := U−H

11 A12

with local calls to trsm (meaning only c processes participate in this operations). Finally, A12 is duplicated
within rows and columns of processes after which A22 can be updated independently by each process. For
some operations, the simplicity of the distribution also allows for limited overlapping of communication with
computation.

2.4 PLAPACK

In PLAPACK there is a notion of a vector distribution that induces the matrix distribution [11]. Vectors are
subdivided into subvectors of length bdistr which are wrapped in a cyclic fashion to all processes. This vector
distribution then induces the distribution of columns and rows of a matrix to the mesh. The net effect is
that the submatrices Ai,j are of size bdistr by r · bdistr. Algorithms that operate with the matrix are, as a
result of this “unbalanced” distribution, mildly nonscalable in the sense that if the number of processes p
gets large enough, efficiency will start to suffer even if the matrix is chosen to fill all of available memory. In
PLAPACK the distribution block size can be chosen to be small while the algorithmic block size can equal
the block size that makes local computation efficient since the two block sizes are not linked.

The mild nonscalability of PLAPACK was the result of a conscious choice made to simplify the imple-
mentation at a time when the number of processes was relatively small. There was always the intention to
fix this eventually. The new package described in this paper is that fix, but it also incorporates other insights
made in the last decade.

2.5 Elemental

In principle Elemental, like ScaLAPACK, can accomodate any distribution block size. Unlike ScaLAPACK
and like PLAPACK, the distribution block size is not linked to the algorithmic block size. Load balance
is optimal when the distribution block size is as small as possible, leading to the choice to initially (and
possibly permanently) only support bdistr = 1, unlike PLAPACK which is not implemented to be efficient
when bdistr = 1. This choice also greatly simplifies routines that pack and unpack messages before and after
communication, since bdistr 6= 1 requires careful attention to be paid to partial blocks, etc.

3



The insight to use bdistr = 1 is not new. On early distributed memory architectures, before the advent of
cache-based processors that favor blocked algorithms like the one in Figure 1, such an “elemental” distribution
was the norm [18, 14]. In [15] it is noted that

“Block storage is not necessary for block algorithms and level 3 [BLAS] performance. Indeed, the use of block
storage leads to a significant load imbalance when the block size is large. This is not a concern on the Paragon,
but may be problematic for machines requiring larger block sizes for optimal BLAS performance.”

Similarly, in [25] it was experimentally shown that small distribution block sizes that were independent of
the algorithmic block size were beneficial. This may have been prophetic but has not become particularly
relevant until recently. The reason is that the algorithmic block size used to be related to the (square root of
the) size of the L1 cache [28], which was relatively small. Kazushige Goto [12] showed that higher performing
implementations should use the L2 cache for blocking, which means that the algorithmic block size is now
typically related to the (square root of the) size of the L2 cache. However, by the time this was discovered
distributed memory architectures had so much local memory that load balance could still be achieved for the
very large problem sizes that could be stored. More recently, the advent of GPU accelerators push the block
size higher yet, into the balg = 1000 range, so that bdistr = balg will likely become problematic. Moreover, one
path towards many-core (hundreds or even thousands of cores on one chip) is to create distributed memory
architectures on a chip [16]. In that scenario, the problem size will likely not be huge due to an inability to
have very large memories close to the chip and/or because the problems that will be targeted to those kinds
of processors will be relatively small.

To some the choice of bdistr = 1 may seem to be in contradition to conventional wisdom that says that
the more processor boundaries are encountered in the data partitioning for distribution, the more often com-
munication must occur. To explain why this is not necessarily true for dense matrix computations, consider
the following observations regarding the parallelization of a blocked down-looking Cholesky factorization:

• In the ScaLAPACK implementation, A11 is factored by a single process after which it must be broadcast
within the column of processes that owns it.

• If the matrix is distributed using bdistr = 1, then A11 can be gathered to all processes and factored
redundantly. We note that, if communication cost is ignored, this is as efficient as having a single
process compute the factorization while the other cores idle.

• If done correctly, an allgather to all processes is comparable in cost to the broadcast of A11 performed
by ScaLAPACK. (If the process mesh is p = r × c, under reasonable assumptions, the former requires
log2(p) relatively short messages while the latter requires log2(r) such messages.)

The point is that, for the suboperation that factors A11, there is a small price to be paid for switching to an
elemental distribution. Next, consider the update of A12:

• In the ScaLAPACK implementation, A12 is updated by the c processes in the process row that owns
it, requiring the broadcast of A11 within that row of processes. Upon completion, the updated A12 is
then broadcast within rows and columns of processes.

• If the matrix is distributed using bdistr = 1, then rows of A12 must be brought together so that
they can be updated as part of A12 := U−H

11 A12. This can be implemented as an all-to-all collective
communication within columns (details of which are illustrated in Appendix B). After this, since A11

was redundantly factored by each process, the update A12 := U−H
11 A12 is shared among all p processes

(again, details are illustrated in Appendix B).

Finally, consider the update of A22:

• An allgather within rows and columns then duplicates the elements of A12 (also illustrated in Ap-
pendix B) so that A22 can be updated in parallel; the ScaLAPACK approach is similar but uses a
broadcast rather than an allgather.

The point is that an elemental distribution requires different communications that are comparable in cost
to those incurred by ScaLAPACK while enhancing load-balance for operations like A12 := U−H

11 A12 and
A22 := A22 −AH

12A12.

4



SUBROUTINE PZPOTRF( UPLO, N, A, IA, JA, DESCA, INFO )

*

* -- ScaLAPACK routine (version 1.7) --

* University of Tennessee, Knoxville, Oak Ridge National Laboratory,

* and University of California, Berkeley.

* May 25, 2001

*

< deleted code >

*

DO 10 J = JN+1, JA+N-1, DESCA( NB_ )

JB = MIN( N-J+JA, DESCA( NB_ ) )

I = IA + J - JA

*

* Perform unblocked Cholesky factorization on JB block

*

CALL PZPOTF2( UPLO, JB, A, I, J, DESCA, INFO )

IF( INFO.NE.0 ) THEN

INFO = INFO + J - JA

GO TO 30

END IF

*

IF( J-JA+JB+1.LE.N ) THEN

*

* Form the row panel of U using the triangular solver

*

CALL PZTRSM( ’Left’, UPLO, ’Conjugate transpose’,

$ ’Non-Unit’, JB, N-J-JB+JA, CONE, A, I, J,

$ DESCA, A, I, J+JB, DESCA )

*

* Update the trailing matrix, A = A - U’*U

*

CALL PZHERK( UPLO, ’Conjugate transpose’, N-J-JB+JA, JB,

$ -ONE, A, I, J+JB, DESCA, ONE, A, I+JB,

$ J+JB, DESCA )

END IF

10 CONTINUE

< deleted code >

Figure 2: Excerpt from ScaLAPACK Cholesky factorization. Parallelism is hidden inside calls to parallel
implementations of BLAS operations, which limits the possiblity of combining communication required for
individual such operations. (The header refers to ScaLAPACK 1.7 but this excerpt is from the code in the
latest release, ScaLAPACK 1.8. dated April 5 2007.)

3 Programmability

A major concern when designing Elemental was that the same code should support distributed memory
parallelism on both large-scale clusters and for many cores on a single chip. Thus, the software must be
flexibly retargetable to both of these extremes.

3.1 ScaLAPACK

The fundamental design decision behind ScaLAPACK can be found on the ScaLAPACK webpage [22]:

“Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the
frequency of data movement between different levels of the memory hierarchy. (For such machines, the memory
hierarchy includes the off-processor memory of other processors, in addition to the hierarchy of registers, cache,
and local memory on each processor.) The fundamental building blocks of the ScaLAPACK library are distributed
memory versions (PBLAS) of the Level 1, 2 and 3 Basic Linear Algebra Subprograms (BLAS), and a set of Basic
Linear Algebra Communication Subprograms (BLACS) for communication tasks that arise frequently in parallel
linear algebra computations. In the ScaLAPACK routines, all interprocessor communication occurs within the
PBLAS and the BLACS. One of the design goals of ScaLAPACK was to have the ScaLAPACK routines resemble
their LAPACK equivalents as much as possible.”

5



In Figure 2 we show the ScaLAPACK Cholesky factorization routine. A reader who is familiar with the
LAPACK Cholesky factorization will notice the similarity of coding style.

3.2 PLAPACK

As mentioned PLAPACK already supports balg 6= bdistr. While bdistr = 1 is supported, the communication
layer of PLAPACK would need to be rewritten and the nonscalability of the underlying distribution would
need to be fixed.

Since the inception of PLAPACK, additional insights into solutions to the programmability problem for
dense matrix computations were exposed as part of the FLAME project and incorporated into the libflame
library. To also incorporate all those insights, a complete rewrite of PLAPACK made more sense, yielding
Elemental.

3.3 Elemental

Elemental goes one step beyond libflame in that it is coded in C++1. Other than this small detail, the
coding style resembles that used by libflame. Like its predecessors PLAPACK and libflame, it hides
the details of matrices and vectors within objects. As a result, much of the indexing clutter that exists in
LAPACK and ScaLAPACK code disappears, leading to much easier to develop and maintain code.

Let us examine how the code in Figure 3 implements the algorithm described in Section 2.5.

• The tracking of submatrices in Figure 1 translates to

PartitionDownDiagonal( A, ATL, ATR,

ABL, ABR, 0 );

while( ABR.Height() > 0 )

{

RepartitionDownDiagonal( ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/

/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22 );

[...]

SlidePartitionDownDiagonal( ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/*************/ /******************/

ABL, /**/ ABR, A20, A21, /**/ A22 );

}

• Redistributing A11 so that all processes have a copy is achieved by

DistMatrix<T,Star,Star> A11_Star_Star(g);

which indicates that A11 Star Star describes a matrix replicated on all processes, and

A11_Star_Star = A11;

lapack::internal::LocalChol( Upper, A11_Star_Star );

A11 = A11_Star_Star;

which performs an allgather of the data, has every process redundantly factor the matrix, and then
locally substitutes the new values into the distributed matrix.

• The parallel computation of A12 := U−H
11 A12 is accomplished by first constructing an object for holding

a temporary distribution of A12,

DistMatrix<T,Star,VR> A12_Star_VR(g);

which describes what in PLAPACK would have been called a multivector distribution, followed by
1In the future, the library will be accessible from Fortran or C via wrappers.

6



template<typename T>

void CholU( DistMatrix<T,MC,MR>& A )

{

const Grid& g = A.GetGrid();

DistMatrix<T,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g),

ABL(g), ABR(g), A10(g), A11(g), A12(g),

A20(g), A21(g), A22(g);

DistMatrix<T,Star,Star> A11_Star_Star(g);

DistMatrix<T,Star,VR > A12_Star_VR(g);

DistMatrix<T,Star,MC > A12_Star_MC(g);

DistMatrix<T,Star,MR > A12_Star_MR(g);

PartitionDownDiagonal( A, ATL, ATR,

ABL, ABR, 0 );

while( ABR.Height() > 0 )

{

RepartitionDownDiagonal( ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/

/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22 );

A12_Star_MC.AlignWith( A22 );

A12_Star_MR.AlignWith( A22 );

A12_Star_VR.AlignWith( A22 );

//--------------------------------------------------------------//

A11_Star_Star = A11;

lapack::internal::LocalChol( Upper, A11_Star_Star );

A11 = A11_Star_Star;

A12_Star_VR = A12;

blas::internal::LocalTrsm

( Left, Upper, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A12_Star_VR );

A12_Star_MC = A12_Star_VR;

A12_Star_MR = A12_Star_VR;

blas::internal::LocalTriangularRankK

( Upper, ConjugateTranspose,

(T)-1, A12_Star_MC, A12_Star_MR, (T)1, A22 );

A12 = A12_Star_MR;

//--------------------------------------------------------------//

A12_Star_MC.FreeAlignments();

A12_Star_MR.FreeAlignments();

A12_Star_VR.FreeAlignments();

SlidePartitionDownDiagonal( ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/*************/ /******************/

ABL, /**/ ABR, A20, A21, /**/ A22 );

}

}

Figure 3: Elemental upper-triangular variant 3 Cholesky factorization.

7



A12_Star_VR = A12;

blas::internal::LocalTrsm

( Left, Upper, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A12_Star_VR );

which redistributes the data via an all-to-all communication within columns and performs the local
portion of the update A12 := A−H

11 A12 (Trsm).

• The subsequent redistribution of A12 so that A22 := A22−AH
12A12 is accomplished by first constructing

two temporary distributions,

DistMatrix<T,Star,MC> A12_Star_MC(g);

DistMatrix<T,Star,MR> A12_Star_MR(g);

which describe the two distributions needed to make the update of A22 local. The redistributions
themselves are accomplished by the commands

A12_Star_VR = A12;

A12_Star_MC = A12_Star_VR;

A12_Star_MR = A12_Star_VR;

which perform a permutation of data among all processes, an allgather of data within rows, and
an allgather of data within columns, respectively. (Details of how and why these communications
are performed will be given in a future, more comprehensive paper.) The local update of A22 is
accomplished by

blas::internal::LocalTriangularRankK

( Upper, ConjugateTranspose,

(T)-1, A12_Star_MC, A12_Star_MR,(T)1, A22 );

• Finally, the updated A12 is placed back into the distributed matrix, without requiring any communi-
cation, by the command

A12 = A12_Star_MR;

The point is that the Elemental framework allows the partitioning, distributions, communications, and local
computations to be elegantly captured in code. The data movements that are incurred are further illustrated
in Appendix B while an explanation of the data distributions is given in Appendix A.

4 Performance Experiments

The scientific computing community has always been willing to give up programmability if it means attaining
better performance. In this section, we give preliminary performance numbers that suggest that a focus on
programmability does not need to come at the cost of performance.

4.1 Platform details

The performance experiments were carried out on Argonne National Laboratory’s IBM Blue Gene/P archi-
tecture. Each compute node consists of four 850 MHz PowerPC 450 processors for a combined theoretical
peak performance of 13.6 GFlops in double-precision arithmetic per node. Nodes are interconnected by a
three-dimensional torus topology and a collective network that each support a per node bidirectional band-
width of 2.55 GB/s. Our experiments were performed on two racks (2048 compute nodes, or 8192 cores),
which have an aggregate theoretical peak of just over 27 TFlops For this configuration the X, Y , and Z
dimensions of the torus are 8, 8, and 32, respectively. The optimal decomposition into a two-dimensional
topology was almost always Z × (X,Y ), which was used for the below experiments.

We compare the performance of a preliminary version of Elemental ported to Blue Gene/P (Elemental-
BG/P) with the latest release of ScaLAPACK available from netlib (Release 1.8). Since experiments
showed that ScaLAPACK performs worse in SMP mode, its performance results are reported with one MPI

8



process per core with local computation performed by calls to BLAS provided by IBM’s serial ESSL library.
Elemental-BG/P performance is reported with one MPI process per core and with one MPI process per
node (SMP mode). The shared memory parallelism simply consists of using IBM’s threaded ESSL BLAS
library and adding simple OpenMP directives for parallelizing the packing and unpacking steps surrounding
MPI calls. Both packages were tested for all block sizes in the range 32, 64, 96, ..., 256, with only the best-
performing block size for each problem size reported in the graphs. All reported computations were performed
in double-precision (64-bit) arithmetic.

4.2 Operations

Solution of the Hermitian generalized eigenvalue problem, given by Ax = λBx where A and B are known,
A is Hermitian, and B is Hermitian positive-definite, is of importance to the coauthors of this paper from
Argonne National Lab. This operations is typically broken down into six steps:

• Cholesky factorization. B → LLH where L is lower triangular.

• Reduction of the generalized problem to Hermitian standard form. The transformation
C := L−1AL−H .

• Householder reduction to tridiagonal form. Computes unitary Q (as a sequence of Householder
transformations) so that T = QCQH is tridiagonal.

• Spectral decomposition of a tridiagonal matrix. Computes unitary V such that T = V DV H

where D is diagonal. This part of the problem is not included in the performance experiments. It
could employ, for example, the PMRRR algorithms [4].

• Back transformation. This operations computes Z = QHV by applying the Householder transfor-
mations that represent Q to V .

• Solution of a triangular system of equations with multiple right-hand sides. NowA(L−HZ) =
C(L−HZ) and hence X = L−HZ equal the desired generalized eigenvectors. This requires the solution
of the triangular system of equations LX = Z.

Since complex arithmetic requires four times as many floating point operations, we tuned and measured
performance for double-precision real matrices. The represented performance is qualitatively representative
of that observed for the complex case. To further reduce the time required for collecting data we limited the
largest problem size for which performance is reported to 100, 000 × 100, 000, which requires less than one
percent of the available main memory of the 2048 nodes for each distributed matrix.

4.3 Results

The point of this section is to show that preliminary experience with Elemental supports the claim that
it provides a solution to the programmability problem without sacrificing performance. Potential users of
ScaLAPACK and Elemental are encouraged to perform and report their own comparisons.

Cholesky factorization. The performance of Cholesky factorization is reported in Figure 4. The per-
formance improvements for Cholesky factorization are largely due to inefficiencies in ScaLAPACK’s approach
to applying the symmetric update to A22. More specifically, in order to take advantage of symmetry in the
update of A22, ScaLAPACK breaks the lower triangle of A22 into a series of column panels of a fixed width
and updates each using a call to gemm. This width is fixed as 32 within the routine pilaenv and preliminary
experiments show significant increases in performance when the library is recompiled with larger choice of
the parameter, e.g., 128. We did not test ScaLAPACK over a range of these parameters because each choice
requires one to recompile the library and this greatly complicates the experiments. We thus used the version
that has been in use on Argonne’s BG/P for the past several years. Elemental avoids the need for this tuning
parameter by updating A22 via recursive partitioning of the local computation. This approach results in the
vast majority of the work lying in dgemm updates of large square matrices. The level of abstraction at which

9



0 0.2 0.4 0.6 0.8 1

·105

0

10

20

Dimension

T
F

lo
ps

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

0 0.2 0.4 0.6 0.8 1

·105

100

101

102

Dimension

T
im

e
[s

ec
on

ds
]

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

Figure 4: Real double-precision Cholesky factorization on 8192 cores.

0 0.2 0.4 0.6 0.8 1

·105

0

10

20

Dimension

T
F

lo
ps

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

0 0.2 0.4 0.6 0.8 1

·105

100

101

102

103

Dimension

T
im

e
[s

ec
on

ds
]

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

Figure 5: Real double-precision reduction of generalized eigenvalue problem to symmetric standard form on
8192 cores.

0 0.2 0.4 0.6 0.8 1

·105

0

10

20

Dimension

T
F

lo
ps

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

0 0.2 0.4 0.6 0.8 1

·105

101

102

103

Dimension

T
im

e
[s

ec
on

ds
]

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

Figure 6: Real double-precision Householder tridiagonalization on 8192 cores.

10



0 0.2 0.4 0.6 0.8 1

·105

0

10

20

Dimension

T
F

lo
ps

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

0 0.2 0.4 0.6 0.8 1

·105

100

101

102

Dimension

T
im

e
[s

ec
on

ds
]

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

Figure 7: Real double-precision application of the back transformation on 8192.

0 0.2 0.4 0.6 0.8 1

·105

0

10

20

Dimension

T
F

lo
ps

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

0 0.2 0.4 0.6 0.8 1

·105

10−1

100

101

102

Dimension

T
im

e
[s

ec
on

ds
]

Elemental-BG/P
Elemental-BG/P SMP

ScaLAPACK

Figure 8: Real double-precision B := L−TB (trsm) on 8192 cores.

11



Elemental routines are coded greatly simplifies the incorporation of such strategies for eliminating tuning
parameters.

Reduction of generalized eigenvalue problem to Hermitian standard form. Performance of this
operation is reported in Figure 5. For this operation, ScaLAPACK utilizes an algorithm that is nonscalable
by casting most computation in terms of the parallel solution of a triangular system with multiple right-hand
sides (trsm) and parallel triangular matrix-matrix multiplication (trmm). These operations work with only
a narrow panel of right-hand sides (with width equal to the block size), which greatly limits the opportunity
for parallelism. By contrast Elemental uses a new algorithm [20] that casts most computation in terms of
rank-k updates, which are easily parallelizable. The vast performance improvement observed in this routine
can be entirely attributed to the new algorithm avoiding unscalable updates.

Householder reduction to tridiagonal form. In Figure 6, we report the performance for the reduction
to tridiagonal form. This operation is the most time consuming step towards finding all eigenvalues and
eigenvectors of a symmetric or Hermitian matrix. Neither package attains the same level of performance as
do the other operations. The reason for this is that a substantial part of the computation is in a (local)
matrix-vector multiplication, which is inherently constrained by memory bandwidth. The algorithms used
by both packages are essentially the same.

Back transformation. This operation requires the Householder transformations that form Q to be
applied to the eigenvectors of the tridiagonal matrix T . Our parallel implementation employs block UT
transforms [17] in order to cast most of the computation in terms of efficient matrix-matrix multiplications.
Results are reported in Figure 7. The dramatic drop in the performance curve for Elemental is due to a large
drop in efficiency of IBM’s MPI Reduce scatter implementation over the (Z, T ) subtori once the message
sizes are larger than a particular value. We are in the process of working out the problem with IBM.

Solution of a triangular system of equations with multiple right-hand sides. Parallelization
of this operation was first published in [7] and it is part of ScaLAPACK’s Parallel BLAS (PBLAS). Results
are reported in Figure 7.

4.4 Discussion

Both ScaLAPACK and Elemental have considerably large searchspaces of tuning parameters, so our experi-
ments always included testing both packages over the same large range of blocksizes, process grid dimensions,
and matrix sizes. Unfortunately an exhaustive search is infeasible, so we make no claims that we have found
the optimal parameters for each package. However, we believe that our experiments were sufficiently detailed
for qualitative comparison. In particular, we would like to point out that the factor of 20 performance im-
provement observed in the reduction of the generalized eigenvalue problem resulted from a smarter algorithm
rather than a smarter implementation; all other performance differences are insignificant in comparison.

5 Conclusion

The point of this paper is to demonstrate that, for the domain of dense linear algebra libraries, neither
abstraction nor elegance needs to stand in the way of performance, even on distributed memory architectures.
Therefore, it is time for the community to embrace notations, techniques, algorithms, abstractions, and APIs
that help solve the programmability problem in preparation for exascale computing, rather than remaining
fixated on performance at the expense of sanity. On future architectures that also incorporate GPUs, the
effect of programmability on performance is expected to be even more pronounced.

As of this writing, Elemental supports the following functionality, for both real and complex datatype:

• All level-3 BLAS.

• All three (one-sided) matrix factorizations: LU with partial pivoting, Cholesky, and QR factorization.

• All operations for computing the inverse of a symmetric/Hermitian positive-definite matrix.

• All operations for computing the solution of the generalized symmetric/Hermitian positive-definite
eigenvalue problem, with the exception of the parallel solution of the symmetric tridiagonal eigensolver.

12



Soon, we expect to have functionality that rivals that of ScaLAPACK, with the possible exception of solvers
for the nonsymmetric eigenvalue problem.

We envision a string of additional papers in the near future. In Appendix A, we hint at a general set-
based notation for describing the data distributions that underly Elemental. The key insight is that relations
between sets, via the union operator, that link the different destributions dictate the communications that
are required for parallelization. A full paper on this topic is being written. Another paper will give details
regarding the parallel computation of the solution of the generalized Hermitian eigenvalue problem.

As mentioned in the abstract and introduction, a major reason for creating a new distributed memory
dense matrix library and framework is the arrival of many-core architectures that can be viewed as clusters on
a single chip, like the SCC architecture. The Elemental library has already been ported to the SCC processor
by replacing the MPI collective communication library with calls to a custom collective communication library
for that architecture. The results of that experiment will also be reported in a future publication.

Availability

The Elemental package is available at http://code.google.com/p/elemental and its port to Blue Gene/P
at http://code.google.com/p/elemental-bgp.

Acknowledgements

This research was partially sponsored by NSF grants OCI-0850750 and CCF-0917167, grants from Microsoft,
an unrestricted grant from Intel, and a fellowship from the Institute of Computational Engineering and
Sciences. Jack Poulson was also partially supported by a fellowship from the Institute of Computational
Engineering and Sciences, and Bryan Marker was partially supported by a Sandia National Laboratory
fellowship. This research used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-
AC02-06CH11357; early experiments were performed on the Texas Advanced Computing Center’s Ranger
Supercomputer.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

We would like to thank John Lewis (Cray) and John Gunnels (IBM T.J. Watson Research Center) for
there constructive comments on this work and Brian Smith (IBM Rochester) for his help in eliminating
performance problems in Blue Gene/P’s collective communication library.

References

[1] Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robert
van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra package – design overview. In
Proceedings of SC97, 1997.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de
Geijn. Lapack for distributed memory architectures: Progress report. In Proceedings of the Fifth SIAM
Conference on Parallel Processing for Scientific Computing, pages 625–630, Philadelphia, 1992. SIAM.

[4] Paolo Bientinesi, Inderjit S. Dhillon, and Robert A. van de Geijn. A parallel eigensolver for dense
symmetric matrices based on multiple relatively robust representations. SIAM Journal on Scientific
Computing, 27(1):43–66, 2005.

13



[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
1997.

[6] Ernie Chan, Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de Geijn. SuperMa-
trix out-of-order scheduling of matrix operations for SMP and multi-core architectures. In SPAA ’07:
Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures, pages
116–126, 2007.

[7] Almadena Chtchelkanova, John Gunnels, Greg Morrow, James Overfelt, and Robert A. van de Geijn.
Parallel implementation of BLAS: General techniques for level 3 BLAS. Concurrency: Practice and
Experience, 9(9):837–857, Sept. 1997.

[8] Jack Dongarra and Robert van de Geijn. Reduction to condensed form on distributed memory archi-
tectures. Parallel Computing, 18:973–982, 1992.

[9] Jack Dongarra, Robert van de Geijn, and David Walker. Scalability issues affecting the design of a
dense linear algebra library. J. Parallel Distrib. Comput., 22(3), Sept. 1994.

[10] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[11] C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions: have we been doing
it all wrong? Technical Report TR-95-40, Department of Computer Sciences, The University of Texas
at Austin, 1995.

[12] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Soft., 34(3: Article 12, 25 pages), May 2008.

[13] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
Linear Algebra Methods Environment. ACM Transactions on Mathematical Software, 27(4):422–455,
December 2001.

[14] B. A. Hendrickson and D. E. Womble. The torus-wrap mapping for dense matrix calculations on
massively parallel computers. SIAM J. Sci. Stat. Comput., 15(5):1201–1226, 1994.

[15] Bruce Hendrickson, Elizabeth Jessup, and Christopher Smith. Toward an efficient parallel eigensolver
for dense symmetric matrices. SIAM J. Sci. Comput., 20(3):1132–1154, 1999.

[16] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De1, R. Van Der Wijngaart, and T. Mattson. A 48-core IA-32 message-passing pro-
cessor with DVFS in 45nm CMOS. In Proceedings of the International Solid-State Circuits Conference,
February 2010.

[17] Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn, and Field G. Van Zee.
Accumulating householder transformations, revisited. ACM Trans. Math. Softw., 32(2):169–179, 2006.

[18] S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube architectures.
J. of Par. Distr. Comput., 4:133–172, 1987.

[19] Timothy G. Mattson, Rob Van der Wijngaart, and Michael Frumkin. Programming the intel 80-core
network-on-a-chip terascale processor. In SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[20] Jack Poulson. Formalized parallel dense linear algebra and its application to the generalized eigenvalue
problem. Master’s thesis, Department of Aerospace Engineering, The University of Texas, May 2009.

14



[21] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee, and
Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions
on Mathematical Software, 36(3):14:1–14:26, July 2009.

[22] Home Page, 2010. http://www.netlib.org/scalapack/scalapack_home.html.

[23] R. Schreiber. Scalability of sparse direct solvers. Graph Theory and Sparse Matrix Computations, 56,
1992.

[24] G. W. Stewart. Communication and matrix computations on large message passing systems. Parallel
Computing, 16:27–40, 1990.

[25] P. E. Strazdins. Optimal load balancing techniques for block-cyclic decompositions for matrix factoriza-
tion. In Proceedings of PDCN’98 2nd International Conference on Parallel and Distributed Computing
and Networks, Dec. 1998.

[26] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[27] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

[28] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In Proceedings of
SC’98, 1998.

[29] Y.-J. J. Wu, P. A. Alpatov, C. Bischof, and R. A. van de Geijn. A parallel implementation of symmetric
band reduction using PLAPACK. In Proceedings of Scalable Parallel Library Conference, Mississippi
State University, 1996. PRISM Working Note 35.

15



Note to the referees: We envision Appendix A and B as electronic appendices so that color has meaning.

A Elemental Distribution Details

In this appendix, we describe the basics of the distribution used by Elemental and how it facilitates parallel
Cholesky factorization.

In our discussion, we assume that the p processes from a (logical) r × c mesh with p = rc. We let
A ∈ Rm×n equal

A =


α00 α01 · · · α0(n−1)

α10 α11 · · · α1(n−1)

...
...

. . .
...

α(m−1)0 α(m−1)1 · · · α(m−1)(n−1)

 .

A.1 Distribution A(MC ,MR)

The basic elemental matrix distribution of matrix A assigns to process (s, t) of an r × c mesh of processes
the submatrix

A =

 αs,t αs,t+c · · ·
αs+r,t αs+r,t+c · · ·

...
...

 .

In Matlab notation (starting indexing at zero) this means that process (s, t) owns submatrix αs:r:m,t:c:n.
We will denote this distribution by A(MC ,MR) where MC can be thought of as the set of sets of integers
{Ms,t

C } with s = 0, . . . , r − 1 and t = 0, . . . , c − 1. The sets {Ms,t
C } and {Ms,t

R } indicate two “filters” that
determine the row and column indices, respectively, of the matrix that are assigned to process (s, t). Figure 9
illustrates this.

TheMC andMR are meant to represent a partitioning of the natural numbers (which include zero since
we are computer scientists) into r and c nonoverlapping subsets, respectively: MC =

(
M0

C ,M1
C , . . . ,M

r−1
C

)
and MR =

(
M0

R,M1
R, . . . ,M

c−1
R

)
. Now, A(Ms,t

C ,Ms,t
R ) represents the submatrix of A that is formed by

only choosing the row indices fromMs,t
C and column indices fromMs,t

R . The notation A(MC ,MR) is meant
to indicate the distribution that assigns A(Ms,t

C ,Ms,t
R ) to each process (s, t).

While this notation captures a broad family of distributions, in the elemental distributionMs
C = {s, s+

r, s+ 2r, . . .} and Mt
R = {t, t+ c, t+ 2c, . . .} creating the desired round-robin distribution in Figure 9.

A.2 Distribution A(VC , ?)

This second distribution can be described as follows: The processes still forms an r × c mesh, but now the
processes are numbered in column-major order: process (0, 0) is process 0. process (1, 0) is process 1, etc.
process u in this numbering is assigned elements αu,∗, αu+p,∗, . . . where ∗ indicates all valid column indices.
Another way of describing this is that the processes are now viewed as forming a one-dimensional array and
rows of the matrix are wrapped onto this array in a round-robin fashion. This is illustrated in Figure 10.

What is important is that it is very easy to redistribute from A(MC ,MR) to A(VC , ?). Focus on the
first row of matrix A in Figures 9 and 10. The elements of row 0 of A in Figure 9 need to be gathered within
the first row of processes to process (0, 0) so that it becomes distributed as in Figure 10. Similarly, the
elements of row 1 of A need to be gathered to process (1, 0). A careful comparison of the two figures shows
that all-to-all communications within rows of processes will redistribute A(MC ,MR) to A(VC , ?).

The VC represents a partitioning of the natural numbers into a 2D array of p nonoverlapping subsets:

VC =

 V0,0
C , . . . ,V0,c−1

C
...

Vr−1,0
C , . . . ,Vr−1,c−1

C



16



Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α6,0 α6,3 α6,6 · · · α6,1 α6,4 α6,7 · · · α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·
α7,0 α7,3 α7,6 · · · α7,1 α7,4 α7,7 · · · α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2r,2)
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·
α8,0 α8,3 α8,6 · · · α8,1 α8,4 α8,7 · · · α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 9: Illustration of distribution A(MC ,MR) where r = c = 3, Ms,t
C = {s, s + r, . . .}, and Ms,t

R =
{t, t+ c, . . .}. Here the (s, t) tile represents process (s, t).

Process 0 Process 3 Process 6
α0,0 α0,1 α0,2 · · · α3,0 α3,1 α3,2 · · · α6,0 α6,1 α6,2 · · ·
α9,0 α9,1 α0,2 · · · α12,0 α12,1 α12,2 · · · α15,0 α15,1 α15,2 · · ·
α18,0 α18,1 α18,2 · · · α21,0 α21,1 α21,2 · · · α24,0 α24,1 α24,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process 1 Process 4 Process 7
α1,0 α1,1 α1,2 · · · α4,0 α4,1 α4,2 · · · α7,0 α7,1 α7,2 · · ·
α10,0 α10,1 α10,2 · · · α13,0 α13,1 α13,2 · · · α16,0 α16,1 α16,2 · · ·
α19,0 α19,1 α19,2 · · · α22,0 α22,1 α22,2 · · · α25,0 α25,1 α25,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process 2 Process 5 Process 8
α2,0 α2,1 α2,2 · · · α5,0 α5,1 α5,2 · · · α8,0 α8,1 α8,2 · · ·
α11,0 α11,1 α11,2 · · · α14,0 α14,1 α14,2 · · · α17,0 α17,1 α17,2 · · ·
α20,0 α20,1 α20,2 · · · α23,0 α23,1 α23,2 · · · α26,0 α26,1 α26,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 10: Illustration of distribution A(VC , ∗) where r = c = 3 and Vs,t
C = {u, u + p, . . .}, with u =

(formula).

Now, A(Vs,t
C , ?) represents the submatrix of A that is formed by only choosing the rows with indices found

in Vs,t
C . The notation A(VC , ?) is meant to indicate the distribution that assigns A(Vs,t

C , ?) to each process
(s, t). In the case where A is a vector, x, the notation x(VC) can be used.

This notation also captures a broad family of distributions. In the elemental distribution Vs,t
C = {u, u+

p, u+ 2p, . . .}, where u = s+ rt, creating the round-robin distribution in Figure 10.
The very important relation between Ms

C and Vs,t
C is that Ms

C = ∪c−1
t=0V

s,t
C . It is this property that

17



Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α6,0 α6,3 α6,6 · · · α6,1 α6,4 α6,7 · · · α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·
α7,0 α7,3 α7,6 · · · α7,1 α7,4 α7,7 · · · α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2r,2)
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·
α8,0 α8,3 α8,6 · · · α8,1 α8,4 α8,7 · · · α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 11: (Repeat) Illustration of distribution A(MC ,MR) where r = c = 3, MC
s,t = {s, s + r, . . .}, and

Ms,t
R = {t, t+ c, . . .}.

Process 0 Process 1 Process 2
α0,0 α0,9 α0,18 · · · α0,1 α0,10 α0,19 · · · α0,2 α0,11 α0,20 · · ·
α1,0 α1,9 α1,18 · · · α1,1 α1,10 α1,19 · · · α1,2 α1,11 α1,20 · · ·
α2,0 α2,9 α2,18 · · · α2,1 α2,10 α2,19 · · · α2,2 α2,11 α2,20 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process 3 Process 4 Process 5
α0,3 α0,12 α0,21 · · · α0,4 α0,13 α0,22 · · · α0,5 α0,14 α0,23 · · ·
α1,3 α1,12 α1,21 · · · α1,4 α1,13 α1,22 · · · α1,5 α1,14 α1,23 · · ·
α2,3 α2,12 α2,21 · · · α2,4 α2,13 α2,22 · · · α2,5 α2,14 α2,23 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process 6 Process 7 Process 8
α0,6 α0,15 α0,24 · · · α0,7 α0,16 α0,25 · · · α0,8 α0,17 α0,26 · · ·
α1,6 α1,15 α1,24 · · · α1,7 α1,16 α1,25 · · · α1,8 α1,17 α1,26 · · ·
α2,6 α2,15 α2,24 · · · α2,7 α2,16 α2,25 · · · α2,8 α2,17 α2,26 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 12: Illustration of distribution A(?,VR) where r = c = 3 and Vs,t
R = {u, u + p, . . .}, with u =

(formula).

guarantees that redistributing from A(VC , ?) to A(MC ,MR) and vise versa requires only simultaneous
all-to-all communications within rows.

18



A.3 Distribution A(?,VR)

This distribution can be similarly described: The processes still forms an r× c mesh, but now the processes
are numbered in row-major order: process (0, 0) is process 0. process (0, 1) is process 1, etc. process u in
this numbering is assigned elements α∗,u, α∗,u+p, . . . where ∗ indicates all valid row indices. Another way of
describing this is that the processes are now viewed as forming a one-dimensional array and columns of the
matrix are wrapped onto this array in a round-robin fashion. This is illustrated in Figure 12.

Again, what is important is that it is very easy to redistribute from A(MC ,MR) to A(?,VR). Focus
on the first column of matrix A in Figure 11 (which is just a repeat of Figure 9 for easy comparison) and
Figure 12. The elements of column 0 of A in Figure 11 need to be gathered within the first column of
processes to process (0, 0) so that it becomes distributed as in Figure 12. Similarly, the elements of column
1 of A need to be gathered to process (0, 1). A careful comparison of the two figures shows that all-to-all
communications within columns of processes will redistribute A(MC ,MR) to A(?,VR).

The VR similarly represents a partitioning into the 2D array of nonoverlapping subsets

VR =

 V0,0
R , . . . ,V0,c−1

R
...

Vr−1,0
R , . . . ,Vr−1,c−1

R


Now, A(?,Vs,t

R ) represents the submatrix of A that is formed by only choosing the columns from Vs,t
R . The

notation A(?,VR) is meant to indicate the distribution that assigns A(?,Vs,t
R ) to each process (s, t). In the

case where A is a vector, x, the notation x(VR) can be used.
This notation again captures a broad family of distributions. In the elemental distribution Vs,t

C = {u, u+
p, u+ 2p, . . .}, where u = sc+ t creating the round-robin distribution in Figure 12.

The very important relation between Mt
R and Vs,t

R is that Mt
R = ∪r−1

s=0V
s,t
R . It is this property that

guarantees that redistributing from A(?,VR) to A(MC ,MR) and vise versa requires only simultaneous
all-to-all communications within columns.

A.4 Distribution A(MC , ?)

Let MC be as before. Then A(MC , ?) assigns to process (s, t) the elements A(Ms
C , ?). In the case of the

elemental distribution, this means that process (s, t) is assigned the submatrix αs,?

αs+r,?

...


as illustrated in Figure 13.

It is important to note that redistributing from A(VC , ?) to A(MC , ?) requires simultaneous allgathers
within columns, as is obvious from comparing Figures 10 and 13. Similarly, redistributing from A(MC ,MR)
to A(MC , ?) requires simultaneous allgathers within columns, as is obvious from comparing Figures 9 and 13.

A.5 Distribution A(?,MR)

Let MR be as before. Then A(?,MR) assigns to process (s, t) the elements A(?,Mt
R). In the case of the

elemental distribution, this means that process (s, t) is assigned the submatrix(
α?,t α?,t+c · · ·

)
as illustrated in Figure 14.

It is important to note that redistributing from A(?,VR) to A(?,MR) requires simultaneous allgathers
within columns, as is obvious from comparing Figures 12 and 14. Similarly, redistributing from A(MC ,MR)
to A(?,MR) requires simultaneous allgathers within rows, as is obvious from comparing Figures 9 and 14.

19



Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,1 α0,2 · · · α0,0 α0,1 α0,2 · · · α0,0 α0,1 α0,2 · · ·
α3,0 α3,1 α3,2 · · · α3,0 α3,1 α3,2 · · · α3,0 α3,1 α3,2 · · ·
α6,0 α6,1 α6,2 · · · α6,0 α6,1 α6,2 · · · α6,0 α6,1 α6,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,1 α1,2 · · · α1,0 α1,1 α1,2 · · · α1,0 α1,1 α1,2 · · ·
α4,0 α4,1 α4,2 · · · α4,0 α4,1 α4,2 · · · α4,0 α4,1 α4,2 · · ·
α7,0 α7,1 α7,2 · · · α7,0 α7,1 α7,2 · · · α7,0 α7,1 α7,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2r,2)
α2,0 α2,1 α2,2 · · · α2,0 α2,1 α2,2 · · · α2,0 α2,1 α2,2 · · ·
α5,0 α5,1 α5,2 · · · α5,0 α5,1 α5,2 · · · α5,0 α5,1 α5,2 · · ·
α8,0 α8,1 α8,2 · · · α8,0 α8,1 α8,2 · · · α8,0 α8,1 α8,2 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 13: Illustration of distribution A(MC , ?) where r = c = 3.

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2r,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Figure 14: Illustration of distribution A(?,MR) where r = c = 3.

B An Illustrated Guide to Elemental Cholesky Factorization

In this appendix, we illustrate the Cholesky factorization routine in Figure 3. We will work through the
commands in the loop body one by one for the first iteration of the algorithm. For each command, we
explain how data is redistributed and what computation is performed where. We assume that the reader is
reasonably familiar with Cholesky factorization, the BLAS, and LAPACK. While we illustrate the algorithm
on a 3× 3 mesh of processes and use a distribution block size of 3, there is nothing special about the mesh
being square and the block size being equal to the mesh row and column size.

20



We start with matrix A distributed among the processes:

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α6,0 α6,3 α6,6 · · · α6,1 α6,4 α6,7 · · · α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·
α7,0 α7,3 α7,6 · · · α7,1 α7,4 α7,7 · · · α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2,2)
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·
α8,0 α8,3 α8,6 · · · α8,1 α8,4 α8,7 · · · α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

a distribution denoted by A(MC ,MR). Here the elements of A11, A12, and A22 are highlighted in blue,
green, and red, respectively.

B.1 Parallel factorization of A11

The command
A11_Star_Star = A11;

creates a copy of A11 on each process as illustrated by

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,1 α0,2 α0,0 α0,1 α0,2 α0,0 α0,1 α0,2

α1,0 α1,1 α1,2 α1,0 α1,1 α1,2 α1,0 α1,1 α1,2

α2,0 α2,1 α2,2 α2,0 α2,1 α2,2 α2,0 α2,1 α2,2

Process (1,0) Process (1,1) Process (1,2)
α0,0 α0,1 α0,2 α0,0 α0,1 α0,2 α0,0 α0,1 α0,2

α1,0 α1,1 α1,2 α1,0 α1,1 α1,2 α1,0 α1,1 α1,2

α2,0 α2,1 α2,2 α2,0 α2,1 α2,2 α2,0 α2,1 α2,2

Process (2,0) Process (2,1) Process (2,2)
α0,0 α0,1 α0,2 α0,0 α0,1 α0,2 α0,0 α0,1 α0,2

α1,0 α1,1 α1,2 α1,0 α1,1 α1,2 α1,0 α1,1 α1,2

α2,0 α2,1 α2,2 α2,0 α2,1 α2,2 α2,0 α2,1 α2,2

This requires an allgather among all processes. Next, the command
lapack::internal::LocalChol( Upper, A11_Star_Star );

factors A11, redundantly, on each process. The command
A11 = A11_Star_Star;

places the updated entries of A11 back where they belong in the distributed matrix, which does not require
communication since each process owns a copy.

B.2 Parallel update A12 := U−H11 A12

Now, let us highlight A12 for the first iteration, but with multiple colors so that some of the required data
movements can be tracked:

21



Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α6,0 α6,3 α6,6 · · · α6,1 α6,4 α6,7 · · · α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·
α7,0 α7,3 α7,6 · · · α7,1 α7,4 α7,7 · · · α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2,2)
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·
α8,0 α8,3 α8,6 · · · α8,1 α8,4 α8,7 · · · α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Here the colored elements represent the distribution A12(?,MR). Consider the computation A12 := U−H
11 A12.

Partition A12 by columns:
A12 →

(
α3

12 α4
12 · · ·

)
Then

(
α3

12 α4
12 · · ·

)
:= U−H

11

(
α3

12 α4
12 · · ·

)
=
(
U−H

11 α3
12 U−H

11 α4
12 · · ·

)
. In other words, each

column is updated by a triangular solve with U11. So, to conveniently compute A12 := U−H
11 A12 we note

that (1) whole columns of A12 should exist on the same node and (2) those columns should be wrapped to
processes so that they can all participate, as such:

Process 0 Process 1 Process 2
α0,9 α0,18 · · · α0,10 α0,19 · · · α0,11 α0,20 · · ·
α1,9 α1,18 · · · α1,10 α1,19 · · · α1,11 α1,20 · · ·
α2,9 α2,18 · · · α2,10 α2,19 · · · α2,11 α2,20 · · ·

Process 3 Process 4 Process 5
α0,3 α0,12 α0,21 · · · α0,4 α0,13 α0,22 · · · α0,5 α0,14 α0,23 · · ·
α1,3 α1,12 α1,21 · · · α1,4 α1,13 α1,22 · · · α1,5 α1,14 α1,23 · · ·
α2,3 α2,12 α2,21 · · · α2,4 α2,13 α2,22 · · · α2,5 α2,14 α2,23 · · ·

Process 6 Process 7 Process 8
α0,6 α0,15 α0,24 · · · α0,7 α0,16 α0,25 · · · α0,8 α0,17 α0,26 · · ·
α1,6 α1,15 α1,24 · · · α1,7 α1,16 α1,25 · · · α1,8 α1,17 α1,26 · · ·
α2,6 α2,15 α2,24 · · · α2,7 α2,16 α2,25 · · · α2,8 α2,17 α2,26 · · ·

Now, compare this distribution A12(?,VR) to that of A12(?,MR) in the previous picture. We notice that
all-to-all communications within process columns are needed to achieve the required redistribution. The
command

A12_Star_VR = A12;
hides all the required communication in the assignment operator. After this the command

blas::internal::LocalTrsm
( Left, Upper, ConjugateTranspose, NonUnit,
(T)1, A11_Star_Star, A12_Star_VR );

updates the local content of A12(?,VR) with U−H
11 A12, using the duplicated copy of A11 (i.e., A11(?, ?), which

holds U11). We will delay placing the updated entries of A12 back where they belong until later.

22



B.3 Parallel update A22 := A22 − A−H12 A12

Finally, consider the update A22 := A22 −AH
12A12. In the following, we highlight the elements of A that are

affected:
Process (0,0) Process (0,1) Process (0,2)

α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α6,0 α6,3 α6,6 · · · α6,1 α6,4 α6,7 · · · α6,2 α6,5 α6,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·
α7,0 α7,3 α7,6 · · · α7,1 α7,4 α7,7 · · · α7,2 α7,5 α7,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (2,0) Process (2,1) Process (2,2)
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·
α8,0 α8,3 α8,6 · · · α8,1 α8,4 α8,7 · · · α8,2 α8,5 α8,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Let us home in on Processor (1, 2) where the following update must happen as part of A22 := A22−AH
12A12:

α4,5 α4,8 α4,11 · · ·
α7,5 α7,8 α7,11 · · ·
α10,5 α10,8 α10,11 · · ·

...
...

...
. . .

− :=

(
α0,4 α0,7 α0,10 · · ·
α1,4 α1,7 α1,10 · · ·
α2,4 α2,7 α2,10 · · ·

)H (
α0,5 α0,8 α0,11 · · ·
α1,5 α1,8 α1,11 · · ·
α2,5 α2,8 α2,11 · · ·

)
. (1)

(Here the gray entries are those that are not updated due to symmetry.) If the elements of A12 were
distributed as illustrated in Figure 15 then each process could locally update its part of A22.

The commands
A12_Star_MC = A12_Star_VR;
A12_Star_MR = A12_Star_VR;

redistribute (the updated) A12 as required. The communications required for these redistributions are
explained illustrated in Figures 16 and 17. After this, the simultaneous local computations are accomplished
by the call

blas::internal::LocalTriangularRankK
( Upper, ConjugateTranspose,
(T)-1, A12_Star_MC, A12_Star_MR, (T)1, A22 );

Finally, we observe that A12(?,MR) duplicates the updated submatrix A12 in such a way that placing this
data back in the original matrix requires only local copying of data. The command

A12 = A12_Star_MR;
accomplishes this.

23



Process (0,0) Process (0,1) Process (0,2)
α0,3 α0,6 α0,9 · · · α0,3 α0,6 α0,9 · · · α0,3 α0,6 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,3 α1,6 α1,9 · · · α1,3 α1,6 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,3 α2,6 α2,9 · · · α2,3 α2,6 α2,9 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,4 α0,7 α0,10 · · · α0,4 α0,7 α0,10 · · · α0,4 α0,7 α0,10 · · ·
α1,4 α1,7 α1,10 · · · α1,4 α1,7 α1,10 · · · α1,4 α1,7 α1,10 · · ·
α2,4 α2,7 α2,10 · · · α2,4 α2,7 α2,10 · · · α2,4 α2,7 α2,10 · · ·

Process (2,0) Process (2,1) Process (2,2)
α0,5 α0,8 α0,11 · · · α0,5 α0,8 α0,11 · · · α0,5 α0,8 α0,11 · · ·
α1,5 α1,8 α1,11 · · · α1,5 α1,8 α1,11 · · · α1,5 α1,8 α1,11 · · ·
α2,5 α2,8 α2,11 · · · α2,5 α2,8 α2,11 · · · α2,5 α2,8 α2,11 · · ·

Process (0,0) Process (0,1) Process (0,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Process (2,0) Process (2,1) Process (2,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Figure 15: If A12 is redistributed both as A12(?,MC) (Top) and A12(?,MR) (Bottom) then local parts of
A22 := A22 −AH

12A12 can be computed independently on each process. For example, Process (1, 2) can then
update its local elements as indicated in Eqn. (1).

24



Process 0 Process 1 Process 2
α0,9 α0,18 · · · α0,10 α0,19 · · · α0,11 α0,20 · · ·
α1,9 α1,18 · · · α1,10 α1,19 · · · α1,11 α1,20 · · ·
α2,9 α2,18 · · · α2,10 α2,19 · · · α2,11 α2,20 · · ·

Process 3 Process 4 Process 5
α0,3 α0,12 α0,21 · · · α0,4 α0,13 α0,22 · · · α0,5 α0,14 α0,23 · · ·
α1,3 α1,12 α1,21 · · · α1,4 α1,13 α1,22 · · · α1,5 α1,14 α1,23 · · ·
α2,3 α2,12 α2,21 · · · α2,4 α2,13 α2,22 · · · α2,5 α2,14 α2,23 · · ·

Process 6 Process 7 Process 8
α0,6 α0,15 α0,24 · · · α0,7 α0,16 α0,25 · · · α0,8 α0,17 α0,26 · · ·
α1,6 α1,15 α1,24 · · · α1,7 α1,16 α1,25 · · · α1,8 α1,17 α1,26 · · ·
α2,6 α2,15 α2,24 · · · α2,7 α2,16 α2,25 · · · α2,8 α2,17 α2,26 · · ·

Process (0,0) Process (0,1) Process (0,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Process (2,0) Process (2,1) Process (2,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,9 · · · α0,5 α0,8 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,9 · · · α1,5 α1,8 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,9 · · · α2,5 α2,8 α2,9 · · ·

Figure 16: An illustration of the result of command A12 Star MR = A12 Star VR;. The updated A12 starts
distributed as A12(?,VR) (Top) and needs to be redistributed to A12(?,MR) (Bottom), which is also depicted
in Figure 15 (Bottom). Comparing the two pictures, one notices that allgathers within process columns
accomplish the required data movements.

25



Process 0 Process 3 Process 6
α0,9 α0,18 · · · α0,3 α0,12 α0,21 · · · α0,6 α0,15 α0,24 · · ·
α1,9 α1,18 · · · α1,3 α1,12 α1,21 · · · α1,6 α1,15 α1,24 · · ·
α2,9 α2,18 · · · α2,3 α2,12 α2,21 · · · α2,6 α2,15 α2,24 · · ·

Process 1 Process 4 Process 7
α0,10 α0,19 · · · α0,4 α0,13 α0,22 · · · α0,7 α0,16 α0,25 · · ·
α1,10 α1,19 · · · α1,4 α1,13 α1,22 · · · α1,7 α1,16 α1,25 · · ·
α2,10 α2,19 · · · α2,4 α2,13 α2,22 · · · α2,7 α2,16 α2,25 · · ·

Process 2 Process 5 Process 8
α0,11 α0,20 · · · α0,5 α0,14 α0,23 · · · α0,8 α0,17 α0,26 · · ·
α1,11 α1,20 · · · α1,5 α1,14 α1,23 · · · α1,8 α1,17 α1,26 · · ·
α2,11 α2,20 · · · α2,5 α2,14 α2,23 · · · α2,8 α2,17 α2,26 · · ·

Process (0,0) Process (0,1) Process (0,2)
α0,3 α0,6 α0,9 · · · α0,3 α0,6 α0,9 · · · α0,3 α0,6 α0,9 · · ·
α1,3 α1,6 α1,9 · · · α1,3 α1,6 α1,9 · · · α1,3 α1,6 α1,9 · · ·
α2,3 α2,6 α2,9 · · · α2,3 α2,6 α2,9 · · · α2,3 α2,6 α2,9 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,4 α0,7 α0,10 · · · α0,4 α0,7 α0,10 · · · α0,4 α0,7 α0,10 · · ·
α1,4 α1,7 α1,10 · · · α1,4 α1,7 α1,10 · · · α1,4 α1,7 α1,10 · · ·
α2,4 α2,7 α2,10 · · · α2,4 α2,7 α2,10 · · · α2,4 α2,7 α2,10 · · ·

Process (2,0) Process (2,1) Process (2,2)
α0,5 α0,8 α0,11 · · · α0,5 α0,8 α0,11 · · · α0,5 α0,8 α0,11 · · ·
α1,5 α1,8 α1,11 · · · α1,5 α1,8 α1,11 · · · α1,5 α1,8 α1,11 · · ·
α2,5 α2,8 α2,11 · · · α2,5 α2,8 α2,11 · · · α2,5 α2,8 α2,11 · · ·

Figure 17: An illustration of the result of command A12 Star MC = A12 Star VR;. The updated A12 starts
distributed as A12(?,VR) as in Figure 16 (Top). The command first triggers a redistribution to A12(?,VC)
depicted above in the top picture. Comparing the top picture in Figure 16 to the top picture above shows
that the required data movement is a permutation: If the data on each process is viewed as a unit, these
units are rearranged from being assigned to processes in row-major order to column-major order. Next, the
data needs to be redistributed from A12(?,VC) (Top) to A12(?,MC) (Bottom), which is also depicted in
Figure 15 (Top). Comparing the two pictures, one notices that allgathers within process rows accomplish
the required data movements.

26


