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Abstract
A message passing, distributed-memory parallel computer on a chip is one possible design for future, many-core

architectures. We discuss initial experiences with the Intel Single-chip Cloud Computer research processor, which
is a prototype architecture that incorporates 48 cores on a single die that can communicate via a small, shared, on-
die buffer. The experiment is to port a state-of-the-art, distributed-memory, dense matrix library, Elemental, to this
architecture and gain insight from the experience. We show that programmability addressed by this library, especially
the proper abstraction for collective communication, greatly aids the porting effort. This enables us to support a wide
range of functionality with limited changes to the library code.

1 Introduction
The computer industry is at a crossroads. The number of transistors on a chip continues to climb with successive
generations of process technology (Moore’s law) while the power available to a socket is decreasing. This has led to a
“power wall” and has shifted the focus of computer architecture from raw performance to performance per watt.

A well-known response to the power wall problem is to replace complex cores running at high frequencies with
multiple simple but low power cores within a chip [7]. The major microprocessor vendors currently offer CPUs with
modest numbers of cores (two to eight) organized around a cache-coherent shared address space. These multicore
processors in many ways appear to the programmer as a familiar multiprocessor, multi-socket system integrated onto a
single chip. Cache-coherent shared memory is convenient for the programmer since the hardware creates the illusion
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of a single, coherent address space that spans multiple cores and maintains consistency on behalf of the programmer.
But this abstraction adds overhead that grows with the number of cores and hence may not be scalable to support large
numbers of cores. An alternative approach is to model chips with multiple cores after clusters, which are parallel
architectures with scalable disjoint memories that lack cache coherence. An instance of this approach is the Intel
Single-chip Cloud Computer (SCC).

The SCC processor [17, 20] is a 48-core “concept vehicle” created by Intel Labs as a platform for many-core
software research. The chip presents to the programmer a collection of cores with private memories, connected by
an on-die network. These can be programmed as a “cluster on a chip” with messages moving around the network to
coordinate execution of processes running on the cores and communicate data between those processes. In addition
to this logically distributed memory, the SCC processor has two shared address spaces: one on-die and one off-chip.
Neither of these address spaces provides any level of cache coherence between cores, which makes the chip highly
scalable but leaves the burden of maintaining a consistent view of these address spaces to the programmer.

In this paper, we describe the results of an effort to port a major software library, the Elemental library [21] for
dense matrix computations on distributed-memory computer architectures, to this platform. To do so, we start with
a minimal programming environment, RCCE [20, 28], that consists of synchronous point-to-point communication
primitives. This communication layer allows all issues related to coherency to be hidden in the passing of messages,
at the expense of placing the entire burden of parallelization on the library programmer. We show that by adding a few
commonly used collective communications to this layer, the entire Elemental library, which has functionality similar
to ScaLAPACK [8] and PLAPACK [26], is successfully ported with relatively little effort. The conclusions we draw
from this experience are:

• Message passing can be an effective way to avoid having to provide cache coherency in many-core architectures.

• Software that can be cast in terms of interleaved stages of computation and structured communication, namely
collective communication, can be supported by distributed-memory, many-core architectures such as SCC. One
collective communication not commonly contained in other message passing libraries, which we call permuta-
tion (see Section 4.3), was discovered in the process and added to our set of supported collectives. Its utility
extends well beyond Elemental, enabling many advanced parallelization strategies.

• If one invests in learning from prior art, in our case the ScaLAPACK and PLAPACK libraries, and redesigns
software with an eye on programmability and layering, shifting the burden of parallelization from the architec-
ture to the programmer can be done while keeping programming many-core architectures manageable.

Together, these insights advance the understanding of the subject.
The rest of the paper is organized as follows. We provide a brief overview of SCC in Section 2. Section 3

discusses Elemental along with our efforts to port it to SCC. The implementation of collective communications on
SCC is described in Section 4. Performance results are provided in Section 5. We discuss the lessons learned from our
efforts and plans for future work in Section 6.

2 The SCC Processor
The Single-chip Cloud Computer (SCC) processor is an experimental processor [17] from Intel Labs. It uses an ar-
chitecture that can scale to many hundreds of cores as the density of transistors that can be placed within a single chip
continues to increase. Manufactured with Intel’s production 45 nm process technology, the SCC project explores hard-
ware questions such as low power routers, explicit power management, and scalable network-on-a-chip architectures.
Its most important role, however, is as a platform for many-core software research. We do not investigate the power
management capabilities of SCC in this paper. Instead, we explore the programmability and scalability features of
such a chip.

The SCC processor was created through a software/hardware co-design process. As the processor was designed, a
native message passing environment was developed for the chip [20]. By using a functional emulator, we were able to
develop applications and propose changes to the processor architecture as it was being developed. In this section, we
briefly review the architecture of the SCC processor and its native message passing environment.
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Figure 1: SCC architecture is comprised of a 4× 6 grid of tiles where each tile contains a pair of cores (with L1 and
L2 caches), a router, and 16 KB of shared SRAM to serve as a message passing buffer.

2.1 The SCC Architecture
The SCC processor architecture is shown in Figure 1. The processor consists of 24 tiles organized into a 4 × 6 grid.
The routers implement fixed X-Y routing, which reduces the energy consumed by the network [17] compared to a
more general adaptive routing. The on-die network extends off the grid at four locations on edges of the chips to
connect to four DDR3 on-die memory controllers for 16 to 64 GB of off-die DRAM memory. It also extends off the
edge of the chip at one point to provide a PCI interface.

A tile contains a pair of minimally modified P54C processor cores [2], each with an independent L1 (16 KB
data and 16 KB instruction) and L2 (256 KB unified instruction/data) cache. The cores are second generation
Pentium R© processors selected because of their low power, in-order architecture and the fact that they were avail-
able as “off the shelf” designs that could be directly synthesized from RTL. The choice of this core seriously limits
the raw performance of the chip but does not impede progress on the key research vectors for the project, e.g., pro-
grammability, scalability, power management.

Each tile also includes a router and a 16 KB block of SRAM. These memory blocks are organized into a shared
address space visible to all cores on the chip. This memory was added to support the movement of L1 cache lines
between cores and hence is called the “message passing buffer” (MPB). It is important to appreciate that the processor
does not maintain cache coherency between cores for any memory region on the chip. All issues of coherency or
consistency are managed explicitly by the programmer. When working with the SCC processors, programmers are
exposed to three distinct address spaces:

• A private memory in off-chip DRAM for each core. This memory is cache coherent with an individual cores’s
L1 and L2 caches.

• The MPB that has 24× 16 KB of shared memory in SRAM.

• A shared-memory off-chip address space in DRAM. This memory may be configured as uncached or cached,
but in the latter case cache coherence between cores is not maintained by the SCC processor.

The MPB is an important feature of the SCC processor. Since the private memory associated with each core is
a distinct address space, cores cannot exchange information by “passing pointers”. The MPB lets cores exchange
information in the form of messages at the granularity of L1 cache lines. Because it is on-die, the MPB provides a
low-overhead mechanism to move blocks of data from one core’s L1 to another’s L1 and ultimately between private
memories. It would be possible to exchange data through the shared-memory in the off-chip DRAM, but this would
suffer from higher latency and lower bandwidth.

The SCC processor lets programmers manipulate the details of how each core interacts with the different ad-
dress spaces. This is done by modifying entries in an address translation lookup table. This capability would be too
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dangerous to expose in a processor product, but in a platform for software research it opens up a range of research
opportunities on how to manage shared, non-coherent memory in a many-core platform.

SCC enables researchers to test programming a many-core processor using each of these options. Different mem-
ory models are expected to have different programmability issues and performance characteristics, which will be
important to study as more cores are added to chips and software complexity increases.

In this paper, we view the SCC processor as a collection of cores with local memories, communicating through a
message passing library described below, and we test its programmability as an integrated cluster. Future work by our
group and others in the SCC research community will explore other programming models, in particular models that
make direct use of the shared, off-chip memory available on the SCC processor.

2.2 RCCE Communication Library
RCCE (pronounced “rocky”) [20, 28] is a light-weight communication library developed by Intel for the SCC proces-
sor. It defines low-latency mechanisms to move data stored in the private memory of one core to the private memory
of another core. The most common usage model for RCCE assumes synchronous communication. Cores that need to
exchange information wait for all participating cores to reach corresponding points in their execution. Then they coop-
eratively exchange data as needed. This approach is common with Message Passing Interface (MPI) [14] applications
targeting cluster computers.

At the lowest level, RCCE provides a one-sided communication layer. The basic RCCE design treats the MPB as
a set of 8 KB buffers, each designated to one core. To move a cache line from one core to another, the sending core
“puts” (copies) a cache line into its own buffer from which the receiving core “gets” (copies) the cache line, thereby
moving it into its own L1 cache. Programmers need to coordinate movement of cache lines into and out of the MPB.
This is done with “flags”, i.e., synchronization variables within RCCE.

The basic one-sided communication API within RCCE is flexible and can handle a wide range of communication
patterns, but it can be a complicated approach. For example, if the message size exceeds the space for messages
within a core’s buffers (8 KB minus any space needed to support the synchronization flags), the programmer must
decompose the messages into smaller packets that individually fit in a core’s MPB. Moreover, messages must be L1
cache-line aligned and sized to a multiple of the cache line, or special precautions must be taken to avoid having
data stuck in SCC’s so-called write-combine buffer. We quickly recognized that unrestricted, higher level, two-sided
communication primitives, much like the send and receive functions that MPI provides, were needed. Several more
simplified, MPI-like functions were added on an as-needed basis, except asynchronous communication.

The exclusion of asynchronous communication in RCCE deserves further comment. The SCC processor typically
executes with a Linux Kernel running on each core. Given Linux, we can execute with multiple threads on each
core, thereby supporting asynchronous communication. An alternative mode of using SCC, however, uses a low
level operating system-less mode, which we call baremetal mode. We designed RCCE so programs can be built and
executed in Linux and baremetal mode without a change in source code. The cost is that programmers must convert
asynchronous algorithms to ones that use synchronous communication. An important observation of this paper is
that for the dense linear algebra functions we have explored, the restriction of synchronous communication is not a
problem because of the way the ported library is programmed.

As mentioned earlier, RCCE was developed as part of a hardware/software co-design project. To support this
effort, we created a functional emulator of RCCE execution on SCC. This functionality let us develop software and
explore features of the SCC processor as it was being designed. The emulator used OpenMP [1] to model the MPB, so
RCCE applications can run on any system that supports OpenMP. Once the SCC design was complete, the emulator
proved to be of great value as a development platform for porting, debugging, and developing software for the SCC
processor. We mention this because the dense linear algebra library described in this paper was ported to SCC using
the emulator, and with few exceptions, we only had to relink our software to run on actual SCC hardware.

3 Elemental
In this section, we give a brief overview of the Elemental library. Cholesky factorization is used as a representative
operation to illustrate some of the programming issues and how Elemental addresses them.
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Figure 2: Layering of the Elemental library.

3.1 Background
LINPACK [9] can be considered the first numerical package that tried to address programmability in addition to
functionality and numerical stability. Its developers adopted the Basic Linear Algebra Subprograms (BLAS) [19]
interface for portable performance. Subsequently, the Linear Algebra PACKage (LAPACK) [3] was developed to
provide higher performance on cache-based architectures by adopting new layers of the BLAS [10, 11] as well as added
functionality and stability. As distributed-memory architectures became increasingly common, a level of abstraction
was needed to support dense linear algebra on these systems. This led to ScaLAPACK [8], which extended LAPACK
functionality to distributed-memory computer architectures.

The goal of ScaLAPACK was performance and functionality and on those fronts it has been a very successful
package. However, the project did not place emphasis on programmability. PLAPACK [26], a dense linear algebra
package for distributed-memory machines similar in functionality to ScaLAPACK, added programmability as a key
focus to its design. The central idea is that the algorithms used for dense matrix computations should be apparent in
the source code. The group behind PLAPACK has continued this line of research, exploring systematic derivation
of linear algebra algorithms supported by clear abstractions to support their expression in source code. This led to a
new, sequential dense linear algebra library, libflame [29], and more recently a new dense linear algebra library for
distributed-memory architectures, Elemental [21]. It is this library that is at the heart of our experiment since it was
designed for conventional clusters but appeared suitable to be ported to architectures like SCC.

Elemental solves scalability problems encountered in PLAPACK and programmability problems encountered in
ScaLAPACK, which is explained in Section 5.3. For SCC Elemental has a few obvious advantages: 1) it uses a simple
data distribution; 2) it is carefully layered, as shown in Figure 2; 3) it uses abstractions that allow the programmer to
code at the level at which one reasons about the algorithm; and, importantly, 4) all communication is cast in term of
collective communication. These features improve programmability of the library and greatly eased the porting effort.

3.2 A Motivating Example: Cholesky Factorization
If A ∈ Rn×n is a symmetric, positive-definite matrix, then Cholesky factorization computes A → UT U where
U is an upper triangular matrix. One algorithm, often called the right-looking variant, is presented using FLAME
notation [5, 15] in Figure 3. This figure presents a blocked algorithm that casts most computation in terms of matrix-
matrix computations (level-3 BLAS), allowing it to attain high performance on cache-based architectures.

The FLAME notation helps solve the programmability problem by allowing algorithms to be derived to be cor-
rect [4], meaning that as functionality is added to libraries like Elemental and libflame, a high level of confidence
can be placed in the correctness of the resulting algorithms.

3.3 Representing Algorithms in Code
The first feature of Elemental that aids programmability is that it is coded in C++ using modern, object-oriented coding
practices, a deviation from the implementation of the alternative packages ScaLAPACK and PLAPACK, which were
respectively coded in Fortran77 and C.
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Algorithm: A := CHOL BLK(A)

Partition A→
„

ATL ATR

? ABR

«
whereATL is 0× 0

while m(ATL) < m(A) do
Determine block size b
Repartition„

ATL ATR

? ABR

«
→

0@ A00 A01 A02

? A11 A12

? ? A22

1A
whereA11 is b× b

A11 := CHOL(A11)

A12 := A−H
11 A12 (TRSM)

A22 := A22 −AH
12A12 (TRIANGULAR RANK-K)

Continue with„
ATL ATR

? ABR

«
←

0@ A00 A01 A02

? A11 A12

? ? A22

1A
endwhile

Figure 3: Blocked, right-looking algorithm for computing the Cholesky factorization. Note that the algorithm is for
both a real and complex valued matrix A where AH denotes conjugate transposition.

The Elemental implementation of the Cholesky algorithm is given in Figure 4. This code is representative of the
layer that is labeled “BLAS/Decomposition/Reduction/· · · ” in Figure 2. Those familiar with the FLAME project will
recognize that, like other FLAME related APIs, the code resembles the algorithm in Figure 3, hiding indexing details.
In the case of Elemental, the code also encapsulates details about how the matrix is distributed among cores (or, in the
case of MPI, processes). Thus, at the top level, Elemental partially solves the programmability problem by using an
API that reduces the opportunity for introducing “bugs” when the algorithm in Figure 3 is translated into the code in
Figure 4.

3.4 Distribution and Redistribution
To understand how parallelism is expressed in the Elemental code, one must first understand a little about the data
distributions used by Elemental and how redistribution is expressed.

When parallelizing a sub-operation on distributed-memory architectures, data is initially distributed in some spec-
ified fashion among the processes. Ideally, each process has all data, so all can simultaneously perform independent
local operations. In practice, this often requires data to be duplicated or redistributed among the processes before local
computation commences. Often, the local computation is a contribution to a global result, and data must be reduced
(e.g., summed) leaving it in some prescribed distribution.

To support scalability, dense linear algebra libraries often distribute matrices by viewing the processes as a logical
two-dimensional mesh. These libraries attain load balance as the computation proceeds by wrapping matrices cycli-
cally around the process mesh [16, 24, 25]. Elemental partially solves the programmability problem by choosing the
simplest such distribution: the p processes are viewed as forming an r × c logical mesh, and the elements of a given
matrix A are wrapped using an elemental 2D cyclic distribution, which means that element (i, j) is assigned to process
(i%r, j%c).

This is in contrast to PLAPACK and ScaLAPACK, which use a more complex block cyclic distribution. In those
packages, the blocksize bdistr is used. Blocks of size bdistr by r × bdistr in PLAPACK and of size bdistr by bdistr in
ScaLAPACK are wrapped around the processes grid in a 2D cyclic fashion. As a result, indexing and redistribution
are more complicated because the “owning” process for element (i, j) is not simply (i%r, j%c) as it is in Elemental.
Thus, the code within Elemental related to the distribution and redistribution of data is much simpler than in the other
packages. Furthermore, PLAPACK’s distribution, tied to the number of rows in the process grid, makes code mildly
non-scalable when the number of processors becomes large enough and the matrix fills all available memory. In [21]
it is shown that Elemental’s simplification does not adversely affect performance on traditional clusters.
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1 template<typename T> void
2 elemental::lapack::internal::Chol_blk
3 ( DistMatrix<T,MC,MR>& A )
4 {
5 const Grid& g = A.GetGrid();
6
7 DistMatrix<T,MC,MR>
8 ATL(g), ATR(g), A00(g), A01(g), A02(g),
9 ABL(g), ABR(g), A10(g), A11(g), A12(g),

10 A20(g), A21(g), A22(g);
11
12 DistMatrix<T,Star,Star> A11_Star_Star(g);
13 DistMatrix<T,Star,VR > A12_Star_VR(g);
14 DistMatrix<T,Star,MC > A12_Star_MC(g);
15 DistMatrix<T,Star,MR > A12_Star_MR(g);
16
17 PartitionDownDiagonal
18 ( A, ATL, ATR,
19 ABL, ABR, 0 );
20
21 while( ABR.Height() > 0 )
22 {
23 RepartitionDownDiagonal
24 ( ATL, /**/ ATR, A00, /**/ A01, A02,
25 /************/ /*****************/
26 /**/ A10, /**/ A11, A12,
27 ABL, /**/ ABR, A20, /**/ A21, A22 );
28
29 A12_Star_MC.AlignWith( A22 );
30 A12_Star_MR.AlignWith( A22 );
31 A12_Star_VR.AlignWith( A22 );
32
33 //-----------------------------------------//
34 A11_Star_Star = A11;
35 lapack::internal::LocalChol( Upper,
36 A11_Star_Star );
37 A11 = A11_Star_Star;
38
39 A12_Star_VR = A12;
40 blas::internal::LocalTrsm
41 ( Left, Upper, ConjugateTranspose, NonUnit,
42 (T)1, A11_Star_Star, A12_Star_VR );
43
44 A12_Star_MC = A12_Star_VR;
45 A12_Star_MR = A12_Star_VR;
46 blas::internal::LocalTriangularRankK
47 ( Upper, ConjugateTranspose,
48 (T)-1, A12_Star_MC, A12_Star_MR,
49 (T)1, A22 );
50 A12 = A12_Star_MR;
51 //-----------------------------------------//
52
53 A12_Star_MC.FreeAlignments();
54 A12_Star_MR.FreeAlignments();
55 A12_Star_VR.FreeAlignments();
56
57 SlidePartitionDownDiagonal
58 ( ATL, /**/ ATR, A00, A01, /**/ A02,
59 /**/ A10, A11, /**/ A12,
60 /************/ /*****************/
61 ABL, /**/ ABR, A20, A21, /**/ A22 );
62 }
63 return;
64 }

Figure 4: Elemental implementation of the blocked, right-looking algorithm for the Cholesky factorization.

Now, let us turn to the first operation to be performed in the loop: A11 := CHOL(A11). The problem is that the
elements of A11 are scattered among the processes. The command in line 34 of Figure 4 (together with the distribution
indicated in line 12) redistributes this submatrix so that all processes own a copy in variable A11 Star Star after
which the processes locally and redundantly compute its Cholesky factorization. In this case, the data of A11 is stored
such that process (i%r, j%c) owns element (i, j) of the block. In order for all processes to own A11 redundantly, each
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must communicate its locally-stored portion of the block with all others. That collective communication operation
is called allgather. Another redistribution used in other algorithms distributes element (i, j) to process (i%c, j%r).
Data can be redistributed to this format from (i%r, j%c) using the routines alltoall and send-receive. We discuss the
interface and implementation of these collective communication operations in Section 4.

Elemental supports a handful of other data distributions to enable algorithm coders to parallelize operations in
many ways. To redistribute data among processes from one distribution to another, Elemental only uses collective
communication. Figure 4 shows multiple examples of this. Where is the communication? Elemental partially solves
the programmability problem by hiding the required collective communication in the overloaded = operator. Each of
the commands in lines 34-50 in Figure 4 represent either a redistribution or local computation, but the specific details
are hidden. Thus, the layering and abstractions in Elemental mirror the natural way in which parallel computation
is decomposed. In [21] it is shown that that this layering and abstraction does not adversely affect performance on
traditional clusters.

For this paper, it is not important to understand all of the distributions and communication necessary to redistribute
data in Elemental. For details about the distributions and communication see [21]. It is important to understand that
data is distributed among processes and is only communicated between processes using collective communication
routines. Furthermore, communication details are handled by Elemental behind the code seen in Figure 4. This
encapsulation aids programmability when implementing an algorithm using Elemental and aids programmability and
portability within the library itself.

3.5 Retargeting to SCC
At the onset of this research, there were multiple reasons why retargeting Elemental to SCC appeared to be a natural
fit. Since the primary purpose of SCC is to investigate programmability issues related to many-core architectures, it
made sense to tap into the focus of the FLAME project on programmability. Elemental, which builds on the FLAME
project, was developed for conventional clusters and one of the memory models of SCC allows us to view it as a
distributed-memory system (cluster) on a single chip. Elemental uses collective communication, which maps well to
the synchronous point-to-point communication supported by RCCE. Message passing, used indirectly via collective
communication in the case of Elemental, is a model that avoids having to explicitly manage coherency between cores
since this is handled within the message passing primitives. Finally, the FLAME project’s emphasis on program
correctness and the abstractions developed for Elemental gave a high degree of confidence in that code base, meaning
that as the port proceeded there was never a question of whether there was a latent logic error in Elemental. If
something did not work, the problem was always with the small number of routines that were tailored to SCC and
RCCE.

To understand where changes had to be made requires an explanation of what happens when a redistribution
is triggered by a command like the one in line 34 of Figure 4. The processes recognize the “before” and “after”
distributions and determine that data from all processes must be communicated to all processes by an allgather. Before
a routine that implements allgather can be called, though, the local data must be rearranged (packed) into a convenient
format. After completion of the collective communication, it must again be locally rearranged (unpacked) by each
process. In between is a call to an MPI collective communication on a conventional cluster. This call needed only to
be replaced by a call to an equivalent RCCE collective communication. Thus, it is only in the box labeled “Collective
Communication” in Figure 2 that changes were made. Said another way, the focus on programmability in designing
and layering Elemental allowed us to retarget the library to a new architecture with minimal changes outside that layer
in the code.

When this research commenced, no SCC processor was available for the port, so it was performed with the aid
of the previously mentioned RCCE emulator. The major challenge was that only some of the collective communica-
tions used by Elemental were part of RCCE’s collective communication library. We discuss how we dealt with that
challenge in the next section. Conveniently, at the heart of the FLAME project is a methodology for systematically
deriving different algorithmic variants for a given linear algebra operations [27]. Different variants often require dif-
ferent redistributions and hence even when initially only a few collective communications were available in RCCE,
broad functionality of Elemental came on-line. The benefit of eventually having all collective communication used in
Elemental available was that all variants for all operations supported by Elemental were also available, meaning that
the best-performing algorithmic variant for distributed-memory computing could be employed. For example, there are
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RCCE interface
Send

int RCCE send( char* buf, size t num, int dest );

Receive
int RCCE recv( char* buf, size t num, int src );

Allgather
int RCCE allgather( char* inbuf, char* outbuf,

size t num, RCCE COMM comm );

Alltoall
int RCCE alltoall( char* inbuf, char* outbuf,

size t num, RCCE COMM comm );

Send-receive
int RCCE sendrecv( char* inbuf, size t in, int dest,

char* outbuf, size t out, int src,

RCCE COMM comm );

Figure 5: RCCE interface for the communication routines used within Elemental.

three commonly used variants for Cholesky factorization. The initial port of Elemental to SCC only supported one of
those variants, the left-looking variant, because RCCE does not implement all of the communication patterns in MPI
or even all of those used by Elemental. Eventually, the right-looking variant in Figures 3 and 4, which parallelizes
more naturally, was supported as we introduced more collective communication operations.

4 Collective Communication
All of the communication between processes in Elemental is cast in terms of collective communication. RCCE only
provides a small set of unoptimized collective communication routines (collectives) such as broadcast, where a vector
of data on one process is sent to all other processes. Elemental uses several standard collective communication rou-
tines provided by MPI that are not supported by RCCE, so we implemented these operations using only the simple,
synchronous point-to-point communication routines (send and receive).

In Figure 5, we provide the interface for the communication routines in RCCE along with those we developed.
Notice that we attempt to mimic the MPI interface [14] for these routines as closely as possible to ease the porting
effort. We also provide an illustration of the collective communication routines we study in this section, allgather and
alltoall, in Figure 6.

4.1 Allgather
For the allgather operation, initially each process pi owns a subvector of data xi where

x =


x0

x1

...
xp−1


and upon completion each of the p processes owns the entire vector x.

A relatively simple algorithm for allgather is the cyclic, or bucket, algorithm [6]:
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Figure 6: Illustrations of allgather and alltoall with three processes.

l = (me− 1 + p)%p
r = (me + 1)%p
i = me
for j = 1, . . . , p− 1 do

k = (i + 1)%p
Send xi to pl

Receive xk from pr

i = k
end

where me denotes the rank of the calling process. Within an iteration of this algorithm, each process sends its local
contribution to its neighboring process on the (logical) left and receives from the (logical) right. This algorithm
inherently sends data in a circular communication pattern. Since both the send and receive in RCCE are blocking,
deadlock occurs with this cyclic algorithm if implemented in a single communication step. All processes first call the
send routine and will block until the corresponding receive is posted, but no process will do so since all are blocked
on the send.

This deadlock can be easily resolved using two steps for an even number of processes. In the first step, all the even
numbered processes send while all odd numbered processes receive. In the second step, evens receive and odds send.
A problem arises when the number of processes is odd, but we can avoid deadlock by introducing a third step. In the
first step, all evens send to odds, excluding the wrap-around where process pp−1 sends to p0. In the second step, all
odds send to evens. Finally, the wrap-around occurs where the first and last ranked processes communicate with each
other. As a result, deadlock can be avoided by detecting a ring communication pattern and performing this odd and
even decomposition of the sends and receives. We illustrate deadlock prevention of these two cases in Figure 7 using
four and five processes as examples.

4.2 Alltoall
The alltoall operation performs a permutation of the vector x on each process. Initially, each process pi owns a vector
x(i) that is partitioned where x

(i)
j , j = 0, . . . , p − 1. Upon completion the process pj owns the permuted vector x

(i)
j ,

i = 0, . . . , p− 1.
A relatively simple algorithm for alltoall is a staged pairwise exchange algorithm [23]:

10



Even number of processesl l
ll

-

�

p0 p1

p2p3

l l
ll6 ?

p0 p1

p2p3

Step 1 Step 2
Odd number of processesll l

l lAAK

@@R
p2

p1 p3

p0 p4

ll l
l l

��*

���

p2

p1 p3

p0 p4

ll l
l l�

p2

p1 p3

p0 p4

Step 1 Step 2 Step 3

Figure 7: Deadlock prevention within a ring communication pattern when given even and odd number of processes.

for j = 0, . . . , p− 1 do
i = (j −me + p)%p
if i 6= me then

Send xi to pi

Receive xi from pi

end
end

This algorithm is deadlock free because only distinct pairs of cores communicate with each other during each stage.
We can play the trick of having the lower ranked process send first while the higher ranked process receives, and then
reverse roles. The algorithm can be improved slightly for even numbers of processes [28], yielding a provably optimal
schedule.

4.3 Send-receive
On the surface, one important redistribution in Elemental is not a collective communication. Instead, it requires point-
to-point communication similar to MPI’s send-receive. The MPI routine can be thought of as combining a send and a
receive (possibly from a different process) into a single routine. In general this would be difficult to implement in terms
of synchronous point-to-point communications. Fortunately, the communication that requires this in Elemental, and
many other codes, can be viewed as a collective communication that implements a permutation where every process
sends data to one other process and also receives data from one other process. It is this permutation functionality that
we support.

We implement this routine by first distributing all the sending and receiving ranks for each process via an alltoall
operation, so all processes know how all other processes will communicate. The resulting communication graph
consists of a collection of linear (open) chains and/or cycles, each of which can always be implemented in a maximum
of three communication stages (two in the case of a linear chain or cycle with an even number of nodes). We can
“cache” this communication pattern so that the communication graph construction is only performed once and is
subsequently reused in Elemental. As a result, we do not need to call alltoall each time the permutation is invoked.

5 Performance
We endeavored to test programmability and scalability of SCC, a possible look at the future of many-core proces-
sors. As explained above, the abstractions and layering used enabled us to retarget Elemental code to SCC with
limited changes. As for scalability, we compare the performance on varying numbers of cores for three dense matrix
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operations: Cholesky factorization; LU factorization with partial pivoting, PA := LU where A ∈ Rn×n, L is a
lower triangular matrix, U is an upper triangular matrix, and P is a permutation matrix; and general matrix-matrix
multiplication (GEMM), C := αAB + βC where A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n.

We tune the algorithmic block size and the grid configuration within Elemental. We link Elemental with the Intel
Math Kernel Library (MKL) 8.1.1 for the execution of the computational kernels on each core using double precision
floating point real arithmetic. We compare the scalabilty of Elemental versus a sequential MKL implementation:
dpotrf for CHOL, dgetrf for LU, and dgemm for GEMM. MKL is used for single-core performance.

Notice that using the default clock frequency of 533 MHz, each core has a theoretical peak performance of 533
MFLOPS giving SCC a total theoretical peak performance of 25.584 GFLOPS. However, this is not a realistic per-
formance target given that MKL’s dgemm on a single core only achieves around 120 MFLOPS. Hence, this is not an
experiment on how to achieve near-peak performance.

5.1 Results
We provide performance results in Figures 8, 9, and 10. In the left of those figures, we compare the scalability of
Elemental by fixing a few sample problem sizes and showing performance using varying numbers of cores. On the
right, we show the breakdown of the different component costs within implementations using all 48 cores and varying
the problem sizes. The computation cost only entails the time each process spends executing a sequential kernel when
linking to MKL. The communication cost is the time spent in collective communication routines, which includes
copying between private memory and MPB. The overhead contains all remaining components of the execution such
as packing and unpacking data to and from contiguous application-level buffers.

Consider the performance of matrix multiplication for a single core, found on the left of Figure 10, which uses the
sequential MKL dgemm kernel.1 Given the cache-friendliness of GEMM, an ambitious speedup on n cores would be n
times this single-core performance. As we increase the number of cores available to Elemental, performance increases
with no obvious “knees” in the curves indicating diminishing marginal utility. Given the way Elemental distributes
data and parallelizes algorithms, we believe it would scale well on processors similar to SCC with even more cores.
Such scalability is seen in [21] on cluster computers composed of many cores.

Notice that scalability improves with larger problem sizes as the computational time on p processes is O(n3/p)
while the communication and packing related time is O(n2/

√
p) (and hence O(n3) versus O(n2) when p is fixed).

This trend continues with larger problem sizes than those shown. This is typical behavior for these operations on
clusters, as costly communication is a larger portion of execution time for smaller problem sizes than larger ones.
Notice the decrease of the communication cost portion in the component graphs as the problem sizes increase, and the
computational portion simultaneously increases. As communication and overhead costs are relatively smaller portions
of overall performance for larger problem sizes, speedup improves as the problem size increases.

In Figure 11 (left), we show the performance of a representative set of operations supported in Elemental that have
been ported to SCC. These include all level-3 BLAS and several LAPACK-level operations. This graph illustrates
the benefits of programmability when porting a wide range of operations to this new architecture. For each of these
operations, Elemental contains multiple algorithmic variants because Elemental addresses programmability. Different
variants exhibit constrasting performance characteristics and use different communication patterns. Without the com-
munication routines described in Section 4, only two of the operations in this graph work on SCC. If only a single
variant of each operation were available, we could not test correctness of early ports of Elemental as easily because
we would have to implement new algorithm variants in addition to porting the library. Instead, we are able to choose
variants of those operations that only call collective communication functions available in RCCE. With the additional
communication routines of Section 4, all variants of the remaining operations work immediately. We show the default
variant of each operation in this graph.

The absolute performance of Elemental on SCC shown in these graphs is rather poor, even considering the weak
P54C cores. This is largely the result of unoptimized sequential BLAS and LAPACK implementations. Furthermore,
these are early performance results, and we have not spent much time yet optimizing Elemental for this architecture.
Our initial goals were to test scalability and programmability for which we show good results.

1Due to per-core memory limits, only two of the problem sizes fit on a single core.
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Figure 8: Scalability (left) and cost breakdown for 48 cores (right) of Elemental’s implementation of Cholesky
factorization.
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Figure 9: Scalability (left) and cost breakdown for 48 cores (right) of Elemental’s implementation of LU factorization
with partial pivoting.

5.2 High-Performance LINPACK
The High-Performance LINPACK (HPL) is a highly specialized implementation of the LINPACK benchmark [12]
for massively parallel distributed-memory systems that was partially ported to SCC by one of the co-authors. HPL
performs a large LU factorization with partial pivoting, and much like ScaLAPACK, it uses a block cyclic data dis-
tribution and fundamentally does not address programmability. Details such as pipelining where communication and
computations are overlapped are exposed directly within the code.

In order to port HPL to SCC, we replaced all the asynchronous MPI communication calls with synchronous
RCCE routines. Since RCCE only provides blocking calls, deadlock had to be detected and explicitly avoided. This
required non-trivial analysis of the HPL communication patterns underlying the point-to-point messages, thereby
greatly complicating the port.

Elemental’s implementation of LU factorization with partial pivoting is compared against HPL in Figure 11 (right).
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Figure 10: Scalability (left) and cost breakdown for 48 cores (right) of Elemental’s implementation of general matrix-
matrix multiplication where the matrix dimensions are m = n and k = 1280.
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Figure 11: Performance of a cross-section of operations supported by Elemental that have been ported to SCC (left)
and LU factorization with partial pivoting for Elemental versus HPL (right) using all 48 cores.

HPL requires tuning of a number of parameters. We are not able to tune all parameters because HPL is not completely
ported to SCC. The tuning parameters, which often involve algorithmic variants, create a large quantity of code to
port, and the effort required cannot be justified merely for the purpose of comparison. We tune as much as possible for
a single problem size and use the best choices for all runs with the exception of the block size for which the optimal
setting changes for small and large problems.

Although Elemental’s performance is lower than HPL’s, the difference is fairly modest, especially for larger prob-
lem sizes and is expected to narrow even further as Elemental is further optimized. We are already investigating
improvements to Elemental’s LU factorization implementation and describe some promising optimizations to the port
in Section 6.2. Moreover, Elemental is a general-purpose library created to enable many algorithms to be developed
for distributed-memory computers whereas HPL is a benchmark meant solely to achieve good performance for this
one particular operation. We consider Elemental’s relative performance deficit the result of a reasonable compromise
between speed and versatility/programmability.

14



Regarding the latter, we note that even the incomplete port of HPL to RCCE required the assistance of the author
of the original code because of the complicating effect of the point-to-point communications. Elemental, in contrast,
was much easier to port completely, as it fully isolates the required data transport in a modest collection of generic
collective communications [?]. Although the main author of Elemental is a co-author of this paper, the port was
accomplished by another co-author of this paper who had little experience with Elemental and distributed-memory
computing and received virtually no help from the author of Elemental.

5.3 Porting ScaLAPACK
One could argue that a comparison between Elemental and ScaLAPACK would have been a better experiment. How-
ever, ScaLAPACK contains many point-to-point communications and a much larger body of code than HPL, which
prevented us from attempting the port.

To quantify this last statement, we point out a few key issues. First, major design decisions regarding ScaLAPACK
were made prior to the arrival of MPI. Second, ScaLAPACK, by design, is layered and coded to closely resemble
LAPACK. As a result, the library-level code is layered upon the parallel BLAS (PBLAS) layer, which itself is layered
upon standard (local) BLAS and the Basic Linear Algebra Communication Subprograms (BLACS), a communication
layer that has an interface that resembles the BLAS interface [13]. The BLACS themselves are coded in terms of
what, at the time, were a myriad of native communication libraries. The most commonly used implementation is now
layered upon MPI. The BLACS include both point-to-point and collective primitives.

In principle the BLACS collective communications should be easy to port. In practice the BLACS implement an
array of algorithms for collective communication without relying on the MPI interface. Still, it would be a matter of
simplifying this implementation so that they call only the collective communications that were developed as part of
our effort. This might possibly go at the expense of performance since ScaLAPACK depends on pipelining between
communication and computation in a number of important routines in order to reduce communication overhead.

The more troublesome aspect of a port of ScaLAPACK comes from its use of point-point communications. In the
PBLAS we found 37 instances of calls to DGESD2D, the BLACS send primitive for communicating double precision
data. At the library level (LAPACK-level functionality), we found 168 such instances. Each of these may need to be
examined to determine whether the communication can be performed synchronously and possibly reimplemented so
that it can be performed synchronously. Not counted here are a large number of calls in the ScaLAPACK test suite and
redistribution routines.

The point is that porting ScaLAPACK is possible but labor intensive. By comparison, the only place where point-
to-point communications are called by Elemental is in its communication layer where we automatically avoid deadlock
and communication serialization. On conventional architectures, Elemental delivers performance that is competitive
with, and often exceeds, that of ScaLAPACK [21].

6 Conclusion
In this paper, we have described our experiences related to the porting of a major software library, Elemental, to the
SCC research processor. We started with the conjecture that for some problem domains software supported coherency
of data on many-core architectures can be achieved by viewing the architecture as a distributed-memory parallel
computer architecture and communicating data via message passing constructs. For the domain of dense matrix
computations, the results provide early evidence that this is indeed the case when one starts with a library that already
targets distributed-memory architectures and is very carefully layered. It is shown that a minimal set of communication
primitives is needed to support this, namely collective communication.

6.1 Insights
We targeted a problem domain that is thought to be well-understood but has struggled with the complications of parallel
computing for two decades. Fortunately, that struggle allowed insight to be gained from legacy libraries, ScaLAPACK
and PLAPACK, yielding a highly layered library, Elemental, that fundamentally addresses the programmability prob-
lem for the domain of dense matrix computations. As a result, this library ported naturally to SCC processor, building
on the RCCE communication library.
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A question is how representative the domain of dense matrix computations is of other software libraries and “real”
applications. A careful look at our results shows that any application that casts its communication in terms of stages
of computation interleaved with stages of communication that can be implemented with synchronous communication
should port to this kind of platform. One may argue that few applications fall into this category, but notice that
one could have come to the same conclusion for the domain of dense matrix computations had one started with
ScaLAPACK. Thus, the real story is that by building on prior art like ScaLAPACK and PLAPACK, we managed to
effectively layer a new library for the domain of dense matrix computations that had this desired property. Similarly,
there are likely other domains that can be recast in such a way. The point is that the arrival of many-core architectures
is an opportunity to reexamine and rearchitect existing software.

6.2 Future Directions
Very little effort has been made to optimize the Elemental port to SCC. We would especially like to optimize the
bottom layer of Figure 2 to improve perfromance. Some of the collective communication routines have opportunities
for optimization. For example, they view the process grid as a linear array of processes, which it is not. Furthermore,
the sequential MKL libary is unoptimized for SCC. It should be updated to take advantage of the L1 and L2 caches of
the Pentium processor to improve the base performance for single-core computation. Lastly, the packing operations of
Elemental copy data into contiguous memory buffers to call RCCE communication routines, which subsequently copy
data from those buffers to the MPB in roughly 8 KB chunks. By breaking this boundary to provide communication
routines that skip this intermediate copy, we can substantially reduce the overhead cost seen in the component graphs
above.

More generally, it is unwise to bet on only one solution, given the uncertainty of future architectures. As part of
the FLAME project, a number of solutions have been developed for parallelizing dense linear algebra libraries. First,
the sequential libflame library can be linked to multithreaded BLAS. Second, computation is mapped to a directed
acyclic graph (DAG) where the nodes are operations on submatrix blocks (tasks) and the edges are data dependencies
between tasks, and a runtime scheduler called SuperMatrix schedules tasks from the resulting DAG in parallel [22].
The Elemental library is the third solution.

The SuperMatrix scheduler is being ported to the SCC architecture by the authors. For this solution, the cores
are viewed as threads on a multithreaded architecture, and data is shared via off-chip shared memory. The on-chip
communication buffers are only used to manage the queue of tasks that are ready to execute. Programming constructs
that supplement RCCE and allow memory to be viewed more like a shared adress space are being developed in support
of this effort. A second solution views the cores as a distributed-memory architecture and uses message passing to
implement the SuperMatrix scheduler and the passing of blocks of data [18]. Interestingly, the second approach, which
uses message passing and the RCCE communication library, again yielded a relatively simple port. In the future, we
intend to compare these alternative approaches to the one presented in this paper.

Additional Information
For additional information on the Formal Linear Algebra Methods Environment (FLAME), visit

http://www.cs.utexas.edu/users/flame/.
For further information on Elemental, visit

http://code.google.com/p/elemental/.
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