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Abstract

Starting in the late 1960s computer scientists including Dijkstra and Hoare advocated goal-oriented

programming and formal derivation of algorithms. The problem was that for loop-based programs, a

priori determination of loop-invariants, a prerequisite for developing loops, was a task too complex for any

but the simplest of operations. We believe that no practical progress was made in the field until around

2000 when we discovered how to systematically determine loop-invariants for operations in the domain of

high-performance dense linear algebra libraries. This has led to a multitude of papers, mostly published

in the ACM Transactions for Mathematical Software. It has yielded a system for mechanical derivation of

algorithms and a high-performance linear algebra library, libflame, that is largely derived to be correct

and includes more than a thousand algorithmic variants of algorithms for more than a hundred linear

algebra operations. To our knowledge, this success story has unfolded without any awareness on the part

the formal methods community. This paper is meant to raise that awareness.

1 Introduction

The domain of linear algebra libraries is at the bottom of the food chain of scientific computing. While
most practical applications give rise to sparse linear algebra problems that are solved via so-called iterative
methods that converge to a solution, a significant number of them spend most computational time solving
dense matrix problems. Even sparse linear algebra problems often have dense subproblems to be solved. As
a result, LAPACK [1], a package for dense matrix operations, developed in the late 1980s and early 1990s
and still programmed in Fortran-77, is undoubtedly the most commonly used library in this field.

Since 2000, the FLAME project at The University of Texas at Austin, Universidad Jaume I (Spain), and
RWTH Aachen University (Germany) has been pursuing a modern replacement of LAPACK, libflame [26].
The domain poses a few interesting challenges: scientific computing tends to exploit the latest architectures
and of those architectures demands the highest performance possible. This requires the design of loop-
based algorithms that cast most computation in terms of high-performing matrix-matrix computations (like
matrix-matrix multiplication). The loop steps through matrices with a block size chosen so as to optimize
the reuse of data in caches. For a specific operation, there are often a number of algorithmic variants, with
one algorithmic variant matching a given architecture better than the others, thus yielding high performance.
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Step Annotated Algorithm: [D,E, . . .] := op(A, B, . . .)

1a {Ppre}

4 Partition

where

2 {Pinv}

3 while G do

2,3 {(Pinv ) ∧ (G)}

5a
Repartition

where

6
˘

Pbefore

¯

8 SU

5b
Continue with

7
˘

Pafter

¯

2 {Pinv}

endwhile

2,3 {(Pinv ) ∧ ¬ (G)}

1b {Ppost}

Figure 1: Blank FLAME worksheet used to derive algorithms

Thus, a library should incorporate all loop-based algorithms for a given operation so that the best one can be
chosen, which LAPACK does not. This brings up the question of how to systematically find all algorithmic
variants for a given operation. Formal derivation of loops turns out to be the answer [17, 15, 16, 3, 23, 2, 24, 4],
as we will illustrate in this paper.

This paper does not provide a scholarly treatment of the field of derivation of algorithms. All we have
ever needed to develop the described techniques is given in the text by Gries [14], which itself is based on the
works of Dijkstra [7, 6] and Hoare [18]. What the paper does provide is what we believe to be an excellent
practical example of the application of formal derivation of loops.

2 Derivation of Linear Algebra Algorithms

In this section, we walk the reader through the derivation process. This section is completely routine for us,
having been applied to more than a hundred operations, yielding more than a thousand routines that are
part of the libflame library. We use the solution of the triangular Lyapunov equation as our motivating
example. A reader who is not well-versed in linear algebra needs not worry: the methology is systematic to
the point where one needs not be an expert to apply it. A treatment that targets novices and has been used
at the undergraduate level can be found in [24].

2.1 The FLAME methodology

A fundamental insight in our project was the realization that the Fundamental Invariance Theorem, used to
prove the correctness of a loop in a program, can be formulated as a worksheet that is systematically filled,
first with assertions (predicates) and then with commands (imperative statements) [3]. The worksheet is
given in Figure 1. There, grey and white areas will be filled with predicates that indicate the prescribed
state and commands, respectively. It is filled in the order indicated in the column marked by Step. The
predicates Ppre , Ppost , Pinv , and G represent the precondition, postcondition, loop-invarant, and loop-guard,
respectively. The loop-invariant has to be true in four different places: before and after the loop, and at the
top and bottom of the loop body. The other parts of the worksheet will become obvious as we fill it for a
prototypical example.

2



Step Annotated Algorithm: C := lyap unb(U, C)

1a
n

C = Ĉ
o

4 Partition U →

 

UTL UTR

0 UBR

!

, X →

 

XTL XTR

⋆ XBR

!

, C →

 

CTL CTR

⋆ CBR

!

, Ĉ →

 

ĈTL ĈTR

⋆ ĈBR

!

where UTL is 0× 0, XTL is 0× 0, CTL is 0× 0, ĈTL is 0× 0

2

8

>

<

>

:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

9

>

=

>

;

3 while m(UTL) < m(U) do

2,3

8

>

<

>

:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

∧m(UTL) < m(U)

9

>

=

>

;

5a
Repartition

 

UTL UTR

0 UBR

!

→

0

B

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

C

A

,

 

XTL XTR

⋆ XBR

!

→

0

B

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

C

A

,

 

CTL CTR

⋆ CBR

!

→ · · ·

where υ11, χ11, γ11 are scalars

6

8

>

>

>

>

<

>

>

>

>

:

0

B

B

@

C00 c01 C02

⋆ γ11 cT

12

⋆ ⋆ C22

1

C

C

A

=

0

B

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

C

A

∧

8

>

>

>

>

<

>

>

>

>

:

UT

00
X00 + X00U00 = −Ĉ00

UT

00
x01 + X00u01 + x01υ11 = −ĉ01

UT

00
X02 + X00U02 + x01uT

12
+ X02U22 = −Ĉ02

χ11 = γ̂11 ∧ xT

12
= ĉT

12
∧X22 = Ĉ22

9

>

>

>

>

=

>

>

>

>

;

8

γ11 := (−γ11 − 2uT

01
c01)/(2υ11)

cT

12
:= −cT

12
− uT

01
C02 − cT

01
U02 − γ11uT

12

Solve υ11xT

12
+ xT

12
U22 = cT

12
overwriting cT

12
with xT

12

5b
Continue with

 

UTL UTR

0 UBR

!

←

0

B

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

C

A

,

 

XTL XTR

⋆ XBR

!

←

0

B

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

C

A

,

 

CTL CTR

⋆ CBR

!

← · · ·

7

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0

B

B

@

C00 c01 C02

⋆ γ11 cT

12

⋆ ⋆ C22

1

C

C

A

=

0

B

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

C

A

∧

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

UT

00
X00 + X00U00 = −Ĉ00

UT

00
x01 + X00u01 + x01υ11 = −ĉT

01

UT

00
X02 + X00U02 + x01uT

12
+ X02U22 = −Ĉ02

2uT

01
x01 + 2υ11χ11 = −γ̂11

uT

01
X02 + υ11xT

12
+ xT

01
U02 + χ11uT

12
+ xT

12
U22 = −ĉT

12

X22 = Ĉ22

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

2

8

>

<

>

:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

9

>

=

>

;

endwhile

2,3

8

>

<

>

:

0

B

@

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

1

C

A
∧ ¬ (m(UTL) < m(U))

9

>

=

>

;

1b
˘

UT X + XU = −C
¯

Figure 2: Worksheet for deriving the unblocked algorithm corresponding to loop-invariant 3.

2.2 Example: the solution of the triangular Lypunov equation

We now show how the methodology is applied to a prototypical example: the solution of the triangular
Lyapunov equation given by UT X + XU = −C, where U is upper triangular and C is a symmetric matrix
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so that only the upper triangular part needs to be stored. Here T indicates transposition.
The solution X , which is also symmetric, is to be computed and will overwrite the upper triangular part

of C. This operation is preceded by a pre-process that takes the general time-continuous Lyapunov equation
(an operation encountered in control theory [19]) to the given triangular Lyapunov form.

2.3 Filling the worksheet

At this point, the reader should imagine the worksheet in Figure 2 as being empty and the steps detailed
below as filling in the worksheet in the indicated order.

Step 1: The precondition and postcondition.
Letting Ĉ denote the original contents of C, the precondition is given by C = Ĉ while the postcondition

is C = X ∧ UT X + XU = −Ĉ. Here the ˆ is needed to be able to reason about the current contents (state)
of variable C relative to the original contents, Ĉ.

Step 2: Deriving the loop-invariants. A fundamental insight is that algorithms sweep through matrices
(arrays) in a systematic fashion. Since all operands are either triangular or symmetric, we will partition all
into quadrants, since this allows regions of the matrices that are either zero, for the triangular matrix, or
not stored, for the symmetric matrices, to be exposed:

U =

(

UTL UTR

0 UBR

)

, X =

(

XTL XTR

⋆ XBR

)

, C =

(

CTL CTR

⋆ CBR

)

, Ĉ =

(

ĈTL ĈTR

⋆ ĈBR

)

, (1)

where UTL, XTL, CTL, and ĈTL are all conformal (of same size) and square. The 0 and ⋆ indicate a
submatrices that are entirely zero or not stored, respectively.

Substituting these into the postcondition yields the expression in Figure 3, which we call the Partitioned
Matrix Expression (PME). It is a recursive definition of the operation in terms of the exposed submatrices.
Partitioning of the operands, substituting these into the postcondition, and applying the rules
of linear algebra yields the PME.

The PME expresses all computation that must have occurred to compute the operation in terms of the
exposed quadrants. The observation is that as long as the loop has not finished, only some of the PME is
satisfied. Thus, to come up with loop-invariants, one deletes some of the subexpressions in the PME, as
illustrated in Figure 4. Invariants are thus systematically derived from the PME.

We will now focus on one loop-invariant (Invariant 3) as we fill the remainder of the worksheet in Figure 2.
The methodology similarly yields algorithms corresponding to the other loop-invariants.

Step 3: Loop guard G. We know that after the loop {Pinv ∧ ¬G} is true. No commands exists between
this and the postcondition {Ppost}. Thus, G must be chosen so that

0

B

@

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

1

C

A
∧ ¬G

implies UT X+XU = −C. This dictates the (nonunique) choice for the loop-guard: G = (m(UBR) <
m(U)), where m(·) returns the row dimension of the indicated matrix.

Step 4: Initialization. The initialization is an indexing step: The matrices are partitioned as in (1). The
fact that this must place the variables in a state where Pinv holds dictates the choice where
the top-left quadrants are 0 × 0 (empty).

Step 5: Moving through the matrices. In Steps 5a and 5b, submatrices are exposed so that we move
forward through the matrices. Here, thick lines have semantic meaning: a new row and column are exposed.
Updates will happen in the loop-body, and then that row and column are moved across the thick line to
capture the movement through the matrices. Greek letters denote scalars, lower case letters column vectors,
and upper case letter matrices. Submatrices like uT

12
can be easily recognized as being part of a row and

hence a row vector (transposed column vector).
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Substituting the partitioned operands into UT X + XU = −Ĉ, the postcondition, yields
 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

 

UT

TL
0

UT

TR
UT

BR

! 

XTL XTR

⋆ XBR

!

+

 

XTL XTR

⋆ XBR

! 

UTL UTR

0 UBR

!

=

 

−ĈTL −ĈTR

⋆ −ĈBR

!

which (by linear algebra manipulation) is equivalent to

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL =−ĈTL

UT

TL
XTR + XTRUBR =−ĈTR −XTLUTR

UT

BR
XBR + XBRUBR =−ĈBR − (UT

TR
XTR + XT

TR
UTR)

Figure 3: The Partitioned Matrix Expression (PME) for the solution of the triangular Lyapunov equation.

Loop-invariant
1:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR+XTRUBR = ĈTR−XTLUTR

UT

BR
XBR+XBRUBR = ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant
2:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR+XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant
3:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = ĈBR−(UT

TR
XTR + XT

TR
UTR)

Loop-invariant
4:

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

UT

BR
XBR+XBRUBR = −ĈBR − (UT

TR
XTR + XT

TR
UTR)

Figure 4: Loop-invariants for the triangular Lyapunov equation.

The fact that the top-left quadrant starts empty and must eventually envelop the entire
matrix dictates how the algorithm moves through the matrices. The movement through the
matrix, together with the finite size of the operands, means that there is a natural loop-bound function:
t = n − m(UTL) that is decreased every time through the loop.

Step 6: State before the update. The commands in Step 5a are merely indexing operations. Since no
computation happens between the top of the loop and Step 6 in the worksheet, the state of the submatrices
that are exposed by Step 5a can be determined by textual substitution

UTL → U00, UTR →
(

u01 U02

)

, etc.

and linear algebra manipulation as illustrated in Figure 6. This yields the state described by Step 6. The
invariant together with the repartitioning dictates the predicate in Step 6.

Step 7: State after the update. Similarly, the commands in Step 5b are merely indexing operations.
Since the invariant must again hold, the state in Step 7 can be systematically derived by textual substitution
of the submatrices in Step 5b in the loop-invariant

UTL →

(

U00 u01

0 υ11

)

, UTR →

(

U02

uT
12

)

, etc.

and linear algebra manipulation. The invariant and the redefinition of the quadrants in Step 5b
dictate the predicate in Step 7 via a process much like that illustrated in Figure 6.

Step 8: Update. The update in Step 8 is now dictated by the state that the variables are in at Step 6
and the state that they must be in at Step 7:
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Algorithm: C := lyap unb(U, C)

Partition U →

 

UTL UTR

0 UBR

!

, X → · · ·

where UTL is 0× 0, XTL is 0× 0, CTL is 0× 0

while m(UTL) < m(U) do

Repartition

 

UTL UTR

0 UBR

!

→

0

B

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

C

A

, · · ·

where υ11, χ11, γ11 are scalars

Variant 1

c01 := −c01 − C00u01

Solve UT

00
c01 + c01υ11 = c01

γ11 := −γ11 − uT

01
c01 − cT

01
u01

γ11 := γ11/(2υ11)

Variant 2

Solve UT

00
c01 + c01υ11 = c01

γ11 := −γ11 − uT

01
c01 − cT

01
u01

γ11 := γ11/(2υ11)

C02 := C02 − c01uT

12

cT

12
:= −cT

12
− γ11uT

12
− cT

01
U02

Variant 3

γ11 := −γ11 − 2uT

01
c01

γ11 := γ11/(2υ11)

cT

12
:= −cT

12
− uT

01
C02 − cT

01
U02 − γ11uT

12

Solve υ11cT

12
+ cT

12
U22 = cT

12

Variant 4

γ11 := γ11/(2υ11)

cT

12
:= cT

12
− γ11uT

12

Solve υ11cT

12
+ cT

12
U22 = cT

12

C22 := C22 − u12cT

12
− c12uT

12

Continue with

 

UTL UTR

0 UBR

!

←

0

B

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

C

A

, · · ·

endwhile

Algorithm: C := lyap blk(U, C)

Partition U →

 

UTL UTR

0 UBR

!

, X → · · ·

where UTL is 0× 0, XTL is 0× 0, CTL is 0× 0

while m(UTL) < m(U) do

Determine block size b
Repartition

 

UTL UTR

0 UBR

!

→

0

B

B

@

U00 U01 U02

0 U11 U12

0 0 U22

1

C

C

A

, · · ·

where υ11, χ11, γ11 are scalars

Variant 1

C01 := −C01 − C00U01

Solve UT

00
X01 + X01U11 = C01

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11
X11 + X11U11 = C11

Variant 2

Solve UT

00
X01 + X01U11 = C01

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11
X11 + X11U11 = C11

C02 := C02 − C01U12

C12 := −C12 − C11U12 − CT

01
U02

Variant 3

C11 := −C11 − UT

01
C01 − CT

01
U01

Solve UT

11
X11 + X11U11 = C11

C12 := −C12 − UT

01
C02 − CT

01
U02 −X11U12

Solve UT

11
X12 + X12U22 = C12

Variant 4

Solve UT

11
X11 + X11U11 = C11

C12 := C12 − C11U12

Solve UT

11
X12 + X12U22 = C12

C22 := C22 − UT

12
C12 − CT

12
U12

Continue with

 

UTL UTR

0 UBR

!

←

0

B

B

@

U00 U01 U02

0 U11 U12

0 0 U22

1

C

C

A

, · · ·

endwhile

Figure 5: Algorithms for computing the solution to the triangular Lypunov equation. Left: unblocked
algorithms. Right: blocked algorithms.

• C00 already contains X00 and needs not be updated.

• c01 already contains x01 and needs not be updated.

• γ11 holds γ̂11 and needs to be overwritten by the solution of 2uT
01

x01 + 2υ11χ11 = −γ̂11. Recognizing
that by this step c01 holds x01 and γ11 holds γ̂11, this can be accomplished by updating γ11 with

γ11 = (−γ11 − 2uT

01
c01)/(2υ11).
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Substituting the repartitioning in Step 5a (which hides indexing)

 

UTL UTR

0 UBR

!

→

0

B

B

@

U00 u01 U02

0 υ11 uT

12

0 0 U22

1

C

C

A

,

 

XTL XTR

⋆ XBR

!

→

0

B

B

@

X00 x01 X02

⋆ χ11 xT

12

⋆ ⋆ X22

1

C

C

A

,

 

CTL CTR

⋆ CBR

!

→ · · ·

which stands for

 

UTL UTR

0 UBR

!

→

0

B

B

@

U00

“

u01 U02

”

 

0

0

!  

υ11 uT

12

0 U22

!

1

C

C

A

,

 

XTL XTR

⋆ XBR

!

→=

0

B

B

@

X00

“

x01 X02

”

 

⋆

⋆

!  

χ11 xT

12

⋆ X22

!

1

C

C

A

,

 

CTL CTR

⋆ CBR

!

→ · · ·

into the state of the variables at the top of the loop (the invariant)

 

CTL CTR

⋆ CBR

!

=

 

XTL XTR

⋆ XBR

!

∧

8

>

<

>

:

UT

TL
XTL + XTLUTL = −ĈTL

UT

TL
XTR + XTRUBR = −ĈTR −XTLUTR

XBR = ĈBR

yields

0

B

B

@

C00

“

c01 C02

”

 

⋆

⋆

!  

γ11 cT

12

⋆ C22

!

1

C

C

A

=

0

B

B

@

X00

“

x01 X02

”

 

⋆

⋆

!  

χ11 xT

12

⋆ X22

!

1

C

C

A

∧

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

UT

00
X00 + X00U00 = −Ĉ00

UT

00

“

x01 X02

”

+
“

x01 X02

”

 

υ11 uT

12

0 U22

!

=

−
“

ĉ01 Ĉ02

”

−X00

“

u01 U02

”

 

χ11 xT

12

⋆ X22

!

=

 

γ̂11 ĉT

12

⋆ Ĉ22

!

which, after algebraic manipulation using the rules of linear algebra, yields the expression in Step 6.

Figure 6: Systematic derivation of the state of the variables at Step 6 in Figure 2.

• And so forth.

Resulting algorithm. The resulting algorithm, stripped of the annotations that were used to derive it, is
given in Figure 5 (left), executing only the commands indicated under Variant 3.

2.4 Other algorithms

Other algorithms are derived from the other loop-invariants. In addition, blocked algorithms, which cast
most computation in terms of matrix-matrix operations and hence can attain higher performance, can be
derived by moving through the matrix several rows and columns at at time. All resulting algorithms are
given in Figure 5.

2.5 Discussion

It is the notation we use that enables the derivation process: by presenting submatrices rather than index
ranges, the derived algorithm avoids much of the indexing clutter that is typically found in conventional
loop-based algorithms. Indeed, the algorithm exposes only one loop even thought the algorithm requires
approximately n3 floating point operations. Where are the other loops? Hidden inside of the linear algebra
operations that form the body of the loop. Algorithms for these operations themselves can be, and have
been, formally derived to be correct.

2.6 From algorithm to code

Having a correct algorithm does not mean one has a correct implementation. To preserve the correctness
of the algorithm as we translate it to code, we defined APIs for different languages so that the code closely
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function [ C_out ] = lyap_unb_var3( U, C )

[ UTL, UTR, ...

UBL, UBR ] = FLA_Part_2x2( U, ...

0, 0, ’FLA_TL’ );

[ CTL, CTR, ...

CBL, CBR ] = FLA_Part_2x2( C, ...

0, 0, ’FLA_TL’ );

while ( size( CTL, 1 ) < size( C, 1 ) )

[ U00, u01, U02, ...

u10t, upsilon11, u12t, ...

U20, u21, U22 ] = ...

FLA_Repart_2x2_to_3x3( UTL, UTR, ...

UBL, UBR, ...

1, 1, ’FLA_BR’ );

[ C00, c01, C02, ...

c10t, gamma11, c12t, ...

C20, c21, C22 ] = ...

FLA_Repart_2x2_to_3x3( CTL, CTR, ...

CBL, CBR, ...

1, 1, ’FLA_BR’ );

%----------------------------------------------%

gamma11 = -gamma11 - 2 * u01’ * c01;

gamma11 = gamma11 / ( 2 * upsilon11 );

c12t = -c12t - u01’ * C02 - c01’ * U02 ...

- gamma11 * u12t;

c12t = SolveSylv( upsilon11, U22, c12t );

%-----------------------------------------------%

[ CTL, CTR, ...

CBL, CBR ] = FLA_Cont_with_3x3_to_2x2( ...

C00, c01, C02, ...

c10t, gamma11, c12t, ...

C20, c21, C22, ’FLA_TL’ );

[ UTL, UTR, ...

UBL, UBR ] = FLA_Cont_with_3x3_to_2x2( ...

U00, u01, U02, ...

u10t, upsilon11, u12t, ...

U20, u21, U22, ’FLA_TL’ );

end

C_out = [ CTL, CTR

CBL, CBR ];

return

Figure 7: M-script implementation of unblocked Variant 3.

resembles the algorithm [5, 24, 25]. An example of this is given in Figure 7. In that figure, unblocked Variant
3 is coded in M-script, the scripting language of Matlab [21].

We created a handfull of routines that partition and repartition the matrices. White-space is used to
make the code resemble the algorithm as closely as possible. The code in the figure actually executes as-is,
and gave the correct answer the first time it was executed. We have similar APIs for the C programming
language [5, 24, 25, 26] and for distributed memory architectures, the recently developed Elemental library
uses a similar API [22].

3 Performance

In Figure 8 we show the performance of different algorithmic variants that are implemented as part of
libflame, blocked and unblocked, on a Dell PowerEdge R900 server, using four cores and double precision
arithmetic. While most of our papers are mostly about performance, this paper is not. We report per-
formance in GFLOPS (billions of floating point operations per second) by taking the known floating point
operation count for this operation, n3, and dividing it by the time required to complete the computation.
The important thing to note is that different variants give rise to different performance and that therefore
there is a benefit to identifying all algorithmic variants. For other operations, targeting sequential, multi-

8



0 500 1000 1500 2000 2500 3000
0

5

10

15

problem size

G
F

LO
P

S

 

 

36% of peakblk variant 1
blk variant 4
blk variant 2
blk variant 3
unb variant 1
unb variant 2
unb variant 4
unb variant 3

Figure 8: Performance of the various algorithms on a four core architecture.

threaded, and distributed memory architectures, we have consistently shown the benefit of having multiple
algorithms available. Excellent examples, including derivations and performance comparisons, can be found
in [16, 3, 23, 24, 4].

The commands in the body of the loop are calls to multithreaded Basic Linear Algebra Subprograms
(BLAS) [20, 9, 8], an interface to commonly encountered linear algebra operations. As part of our project,
we have derived a full library of these operations, but for this experiment we are depending on optimized im-
plementations provided by the GotoBLAS2 implementation of the BLAS [13, 12] For the blocked algorithms,
a block size of 128 was used.

4 Past, Current, and Future Directions

This paper gives a refined presentation of the methodology already proposed in [3, 24]. In this section, we
discuss developments that this work has enabled over the last decade, the current impact of the project, and
future directions.
Mechanical derivation of linear algebra libraries. Early on in the project it was recognized that
with the introduction of the worksheet, the methodology became systematic to the point where it could
be automated. This led to an implementation of a mechanical system, implemented in Mathematica, that
does just that [2]. For an operation like the solution of a Lyapunov equation, that system can perform
the steps described in Section 2 mechanically, provided a loop-invariant is given by the user, The system
outputs an algorithm, M-script implementation, and C implementation. More recently, a system that can
automatically generate PMEs has been developed [11], which means that automatically generating loop-
invariants is a relatively easy next step. Combining these efforts would yield a system that, given a linear
algebra operation, would automate all steps described in this paper.
Scope. As part of the libflame library, the described methology has been applied to all operations sup-
ported by the BLAS and a large number of operations supported by the LAPACK library. In all, this C
library comprises about 1500 implementations of algorithms for about 150 distinct operations (where oper-
ations that differ in whether they work, for example, with upper or lower triangular matrices are counted
separately). Most of these were derived to be correct, although for some we did so somewhat less formally
than described in this paper.
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Sparse linear solvers. As mentioned in the introduction, sparse iterative solvers for linear algebra problems
are more commonly used by applications. These are based on so-called Krylov subspace methods. (The
Conjugate Gradient method is an example.) Recently, we showed that the formal derivation methodology
we developed can be extended to the formal derivation of these Krylov subspace methods [10].

5 Conclusion

In this paper, we have demonstrated how formal derivation of loop-based algorithms is viable and valuable
for the domain of dense linear algebra. Key to success has been a notation that hides indexing details when
using arrays and subarrays, the definition of an operation to be implemented via the Partitioned Matrix
Expression (PME), a systematic way for identifying loop-invariants, and a framework (the worksheet) that
captures the Fundamental Invariance Theorem in a way that clearly links it to a loop-based algorithm.
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