
Mechanizing the Expert Dense Linear Algebra Developer

FLAME Working Note #58

Bryan Marker ∗

Andy Terrel †

Jack Poulson ‡

Don Batory ∗

Robert van de Geijn ∗‡

April 25, 2011

Abstract

Sustained high performance on the fastest computers in the world has traditionally been accomplished
by experts who carefully hand-code key routines. This quickly becomes unmanageable for large bodies
of software and/or as architectures change enough that entire libraries need to be rewritten. We believe
the problem is that a typical library for scientific computing exists as a set of routines that are manually
instantiated in a specific programming language. We advocate developing libraries of the future as
algorithms and fundamental kernels that encode computation and data movement, together with expert
knowledge. From this a tool will synthesize efficient, platform-specific implementations by composing,
transforming, and optimizing library algorithms, accomplishing automatically what today’s experts do
manually. This paper illustrates how this can be achieved for the domain of dense linear algebra and gives
preliminary results for the automatic customization and optimization of dense linear algebra algorithms
targeting large distributed memory cluster architectures.

1 Introduction

Parallelizing and optimizing dense linear algebra (DLA) algorithms for distributed memory machines has
historically been done by domain experts who are very familiar with both linear algebra and the oddities
of a target class of machines. When a DLA expert has no experience with a new architecture and wants to
implement an algorithm, (s)he must live with an existing library, learn a lot about that architecture, or find
an experienced developer. This is inefficient and, as we argue, unnecessary because the work of an expert
can be very mechanical and systematic, and therefore automated.

We apply Model Driven Engineering (MDE), which fosters the codification of fundamental algorithms and
domain-specific expertise, to this domain. MDE enables us to automate the activities of experts: selecting
algorithms, composing algorithms, and applying optimizations to achieve customized and high-performance
implementations in code. In this paper, we show how expert-tuned, high-performance code for a Cholesky
factorization for distributed memory architectures can be automatically produced by a tool. Furthermore,
we show how layering code in a way that is amenable to mechanical transformations not only makes a
library more maintainable but also writable by other software. Since Cholesky factorization is a prototypical
example of a broad class of dense linear algebra operations (e.g., the commonly used matrix operations
in the BLAS [10, 11, 17] and operations supported by libraries like LAPACK [2] and libflame [29]) and

∗Department of Computer Science, The University of Texas at Austin,Austin, TX, 78712
†Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, 78712
‡Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712

1

Algorithm: A := Chol blk(A)

Partition A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition

(
ATL ?

ABL ABR

)
→


A00 ? ?

A10 A11 ?

A20 A21 A22


where A11 is b× b

Variant 1 Variant 2 Variant 3

A10 := A10tril(A00)−T

A11 := A11 − tril(A10AT
10)

A11 := chol(A11)

A11 := A11 − tril(A10AT
10)

A11 := chol(A11)

A21 := A21 −A20AT
10

A21 := A21 tril(A11)−T

A11 := chol(A11)

A21 := A21 tril(A11)−T

A22 := A22 − tril(A21AT
21)

Continue with

(
ATL ATR

ABL ABR

)
←


A00 ? ?

A10 A11 ?

A20 A21 A22


endwhile

Figure 1: Blocked algorithms for computing the Cholesky factorization. m(B) stands for the number of
rows of B and tril(B) indicates the lower triangular part of B. The ‘?’ symbol denotes entries that are not
referenced.

communication on a distributed memory architecture is an example of data movement between memory
layers, we believe our approach can be extended to target other algorithms and other architectures (such as
multi-core processors, GPGPUs, and many-core processors) to create the DLA libraries of the future. Since
DLA library development has often introduced new software engineering techniques to the broader scientific
computing community [2, 8, 9, 25, 28, 30], our approach may influence the broader scientific computing
programmer community.

We expect the insights in this paper to have a profound impact on our FLAME project [30]. This
project encompasses a formalism for deriving DLA algorithms, notation for expressing these as algorithms,
and APIs for implementation in code. Two library instantiations exist: the libflame library that targets
sequential, multicore, and (multi-)GPU architectures, and Elemental, which targets distributed memory
architectures. The proposed approach would allow us to instead support a single encoding of algorithms
and knowledge, with libraries like libflame and Elemental being the products (outputs) of applying our
methodology. Because of the breadth of potential impact, we expect this paper to be the first of many to
explore this area research.

2 What an Expert Does

In this section, we discuss what steps an expert follows in order to produce by hand a highly-optimized,
parallel implementation of a dense matrix operation. We use Cholesky factorization, an operation that is
simple yet prototypical of this class of operations, targeting a cluster architecture as a vehicle to illustrate
expert activities.

2

template<typename T>

void

elemental::lapack::internal::CholLVar3(DistMatrix<T,MC,MR>& A)

{

const Grid& g = A.Grid();

// Matrix views

DistMatrix<T,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g),

ABL(g), ABR(g), A10(g), A11(g), A12(g),

A20(g), A21(g), A22(g);

PartitionDownDiagonal(A, ATL, ATR,

ABL, ABR, 0);

while(ABR.Height() > 0)

{

RepartitionDownDiagonal(ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/

/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22);

//--//

Chol(Lower, A11);

Trsm(Right, Lower, ConjugateTranspose, NonUnit, (T)1, A11, A21);

TriangularRankK(Lower, ConjugateTranspose, (T)-1, A21, A21, (T)1, A22);

//--//

SlidePartitionDownDiagonal(ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/*************/ /******************/

ABL, /**/ ABR, A20, A21, /**/ A22);

}

}

Figure 2: Parallel code directly derived from sequential algorithm by hiding all parallelism in the calls to
Chol, Trsm, and TriangularRankK.

2.1 From specification to algorithm

Over the last decade, the FLAME project has developed a repeatable process by which loop-based families
of algorithms for dense matrix operations can be systematically derived [16]. FLAME uses formal derivation
and yields a number of algorithms for each operation so that the best algorithm for a given situation can be
chosen. Many papers have been written on this subject; interested readers should consult [5] for details related
to Cholesky factorization and other operations. In Figure 1 we show the three known blocked algorithmic
variants that result. Blocked algorithms cast most computation in terms of matrix-matrix operations (level-3
BLAS [10]), which can attain high performance on cache-based architectures. Unblocked algorithms can be
obtained by setting the block size b = 1. This expert task of deriving algorithms has been mechanized [4].

Henceforth, we use Variant 3 as our running example.

2.2 From algorithm to sequential code

The FLAME project has produced a library, libflame [29], with functionality comparable to that of the
widely-used LAPACK library [1]. The algorithms encoded in FLAME were systematically derived and then
represented in code using an API, FLAME/C [6], that allows the code to closely resemble the algorithm
of Figure 1. This code is similar to that in Figure 2, which shows a distributed-memory parallel code
for Variant 3 in the style of the Elemental library [20]. Note that the code appears to be just a sequential
implementation because, for now, all parallelism is hidden in the individual operations. Producing sequential
code from FLAME-specifications is now largely mechanized [4].

3

Chol(Lower, A11);

Trsm(Right, Lower, ConjugateTranspose, NonUnit,

(T)1, A11, A21);

TriangularRankK(Lower, ConjugateTranspose,

(T)-1, A21, A21, (T)1, A22);

A11_Star_Star = A11;

lapack::internal::LocalChol(Lower, A11_Star_Star);

A11 = A11_Star_Star;

A21_VC_Star = A21;

A11_Star_Star = A11;

blas::internal::LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A21_VC_Star);

A21 = A21_VC_Star;

A21_MC_Star = A21;

A21_MR_Star = A21;

blas::internal::LocalTriangularRankK

(Lower, ConjugateTranspose,

(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

(a) Original code. (b) Inline routines.

A11_Star_Star = A11;

lapack::internal::LocalChol(Lower, A11_Star_Star);

A11 = A11_Star_Star;

A21_VC_Star = A21;

A11_Star_Star = A11;

blas::internal::LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A21_VC_Star);

\\ A21 = A21_VC_Star;

A21_MC_Star = A21_VC_Star;

A21 = A21_MC_Star;

\\ A21_MC__Star = A21;

A21_VC_Star = A21;

A21_MC_Star = A21_VC_Star;

\\ A21_MC__Star = A21;

A21_VC_Star = A21;

A21_MR_Star = A21_VC_Star;

blas::internal::LocalTriangularRankK

(Lower, ConjugateTranspose,

(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

A11_Star_Star = A11;

lapack::internal::LocalChol(Lower, A11_Star_Star);

A11 = A11_Star_Star;

A21_VC_Star = A21;

blas::internal::LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A21_VC_Star);

A21_MC_Star = A21_VC_Star;

A21 = A21_MC_Star;

A21_MR_Star = A21_VC_Star;

blas::internal::LocalTriangularRankK

(Lower, ConjugateTranspose,

(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

(c) Inline communication. (d) Remove redundant communication.

Figure 3: Sequence of optimizations of the loop-body in Figure 2.

2.3 Elemental

In order to understand the hidden parallelism in Figure 2, we must explain a bit about how Elemental
works [20]. Elemental is a new dense linear algebra library for distributed-memory architectures that uses
a 2-dimensional, cyclic distribution of data with blocksize of 1 over a 2-dimensional grid of processors.
Specifically, it views the p processes as an r× c = p grid, and the data is stored, by default, in a distribution
that cyclically wraps the rows and columns of the matrix around the process grid. As a result, element (i, j)
of a matrix is stored on process (i%r, j%c).

Besides this 2-dimensional distribution, Elemental supports other data distributions and ways to switch
between them. This allows a programmer to parallelize an algorithm and its sub-operations in many ways.
Elemental is implemented in C++ and matrices are stored in classes that know about distributions. Switch-
ing between distributions in the code is accomplished by overloading the ‘=’ operator in the matrix classes,

4

meaning that the ‘=’ operator hides specifics about the communication required to switch between distribu-
tions. Behind ‘=’ is code to re-format the data into buffers and call MPI collective communication routines
for all combinations of distributions.

We use Elemental because it provides a domain-specific language within C++ in which we can start with
a sequential algorithm and apply expertise about distributed-memory systems to parallelize and optimize an
implementation. Two key insights an expert uses that must be codified are the management of redistributions
(an operation that represents pure overhead due to the communication involved) and the parallelization
of sub-operations. In effect an expert trades more communication (which increases overhead) for more
parallelism (which allows useful computation to complete sooner). We explain these considerations below
using the Cholesky example, but we remind readers they are representative of a large class of operations in
this domain.

Elemental’s code lends itself well to identifying and codifying those optimizations because all common
operations are abstracted and layered to be modular. The Elemental library uses these common operations
across codes. For example there are a finite number of data redistribution functions that are used repeatedly,
hidden behind the ‘=’ operator. That code includes the MPI layer, data storage information, etc. The local
(sequential BLAS and LAPACK-like) functions are called using the familiar APIs and are wrapped to work
with Elemental’s matrix class. Elemental’s distributed BLAS and LAPACK functionality is built on top
of these layers. On top of that layer is Elemental’s solver functionality. Lastly, user applications are built
on top of the Elemental library. All of this layering and modularity makes mechanizing expert selections of
algorithms and optimizations easier because the inherent structure of the domain is exposed. Because of the
modularity, call-site specific implementations of fucntionality are kept at a minimum. Instead of repeatedly
including implementations of functionality directly in Elemental code, the modular functions are called. This
results in common patterns of function calls, so the optimizations that need to be applied to these patterns
are also common across codes. An expert would know this set of optimizations and apply them repeatedly
across codes for different applications.

While we believe this paper is written in a way that someone who does not know the details of the
Elemental API and its distributions can at least understand what the system described in Section 3 tries to
automate, further details are given in [20].

2.4 How an expert optimizes for distributed-memory architectures

With this basic understanding of Elemental, we now give a high-level explanation of how an expert takes
a sequential algorithm and optimizes it for a distributed-memory architecture. Doing so motivates the
codification of domain expertise. Consider the sequential, Variant 3, lower-triangular Cholesky algorithm
of Figure 2. It can achieve very good performance on sequential machines, but it is only implicitly parallel
if routines Chol, Trsm, and TriangularRankK are parallelized, which is the case in the Elemental code of
Figure 2.

To optimize this code, an expert starts with the loop body, which we show again in Figure 3(a), and
inlines the implementations of its three operations to yield Figure 3(b):

• A11 is distributed among the processes and
Chol(Lower, A11)

represents a small part of the total computation. Thus, a convenient way to perform this operation is
to bring all data to all processes, and to then perform the operation redundantly.

A11 Star Star = A11;

performs the allgather that duplicates data to all processes.
LocalChol(...)

then locally performs the factorization on each process, and
A11 = A11 Star Star;

locally places the updated values back in A11 (requiring no communication).

5

• Next, consider the update A21 := A21tril(A11)−T . If one partitions A21 into rows,

A21 =


aT21,0

aT21,1
...

 ,

and redistributes A21 so that rows are assigned to processes in a cyclic order, then the processes can
can perform 

aT21,k

aT21,k+p

...

 :=


aT21,k

aT21,k+p

...

 tril(A−T
11)

locally in parallel if A11 is also duplicated on all nodes. The assignment that redistributes A21 is
A21 VC Star = A21;.

The assignment
A11 Star Star = A11;

duplicates, again, A11.

The local computation is performed by
LocalTrsm(...);

and the data is placed back in A21 by
A21 = A21 VC Star;.

• Similarly, the call to
TriangularRankK(...)

is parallelized by redistributions of data
A21 MC Star = A21;

A21 MR Star = A21;

followed by a local computation.

Details of what the distributions are and how exactly they are accomplished are not crucial to our
discussion [20]. The resultant code provides a hint as to why optimizations are needed: clearly the statements

A11 = A11 Star Star;

A11 Star Star = A11;

can be replaced by the more efficient
A11 = A11 Star Star;

which eliminates unnecessary communication.
An Elemental expert knows that redistributions like
A21 MC Star = A21;

themselves can be composed from two or more redistributions via intermediate distributions. One choice of
possible substitutions that use intermediate distributions are exposed in Figure 3(c). In most instances, this
simply inlines intermediate distributions that were previously hidden. One instance is the replacement of

A21 = A21 VC Star;

by
A21 MC Star = A21 = A21 VC Star;

A21 = A21 MC Star;

which an expert knows is inefficient as data is distributed from one distribution to another and back to
the original distribution instead of redistributing only as necessary. However, the astute reader may notice
redundant redistributions which, when removed, yield the code in Figure 3(d). For example the redundant
line of

A21 MC Star = A21 VC Star;

is removed because it is an unnecessary communication.

6

2.5 Summary

To optimize, an expert in parallelizing dense matrix operations performs (consciously or subconsciously) the
previously described steps. Machine-specific details influence how updates in the loop body are parallelized
and which operations are expensive and can/need to be optimized. We show in the next section how to
mechanize these steps by codifying knowledge about distributed-memory computing and related optimiza-
tions using MDE. The keys are to (1) continue layering algorithms, and (2) explicitly codify implementation
knowledge about algorithms, layers, communication, and target architectures – details that were inlined in
this section.

3 Toward a Mechanical Expert

The previous section showed, step-by-step, the process a domain expert goes through to parallelize and
optimize a sequential algorithm. The process is not only systematic but also applies to a broad class of
operations in the domain of dense matrix computations. In this section, we discuss how the process can be
mechanized.

3.1 The vision

The classic (and arguably greatest to date) example of automated software development is relational query
optimization (RQO) [24, 27]. A query evaluation program (QEP) is represented by a relational algebra
expression. A query optimizer rewrites this expression, using relational algebra identities, to an equivalent
expression (program) that has better performance. The optimized expression is then translated to code,
thereby synthesizing an efficient QEP implementation. The keys to RQO are (a) representing the design of
QEPs as relational algebra expressions and (b) optimizing these expressions to produce efficient programs.

We follow the same paradigm but in an MDE setting. The starting point for our optimization is the loop-
body in Figure 3(a). We map operations (e.g. Chol, TriangularRankK, Trsm, =) to implementing algorithms;
the pairing of operations with their algorithms form the algebraic identities (a.k.a. transformations or
refinements) of the DLA domain. Algorithms can reference lower-level operations, which have their own
implementing algorithms, and this recurses. Optimizations are identities of the form exp1 = exp2, which
allows us to replace one expression (DLA subprogram) exp1 with another, often more efficient, expression
(DLA subprogram) exp2. By exploring the space of equivalent expressions for a given DLA application and
selecting the expression with the best performance characteristics, an efficient implementation is synthesized.
Source is produced by translating the optimized expression to code. We illustrate these ideas shortly.

Given a portfolio of basic, local (sequential) operations and redistribution primitives, cost functions for
each primitive, and a target sequence of DLA operation (e.g. as given in Figure 3(a)), a mechanical system
employs transformations that an expert would apply by hand. Doing so produces all implementations that
have merit (meaning they are best by some measure for some subset of operands) and a mechanism by which
to choose from these implementations (e.g. cost functions for the implementations).

3.2 Model-driven engineering

MDE advocates the creation of domain-specific models of software and the application of transformations
to map models to code artifacts [19]. Models are initially built out of domain-specific operations, which
represent the desired application functionality. An operation in the loop body of Cholesky factorization
is defined by the requirements on the input data (i.e. a single input that is a symmetric, positive-definite
matrix) and the output (i.e. the result is the Cholesky factor of the input). All operations have explicit
preconditions and postconditions.

There are no implementation details associated with operations, only precondition and postcondition
specifications. Implementation details are chosen when an operation is replaced with one of its implement-
ing algorithms, called a refinement. MDE allows potentially many refinements of each operation to be
defined. Each variation can depend on, for example, different architecture-specific details, parallelization, or
numerical stability characteristics. Refinements can be models themselves (i.e. inter-connected collections
of operations), which allows models to be layered just as software is layered in libraries.

7

Refinements preserve operation (or abstraction) boundaries. But refinements are not enough to guar-
antee efficient implementations. There must also be optimizing transformations, which break operation
(abstraction) boundaries and replace inefficient compositions of algorithms or operations with more efficient
compositions.

It is the combination of refinement and optimizations that enable efficient applications can be synthesized.

3.3 Applying MDE to dense linear algebra

We use MDE to refine and optimize the operations in the loop body of Cholesky factorization. The loop
body in Figure 1 can be modeled with MDE using operations defined for each update function. Refinements
of those operations could be calls to a sequential function or complex code to parallelize the operations for
SMP or distributed-memory architectures. Here we focus on the latter.1

We start by representing each operation in Figure 3(a) as an operation in a model. An expert would
replace each of those operations with one of its refinements as in Figure 3(b). The refinement chosen for the
Chol operation communicates the data and then redundantly calls the sequential function on all processes.
Alternatively, another refinement might communicate the data to one process and perform the factorization
on it and then distribute the result to all other processes. An expert would explore such options or would
instinctively choose one out of experience. Our mechanical system must similarly explore the search space.

By refining the operations of Figure 3(a), the top layer of code is flattened to expose redistribution in
Figure 3(b). These redistributions are another layer of operations that can be refined in various ways. By
refining some of them as in Figure 3(c), we can break through this layer to expose inefficient redistributions
that can be removed to create the optimized model in Figure 3(d). This illustrates how MDE provides a
way to model algorithms as connected functionalities and to systematically choose implementation details
for that functionality.

3.4 A prototype system

Our MDE models are data-flow graphs. For the same reason that compilers generate data-flow graphs
from textual code, we use them to explicitly capture the data dependencies in the sequence of operations
that make up the loop body. By only using refinements that preserve data dependencies in the graph, we
can maintain the correctness of the algorithm at each step of refinement so that the generated code is as
correct as the input sequential algorithm. The same holds for optimizing transformations. (This is called
correct-by-construction [3, 14, 26, 18].) Proofs of correctness for each refinement and optimization are outside
the scope of this paper. Proofs could be constructed, or refinements and optimizations could be validated
through extensive testing, which is common for software like this.

To optimize from Figure 3(c) to Figure 3(d), an expert looks for inefficient patterns such as redundant
communication and replaces that code with better code. Thought of a different way, an expert replaces
the refinement/implementation details of some abstraction/functionality with a different refinement that is
better-performing. This can be accomplished in our system with graph transformations that replace sub-
graphs that implement some functionality with different sub-graphs that implement the same functionality.
Thus, our optimizations are similar to compiler optimizations on data-flow graphs. Inefficient sub-graphs
are replaced with better sub-graphs.

The full process is similar to what an expert does in code or in an algorithm, inlining function calls with
implementation code or replacing sequences of operations with better alternatives. Viewing the algorithm as
a data-flow graph, though, we aim to encode the expert’s knowledge more easily, respect data dependencies,
and mechanize the process. To optimize for a new target architecture, new refinements would be added.
The upside is that by using a well-defined collection of operations and refinements through proper layering,
the number of optimizations that need to be encoded is generally small because graph patterns are repeated
across algorithms. Evidence for this is the fact that hand optimizing the implementation of many algorithms
usually requires the same re-writes to be performed repeatedly.

1 MDE is truly a visual medium of design, where models and metamodels are graphically created as UML diagrams. We do
indeed define our models and metamodels in a traditional MDE manner, but these details are not the thrust of this paper (e.g.
see [23]).

8

Operation Cost

LocalChol (n× n) γn3/3

LocalTrsm (Right, Lower, n× n, m× n) γmnn

A11 Star Star = A11 (m× n) αdlog2 pe+ β p−1
p mn

A21 MC Star = A21 VC Star (m× n) αdlog2 ce+ β c−1
c

m
r n

A21 MR Star = A21 VC Star (m× n) α(1 + dlog2 re) + β(m
p n+ r−1

r
m
c n)

Table 1: Representative first-order approximations for the cost of operations found in the code of Figure 3(c).
Here, m and n are the row and column sizes of the matrices that are being distributed, the p processes are
configured as an r × c mesh, α is the communication latency, β the cost of communicating a floating point
number, and γ the cost of a floating point computation.

3.5 Searching the space of implementations

An expert implementing an algorithm is guided by an understanding of the cost of operations to select
refinements and optimizations to apply. To an observer, (s)he would appear to follow instincts. In fact,
though, (s)he explores possibilities and assesses (implicitly or explicitly) costs.

How do we enable a mechanical system to choose the best implementation using “instincts”? We do
not (yet). By iteratively applying all possible transformations to an input algorithm’s graph, our method
generates a search space of all implementations, both good and bad. By associating a cost with every
operation, the best in the search space can, in principle, be picked out analytically. Thus, the prototype
system employs run-time cost estimates for redistribution and computation operations in Elemental in an
effort to find the best performing codes. We want the system to see that the code of Figure 3(d) is better
than the code of Figure 3(a) by summing operation costs and determining which takes less time to execute.
The system should then choose Figure 3(d) out of all implementations generated in the search space, just as
an expert would.

Finding the optimal implementations by cost estimates requires information about the machine such
as communication costs, computation speed, and the number of processors. Further, as those familiar
with manual optimization are aware, the input problem size affects which algorithm is optimal; different
parallelization schemes yield varying performance based on the matrix size. We consider a range of problem
sizes, find implementations that are optimal for some subset of that range, and use cost functions to then
choose which implementation to employ when at run time the problem size is known, based on cross-over
points for the cost functions. An expert rarely achieves this level of optimization since it requires careful
analysis that is too error-prone and time consuming to perform by hand. Automation overcomes this hurdle.2

For the domain of DLA, we are able to generate reasonable cost estimates for the usual computations.
First order approximations for sequential operations can be given in terms of the number of floating point
operations that are performed as a function of the size of operands. For example the matrix multiplication
C = AB where C, A, and B are m × n, m × k and k × n, respectively, takes time (costs) 2mknγ where γ
is the time for a floating point operation. Similarly, Cholesky factorization of an n× n matrix costs n3/3γ.
The cost of every computational kernel can be approximated by the operation count multiplied by the time
for performing a floating point operation. Since it is well known that not all algorithms perform at the
same speed, a second-order approximation would take such variation into account. But for now, we stick to
first-order approximations.

The data redistributions found in Elemental are implemented using MPI collective communication rou-
tines. Lower-bound costs of the common algorithms under idealized models of communication are known [7]
in terms of coefficients α and β, which capture the latency and cost per item transfered, respectively. For
example redistributing an n × n block of A11 as in line A11 Star Star = A11 on p processes requires an
allgather operation, which has a lower bound cost of approximately α log2(p) + β p−1

p n2.
Sample cost functions from our Cholesky example are in Table 1. They are a subset of those necessary

2 Readers may note that this is exactly the RQO paradigm (described in Section 3.1) applied to DLA implementations.

9

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

Problem Size

E
s
ti
m

a
te

d
 R

u
n
ti
m

e
 (

c
y
c
le

s
)

Estimated Operation Runtime

Inlined

Optimized 1

Optimized 2 (Best Predicted)

Other Generated Implementations

Figure 4: Cholesky Variant 3 estimated runtime in processor cycles on 240 cores.

to enable the prototype we describe in the next section. They only include higher-order terms and are first-
order approximations meant to distinguish good (lower-cost) implementations of an algorithm from others
that the system generates. It turns out these estimates are good enough for the examples we have studied so
far. We expect to improve these estimates to find the best variants for more complicated algorithms, though.
For example we have encountered situations where collective communications are suboptimally implemented
on a specific architecture while some other architectures provide hardware support for such redistributions.

4 Experimental Results

We developed a prototype system to test the power of the approach and cost functions described in the
previous section. We now describe our initial findings.

4.1 Platform

The results shown in this section were taken from the Lonestar cluster at the Texas Advanced Computing
Center. We used 20 nodes, each with 2 Intel Xeon hexa-core processors running at 3.33 GHz. The combined
theoretical peak performance of all 240 cores is 3200 GFLOPS. For each problem size, we tested a range
of algorithmic block sizes and show the best results. We used versions 11.1 of the Intel compiler, 1.6 of
MVAPICH2, 1.8.0 of ScaLAPACK, and 1.30 of the GotoBLAS.

4.2 Cholesky Variant 3

We encoded knowledge of a handful of common computation routines (e.g. BLAS functions) as well as
Elemental redistributions to enable our prototype to implement the Cholesky example. As input to the
system, we encoded the algorithm in data-flow format. The system is able to mechanically produce, without
intervention by a human, hundreds of loop body implementations including all versions in Figure 3. Each
of these loop body implementations is Elemental code for Cholesky Variant 3. This allows the system to
explore the space of Elemental designs of the algorithm. In previous sections, we only described some of the
transformations an expert performed because the remaining optimizations for Cholesky are subtle and the
reasons for them are out of the scope of this paper. We were able to encode them into our system, and it
generates an even better implementation of Cholesky than that of Figure 3(d). This better implementation
is identical to that coded by the expert developer of Elemental.

10

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

500

1000

1500

2000

2500

3000

Problem size

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

Cholesky Performance

Optimized 2

Optimized 1

ScaLAPACK

Inlined

Figure 5: Cholesky Variant 3 implementation performance on 240 cores. Peak performance is at the top of
the graph.

In its current incarnation, the system applies all possible graph re-writes to enumerate the entire search
space of implementations. We then use symbolic cost functions like those those described in Section 3 to
choose the best of all the mechanically generated implementations. Figure 4 shows the cost estimates for
the most interesting generated implementations across a range of problem sizes (we omit clearly sub-optimal
choices). To make the choice of which is best, we fixed the machine-specific parameters that appear in the
cost functions. We take the process grid to be 16 × 15. γ, a measure of machine speed, is set to be 1
and the other machine parameters are set as reasonable multiples of γ. We then determined the Cholesky
implementation in Elemental has a lower cost, i.e. run-time, than any of the hundreds of automatically
generated implementations. In Figure 4, this implementation’s cost estimate is at the bottom of the graph,
labeled “Optimized 2.”

In Figure 5 we show the performance results of the code of Figure 3(c) (labeled “Inlined”), the code of
Figure 3(d) (labeled “Optimized 1”), and the further optimized code (labeled “Optimized 2”). Our system
automatically generated all of these implementations. We leave out the performance of the original code
because it is similar to that of the inlined code. Notice that if a domain expert only implemented the
algorithm directly and did not optimize considering the machine, the inlined code and performance would
be what she would see. It shows what happens when she calls the high-level operations, which have hidden
inefficiencies. It is clear that expert optimizations are necessary to obtain good performance.

In these results, the un-optimized code performs considerably worse than the optimized code because of
the inefficiencies described in Section 2. By refining abstractions to machine-specific implementations and
removing those inefficiencies, the system produces an implementation that is the same as the hand-optimized
code in the Elemental library.

4.3 Additional operations

While from the start the system was designed to be applied to most, if not all, of the operations supported
by libflame, the initial development used Cholesky as the driving example. Once this worked, the system
was applied to other operations to examine how easily the system can be applied to new algorithms and
extended with new knowledge.

Our first experiment was to apply the system to a specific algorithm for triangular solve with multiple

11

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

Problem Size

E
s
ti
m

a
te

d
 R

u
n
ti
m

e
 (

c
y
c
le

s
)

Estimated Operation Runtime

Inlined

Optimized (Best Predicted)

Other Generated Implementations

Figure 6: Trsm estimated runtime in processor cycles on 240 cores.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

500

1000

1500

2000

2500

3000

Problem size

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
S

)

TRSM Performance

Optimized

ScaLAPACK

Inlined

Figure 7: Trsm implementation performance on 240 cores. Peak performance is at the top of the graph.

right-hand sides (Trsm) that casts the computation in the loop-body in terms of operations that are very
similar to those in the loop-body of Cholesky factorization Variant 3. As expected, getting hundreds of
implementations from the system took very little work on our part. Figure 7 shows the performance of the
un-optimized, inlined code and the optimized implementation generated by the system, which turned out to
be identical to the hand-created version. Again, the system’s costs models point to the same implementation
as the hand-tuned as the best out of the hundreds that were automatically generated. Figure 6 illustrates
the cost estimates of the best generated implementations and representative other implementations.

Next, we tested our system’s implementation of Cholesky Variant 2. It requires a different flavor of
parallelization since the bulk of computation is in the Gemm operation, which requires local computations to
be summed (reduced) across processes. Once this distributed-memory implementation of Gemm was encoded
in the system, it was again able to produce the same optimized implementation code that an expert created.

The greatest triumph to date for the system came when we applied it to an algorithm for a much more

12

complex operation, A := L−HAL−1, an operation that is important when reducing a generalized Hermitian
symmetric positive-definite eigenvalue problem to a standard problem and one of the most complex operations
in Elemental. This operation and its parallelization with Elemental is discussed extensively in [21]. The
system generated tens of thousands of possible implementations, from which cost models chose one that is
more efficient than the optimized implementation that had been coded by the expert developer of Elemental.
We will report on this experience in a future paper as there is insufficient space here to give sufficient detail
to this complicated operation.

5 Related Work

In many ways, the present paper takes a giant step forward for a vision that has been part of the FLAME
project since its inception. In the first dissertation that resulted from the project [15], “The Big Picture”
was expressed that already captured the idea of encoding algorithms and expert knowledge and mechanically
transforming it into code. There, too, optimized parallel implementations were the goal. At the time, the
PLAPACK library [28] played the role of a domain specific language much like the Elemental library does
in this paper. Many implementations were generated by a system coded in Mathematica and performance
estimates were generated from annotations with cost functions of the algorithms. The present work benefits
from an extra ten years of insights during which dozens of papers were published that slowly filled in the
blanks of knowledge that now enable the current, more sophisticated, approach based on MDE.

Our approach is similar in goal to the SPIRAL project [22], which primarily focuses on the domain
of Digital Signal Processing (DSP). SPIRAL aims to automatically generate high-performance kernels for
target architectures. It starts with a mathematical description of the operation in a DSL and performs
transformations similar to refinements to recursively replace abstract operations with specific implementation
code. It uses learning techniques, online code compilation, and performance testing to explore the space of
implementations. Our approach is aimed at higher-level operations, built on lower-level, architecture-specific
functions like the BLAS. At this higher-level, we are able to rely on relatively accurate cost models instead of
using online-search. Furthermore, our domain has limited levels of recursion when refining algorithms, which
allows us to fully enumerate the search space. SPIRAL cannot do this because the search space for their
operations is often too large. The lower-level, architecture-specific functions we rely on could be hand-tuned,
as is the case with those used in Section 4, or could be automatically generated by an approach like SPIRAL.
Thus, we can envision building upon kernels that are themselves generated by a system like SPIRAL.

Autotuning is often viewed as a way to automatically improve performance [31]. Our approach is different
in that it generates the search space from a high-level understanding of how algorithms can be transformed.
Also, we generate parameterized cost estimates which then guide us to the best implementation(s). We can
envision adding autotuning to this approach in order to then choose the best parameters like, for example,
the algorithmic block size.

6 Future Work

This paper presents initial, convincing evidence that loop-bodies for dense linear algebra algorithms can be
automatically optimized. This is part of a larger picture and more general goal, as we discuss here.

6.1 The Big Picture

Our goal is to automatically generate libraries of algorithms for this domain by encoding knowledge about
operations and target architectures. A system would then transform this knowledge into optimized algo-
rithms based on cost estimates, automatically generating families of implementations. Our prototype shows
promising results for operations that are highly indicative of most operations found in the domain of DLA.

Our approach will allow us to change how libraries for this domain and other domains are developed
from instantiations in code to repositories of algorithms, knowledge about how to transform algorithms, and
knowledge about architectures. In this volatile time when architectures are changing dramatically, this will
allow libraries to be generated by providing knowledge about a new architectures as an alternative to using
the existing library, modifying the existing library, or writing a new library.

13

6.2 Next steps

The initial investigations reported in this paper point to numerous possibilities.
Pruning the search space. The experiment with the operation A := L−HAL−1 showed how theory and/or
heuristics are needed to prune the search space since the time for comparing the cost estimates becomes
prohibitively expensive when tens of thousand or more implementations are generated. This is an active
area of research and will be covered in more detail in a follow-up paper.
Adding knowledge. We have not yet included all possible transformations in our prototype system. This
is obvious from the fact that for Trsm the ScaLAPACK implementation outperformed all optimizations that
were generated by the system for a range of matrix sizes. Correcting this should be a matter of adding
transformations to the system. Also, the cost functions that were used were first-order approximations for
the true cost of the various operations. Better parameterized costs estimates can eventually be incorporated.
Other target architectures. We chose to first apply the system to the optimization of distributed memory
algorithms for three reasons: (1) Since there are a lot of choices for how computations are distributed among
processes and how to communicate between different distributions, we knew a large number of possible
algorithms would results; (2) We suspected that first-order approximations for the cost of operations would
suffice, at least when very large matrix sizes were involved; and (3) A considerable penalty would observed
if a clearly wrong optimization was chosen, so the benefits of optimization would be clearly visible in the
experiments. An equally important application of the current system would target, for example, optimization
of sequential and multithreaded dense linear algebra libraries like those with functionality supported by the
BLAS and libflame. There, communication would show up in the form of copying of data into contiguous
buffers for performance reasons and computation would be performed by so-called inner kernels [12, 13, 31].
While in principle this is very similar to what we have described in this paper, we suspect that in practice
the cost functions need to be much more accurate and sophisticated if benefits are to be shown. We will
pursue this in future research.
Beyond a single loop-body. All optimizations discussed in this paper deal with a single loop-body. We
envision in the future adding loop transformations, much like modern compilers perform but at a high level
of abstraction. For example by merging two or more consecutive loops, the body of the resulting loop might
expose more opportunities for the kinds of optimizations that are discussed in this paper. Similarly, if loops
are unrolled, inter-iteration optimizations may be exposed.

6.3 Other Scientific Applications

The techniques described in this paper provide a general method for analyzing and building structured
algorithms. Most scientific applications are similarly well-structured providing ample opportunities to apply
these techniques.
Sparse Matrix Solvers. For sparse matrix solvers, the sparse matrix-vector product is usually a perfor-
mance bottleneck. To achieve better performance, choices such as data layout and algorithm are critical.
Using the refinement process, our tool could be extended to make these decisions based on the details of the
solver and data distribution.

For example, changing the sparse compression technique is a common refinement. If a solver works on
preconditioning separable blocks of the matrix, redistributing the matrix from a general compressed row
format to the compressed block format becomes critical for speedup. Another example is the large number
of orderings for the degrees of freedom (dofs) in a solver. Often a solver must reevaluate a residual on the
dofs, thus redistributing the matrix for optimal memory bandwidth is necessary contrary to the more natural
ordering of blocking similar dofs together.
Finite Element Methods. Finite element methods allow for a number of choices for the assembly and
discretization of the continuous problem. An assembly algorithm based on a reference element can be pre-
computed for any given equation. During this algorithm generation, refinements can be made based on the
coefficients from mesh data, number of quadrature weights and order of quadrature loops. In the case of hp
adaptivity, algorithms can be generating for each reference elements based on the given ’p’ with refinements
such as static condensation for a large enough element matrix and efficient interpolation between different
elements.
Stencil Evaluations. Stencil evaluations have been studied extensively in the context of auto-tuning. The
automation of loop unrolling and jamming has produced efficient code that is hard to imagine that even an

14

expert would be capable of producing. Unfortunately because of the low-level approach of auto-tuning, the
gains are often completely lost once variable coefficients are used with the stencil. Using our MDE approach,
one could abstract over the stencil and the necessary data streams for coefficient evaluation allowing for the
same automation of unrolling and jamming.

6.4 Automated Software Engineering

Twenty years ago, knowledge-based software engineering (KBSE) addressed a similar problem of automated
software design, but achieved mixed success [3, 14, 26]. Their ideas were correct—namely that domain-
knowledge can be expressed as transformations and that automated and semi-automated design tools could
aid engineers to design reliable systems. The success of KBSE was limited by its era: model-driven engineer-
ing (MDE) and its emphasis on transformation-based designs were unknown then, component-based software
engineering (CBSE) and software architectures were nascent, and experience in building large systems by
transformations simply did not exist. Times have changed and our work takes a fresh look at this general
approach to automated software development.

Our derivations of efficient DLA codes are not isolated case studies. We have applied our approach to
recover the legacy designs of stateless parallel database joins and stateful crash fault tolerant servers in terms
of refinements and optimizations – exactly as we did for DLA codes in this paper [23]. Both of these case
studies had informal descriptions; we showed how transformations could be used not only to explain their
designs, but also to reconstruct these applications directly from our models. In the case of database joins,
we have proven that each transformation (refinement or optimization) that we used in deriving the parallel
join architecture is correct. We hope our work starts a new generation of tools to make KBSE ideas and
design-by-transformation practical.

7 Conclusion

In this paper, we have demonstrated that it is possible to mechanize the actions of a expert dense linear
algebra developer. We presented two non-trivial case studies that showed we could reproduce automatically
what experts today produce manually. And further experiments clearly indicate as DLA design problems
become more complex, a mechanized expert can produce even better code than manual designs.

The key to our approach is exposing the inherent structure of the DLA domain – this is accomplished
by engineering layered designs, which captures the fundamental operations of the domain, and codifying
fundamental algorithms that implement these operations, and the fundamental optimizations that naturally
arise in this domain.

Given this structure, we explained that the manual process that a DLA expert uses to design efficient
algorithms is so systematic that we could mechanize these tasks. We presented a tool that accomplished
this task. Further, we explained why our approach is not limited to DLA, and that further investigation of
‘libraries of the future’ shows great promise. As such we expect this paper to be the first of many to explore
the topics described above.

For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/.

Acknowledgements

We thank the other members of the FLAME team for their support. Bryan Marker was sponsored by a
fellowship from Sandia National Laboratories, and Jack Poulson was sponsored by a fellowship from the
Institute of Computational Engineering and Sciences. Batory is supported by the NSF’s Science of Design
Project CCF 0724979. This research was also partially sponsored by NSF grants OCI-0850750 and CCF-
0917167 as well as by a grant from Microsoft.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

15

http://www.cs.utexas.edu/users/flame/

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. D. Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

[3] I. Baxter. Practical issues in building knowledge-based code synthesis sys tems. 6th Annual Reuse
Workshop (WISR’93), 1993.

[4] P. Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algorithms.
PhD thesis, Department of Computer Sciences, The University of Texas, 2006. Technical Report TR-
06-46. September 2006.

[5] P. Bientinesi, B. Gunter, and R. A. V. de Geijn. Families of algorithms related to the inversion of a
symmetric positive definite matrix. ACM Trans. Math. Soft., 35(1), 2008.

[6] P. Bientinesi, E. S. Quintana-Ort́ı, and R. A. van de Geijn. Representing linear algebra algorithms in
code: The FLAME application programming interfaces. ACM Trans. Math. Soft., 31(1):27–59, March
2005.

[7] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. Collective communication: theory, practice,
and experience. Concurrency and Computation: Practice and Experience, 19(13):1749–1783, 2007.

[8] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[9] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. SIAM,
Philadelphia, 1979.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[11] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[12] K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS. ACM Trans.
Math. Softw., 35(1):1–14, 2008.

[13] K. Goto and R. A. van de Geijn. Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Softw., 34(3):1–25, 2008.

[14] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a knowledge-based software
assistant. Kestrel Institute Technical Report KES.U.83.2, 1983.

[15] J. A. Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense Linear Algebra
Algorithms. PhD thesis, Department of Computer Sciences, The University of Texas, December 2001.

[16] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. Flame: Formal linear algebra
methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[17] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[18] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architectural Refinement. IEEE TSE,
21:356–372, 1995.

16

[19] D. Petriu, N. Rouquette, and ystein Haugen, editors. Model Driven Engineering Languages and Systems,
13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010. Proceedings, Lecture
Notes in Computer Science. Springer, 2010. (to appear).

[20] J. Poulson, B. Marker, J. R. Hammond, N. A. Romero, and R. van de Geijn. Elemental: A new
framework for distributed memory dense matrix computations. FLAME Working Note #44 TR-2010-
20, The University of Texas at Austin, Department of Computer Sciences, 2010. Submitted to ACM
TOMS.

[21] J. Poulson, R. van de Geijn, and J. Benninghof. Parallel algorithms for reducing the generalized
Hermitian-definite eigenvalue problem. ACM Trans. Math. Soft. submitted.

[22] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for
DSP transforms. Proceedings of the IEEE, special issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[23] T. Riche, D. Batory, R. van de Geijn, R. Goncalves, , and B. Marker. Architecture design by transfor-
mation. Computer Science report TR-11-XX, Univ. of Texas at Austin, 2011.

[24] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price. Access Path Selection
in a Relational Database Management Syst em. In ACM SIGMOD, 1979.

[25] B. T. Smith et al. Matrix Eigensystem Routines – EISPACK Guide. Lecture Notes in Computer Science
6. Springer-Verlag, New York, second edition, 1976.

[26] D. R. Smith and E. A. Parra. Transformational approach to transportation scheduling. 8th Knowledge-
Based Software Engineering Conference, 1993.

[27] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems: The Complete Book. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[28] R. A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[29] F. G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

[30] F. G. Van Zee, E. Chan, R. van de Geijn, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Introducing:
The libflame library for dense matrix computations. IEEE Computation in Science & Engineering,
11(6):56–62, 2009.

[31] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In Proceedings of SC’98,
1998.

17

	Introduction
	What an Expert Does
	From specification to algorithm
	From algorithm to sequential code
	Elemental
	How an expert optimizes for distributed-memory architectures
	Summary

	Toward a Mechanical Expert
	The vision
	Model-driven engineering
	Applying MDE to dense linear algebra
	A prototype system
	Searching the space of implementations

	Experimental Results
	Platform
	Cholesky Variant 3
	Additional operations

	Related Work
	Future Work
	The Big Picture
	Next steps
	Other Scientific Applications
	Automated Software Engineering

	Conclusion

