Parallel Matrix Multiplication: 2D and 3D
FLAME Working Note #62

Martin Schatz
Jack Poulson
Robert van de Geijn
The University of Texas at Austin
Austin, Texas 78712

June 11, 2012

Abstract

We describe an extension of the Scalable Universal Matrix Multiplication Algorithms (SUMMA)
from 2D to 3D process grids; the underlying idea is to lower the communication volume through storing
redundant copies of one or more matrices. While SUMMA was originally introduced for block-wise
matrix distributions, so that most of its communication was within broadcasts, this paper focuses on
element-wise matrix distributions, which lead to allgather-based algorithms. We begin by describing an
allgather-based 2D SUMMA, describe its generalization to 3D process grids, and then discuss theoretical
and experimental performance benefits of the new algorithms.

1 Introduction

The parallelization of dense matrix-matrix multiplication is a well-studied subject. Cannon’s algorithm
(sometimes called roll-roll-compute) dates back to 1969 [7], and Fox’s algorithm (sometimes called broadcast-
roll-compute) dates back to the 1980s [12]. Both suffer from a number of shortcomings:

e They assume that p processes are viewed as an r X ¢ grid, with 7 = ¢ = /p. Removing this constraint
on r and c is nontrivial.

e They do not deal well with the case where one of the matrix dimensions becomes relatively small. This
is the most commonly encountered case in libraries like LAPACK [3] and libflame [22, 23], and their
distributed-memory counterparts: ScaLAPACK [9], PLAPACK [21], and Elemental [17].

e They do not treat the other common cases of matrix-matrix multiplication: C := ATB + C, C :=
ABT + C,and C := ATBT + C.!

These shortcomings were overcome by SUMMA. The original paper [20] gives four algorithms:

e For C := AB+ C, SUMMA casts the computation in terms of multiple rank-k updates, and algorithm
already independently reported in [1]. This algorithm is sometimes called the broadcast-broadcast-
multiply algorithm, a label we will see is somewhat limiting. We also call this algorithm “stationary
C” for reasons that will become clear later. By design, this algorithm continues to perform well in the
case where the width of A is small relative to the dimensions of C.

e For C := ATB + C, SUMMA casts the computation in terms of multiple panel-matrix multiplies, so
performance is not degraded in the case where the height of A is small relative to the dimensions of
B. We have also called this algorithm “stationary B” for reasons that will become clear later.

Lcf. the general form of dgemm [10]

e For C := ABT + C, SUMMA casts the computation in terms of multiple matrix-panel multiplies, and
so performance does not deteriorate when the width of C' is small relative to the dimensions of A. We
call this algorithm “stationary A” for reasons that will become clear later.

e For C := ATBT 4 C, the paper sketches an algorithm that is actually not practical.

In [14], it was shown how stationary A, B, and C algorithms can be formulated for each of the four cases of
matrix-matrix multiplication, including for C' := AT BT 4 C. This then yielded a general, practical family
of matrix-matrix multiplication algorithms all of which were incorporated into PLAPACK and Elemental,
and some of which are supported by ScaLAPACK.

In the 1990s, it was observed that for the case where matrices were relatively small (or, equivalently, a
relatively large number of nodes were available), better theoretical and practical performance resulted from
viewing the p nodes as a §/p x ¢/p x ¢p mesh, yielding a 3D algorithm [2] It was recently observed that
the nodes could instead be viewed as an r x ¢ X h mesh, with » = ¢ but general h, building on Cannon’s
algorithm. This was labeled a 2.5D algorithm [19] since it was believed that h would always be chosen to be
less than {/p for theoretical optimality reasons. It was subsequently observed by the authors of [19] that,
by using the SUMMA algorithm instead, at the expense of a slightly higher latency cost, the constraint that
r = ¢ could be removed.

This paper attempts to give the most up-to-date treatment yet of practical parallel matrix-matrix multi-
plication algorithms. It does so by first discussing how collective communication is related to matrix-vector
multiplication (y := Az) and rank-1 update (C := ya? +). This is then used to link matrix distribution to
a 2D mesh of nodes to the communications required for these matrix operations. This then leads naturally
into various practical algorithms for all cases of matrix-matrix multiplication on 2D meshes of nodes. We
finally generalizes the notion of 2.5D algorithms to yield a generally family of 3D algorithms that build on
2D stationary C, A, and B algorithms. We call this general class of algorithms General 3D algorithms, or
G3D algorithms for short.

The paper makes a number of contributions:

e It systematically exposes the link between collective communication, matrix and vector distribution,
and matrix-vector operations like matrix-vector multiplication and rank-1 update.

e It next shows how parallel algorithms for these matrix-vector operations systematically yield a family
of matrix-matrix multiplication algorithms that view nodes as a 2D mesh.

e It exposes a set based notation for describing distribution of matrices and vectors that is used by the
Elemental library for dense matrix computations on distributed memory architectures.

e It shows how the family of 2D algorithms can be used to build a family of algorithms that view the
nodes as a 3D mesh.

e It provides performance results that illustrate the benefits of the family of 2D and 3D algorithms.

The exposition builds the reader’s understanding so that he/she can easily customize the algorithms for
other matrix distributions.

2 Of Matrix-Vector Operations and Distribution

In this section, we discuss how matrix and vector distribution can be linked to parallel 2D matrix-vector
multiplication and rank-1 update operations, which then allows us to eventually describe the stationary C,
A, and B 2D algorithms for matrix-matrix multiplication that are part of the Elemental library.

2.1 Collective communication

Collectives are fundamental to the parallelization of dense matrix operations. Thus, the reader must be, or
become, familiar with the basics of these communications and is encouraged to read Chan et al. [8], which
presents collectives in a systematic way that dovetails perfectly with the present paper.

Operation Before After
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
Broadcast
T T T T T
Red Node 0 | Node 1 Node 2 | Node 3 Node 0 | Node 1 Node 2 | Node 3
educe(- 20 Z(D 2(2) M E)) >, =)
to-one)
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
0 o
Scatter T1 x1
x2 €2
x3 x3
Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
o o
Gather x1 T
T2 T2
3 T3
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
zo xo xo xo zo
Allgather 1 r1 1 T1 1
xr2 €2 2) €2
x3 3 3 x3 z3
Node 0 | Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
xéo) xél) Igz) xég) Zj xéj) ,
Reduce- x(lo) zgl) $(12) x(ld) Zj ng)
scatter acéo) mgl) x(22) x§3) J mé])
0) 1 (2 3))
:cé :cg) Ty) :1353 Zj x:(f)
Allred Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
reduce 0 1 5 3 7 7 7 7
2(0) (1) 2(2) 2(3) Zj 2 Zj 27 Zj 2 Zj 2
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
xé()) Iél) I‘SQ) xé%) 9380) 90<10) Ig)) IgO)
All-to-all x(lo) zgl) $(12) x(ld) :1:(()1) x%l) xél) xél)
wéo) {Egl) :E(22) xéS) w(()Q) x§2) méQ) ng)
Iéo) Igl) 1‘:()’2> IéS) z(()3) 1(13) IgS) z:()’?’)
Figure 1: Collective communications considered in this paper.

Communication Latency | Bandwidth | Computation Cost used for analysis
Broadcast [logs(p) o ng - log,(p)a + np
Reduce(-to-one) | [logy(p)]a ng pp;ln’y log,(p)a +nB + ny
Scatter [logs(p) e prlnB - logy(p)a + prlnB
Gather [logs(p) e pTTln/B - logy(p)a + pTTln/B
Allgather [log, (p)]a %nﬁ - log, (p)a + %nﬁ
Reduce-scatter [logs(p)] ijlnB %n’y log,(p)a + %nﬁ + %nv
Allreduce [logs(p)] ZPP;lnB pp;lrw 2logy(p)a+ Q%nﬁ + pp;lnv
All-to-all [logy (p)]a ”Tflnﬂ - log, (p)a + prlnB

Figure 2: Lower bounds for the different components of communication cost. Conditions for the lower bounds
given in [8] and [6]. The last column gives the cost functions that we use in our analyses. For architectures
with sufficient connectivity, simple algorithms exist with costs that remain within a small constant factor of
all but one of the given formulae. The exception is the all-to-all, for which there are algorithms that achieve
the lower bound for the o and 8 term separately, but it is not clear whether an algorithm that consistently
achieves performance within a constant factor of the given cost function exists.

To make this paper self-contained, Figure 1 (similar to Figure 1 in [8]) summarizes the collectives. In
Figure 2 we summarize lower bounds on the cost of the collective communications, under basic assumptions
explained in [8] (see [6] for analysis of all-to-all), and the cost expressions that we will use in our analyses.

2.2 Motivation: matrix-vector multiplication

Suppose A € R™*" ¢ € R", and y € R™, and label their individual elements so that

Q0,0 Qp,1 ce Qo,n—1 X0 o
a1,0 o1 Qi X1 P1
A= , T = . , and y=
Am—-1,0 OUm—-1,1 *°° Op_1n-1 Xn—1 Vm—1

Recalling that y = Ax (matrix-vector multiplication) is computed as

o = apoXo+ oix1it+cct 00n—1Xn—1
Y1 = oaroxo+ oaxi+coc+ 0ln—1Xn—1
Ym—1= Om-1,0X0 + Wm—1,1X1 + -+ + QUm—1n—1Xn-1

we notice that element «; ; multiplies x; and contributes to ;. Thus we may summarize the interactions of
the elements of =, y, and A by

Xo X1 s Xn—1
Yo ap,0 ap1 || Qom—1
P1 1,0 1,1 ce a1 n—1 (1)
wmfl QAm—1,0 | Om—1,1 | Op—1,n—1

which is meant to indicate that y; must be multiplied by the elements in the jth column of A while the ith
row of A contributes to ;.

X0 X1 X2
Yo «@0,0 @0,3 @X0,6 - -- @p,1 @p,4 @0, 7 - -- «@p,2 @0,5 @0,8 - --
Q3,0 3,3 X3,6 - -- Y3 Q3,1 3,4 @37 .- Q3,2 3,5 3,8 - .-
Q6,0 6,3 6,6 - - - Qg,1 6,4 X6, 7 - - - e Qg2 g5 XG,8 - - -
X3 X4 X5
P1 Q1,0 @1,3 X1,6 - -- Q1,1 Q1,4 Q1,7 - Q1,2 1,5 X1, 8 .-
Qgq,0 4,3 QX4.6 - - - g Qg1 Qg4 Q4.7 - Qg2 Qg5 Q4.8 - - -
Q7,0 @7,3 A7.6 .- - Q7,1 Q7.4 Q77 .. Py Q7.2 Q7.5 A7 8 .-
X6 X7 X8
P2 Q2,0 2,3 @26 - -- Q21 Q2.4 Q2.7 ... Q22 Q25 2.8 ...
Q5,0 5,3 A5.6 - - - s Q5,1 5,4 A5.7 - Q5.2 5.5 A58 - - -
Qg0 8,3 8.6 - - - Qg1 g4 Q87 .- - s ag 2 g5 8.8 - - -

Figure 3: Distribution of A, x, and y within a 3 x 3 mesh. Notice that redistributing a column of A in
the same manner as y requires simultaneous gathers within rows of nodes while redistributing a row of A
consistently with x requires simultaneous gathers within columns of nodes. In the notation of Section 3, here
the distribution of z and y are given by z(Vg,*) and y(Ve, x), respectively, and A by A(M¢, Mgr). While
the presented mesh of nodes is square, none of the results depend on the mesh being square.

2.3 Two-Dimensional Elemental Cyclic Distribution

It is well established that scalable implementations of dense linear algebra operations require nodes to be
logically viewed as a two-dimensional mesh. It is also well established that to achieve load balance for a wide
range of matrix operations, matrices should be cyclically “wrapped” onto this logical mesh. We start with
these insights and examine the simplest of matrix distributions that result.

Denoting the number of nodes by p, an 7 X ¢ mesh must be chosen such that p = rc.

Matrix distribution. The elements of A are assigned using an elemental cyclic (round-robin) distribution
where ¢ ; is assigned to node (i mod r, j mod ¢). Thus, node (s,t) stores submatrix
Qs t Qs t4c
A(s:r:m—1,t:c:n—1) = [Gs+rt Astrite

where the left-hand side of the expression uses the MATLAB convention for expressing submatrices,
starting indexing from zero instead of one. This is illustrated in Figure 3.

Column-major vector distribution. A column-major vector distribution views the r x ¢ mesh of nodes
as a linear array of p nodes, numbered in column-major order. A vector is distributed with this

Xo X3 X6 - X1 X4 X7 - X2 X5 X8
Yo «@p,0 @0,3 @X0,6 - -- Yo @p,1 @0,4 @0,7 --- Yo «@p,2 @0,5 @0,8 - --
Y3 Q3,0 3,3 X3,6 - -- Y3 Q3,1 3,4 X3,7 .- Y3 Q3,2 3,5 3,8 - --
e 6,0 6,3 6,6 - - - e Q6,1 6,4 Q6,7 - - - e 6,2 Q6,5 6,8 - - -
Xo X3 X6 - X1 X4 X7 - X2 X5 X8
P1 Q1,0 ®1,3 X1,6 - -- P1 Q1,1 1,4 Q1,7 - P1 Q1,2 1,5 X1, 8 .-
g Qq,0 4,3 Q4,6 - - - g Qg1 Qg4 Q4.7 - g Qg2 Qg5 Q4.8 - - -
Py Q7,0 @7,3 X7.6 - - - Py Q7,1 Q7.4 Q77 .. Py Q7.2 Q7.5 Q7.8 ...
Xo X3 X6 - X1 X4 X7 o X2 X5 X8
P2 Q2,0 2,3 X2.6 - - - P2 Q21 Q2.4 Q2,7 .- P2 Q22 Q2.5 Q2.8 .-
s Q5,0 X5,3 A5.6 - - - s Q5,1 5,4 A5,7 .- - s Q5,2 55 A58 - - -
s Qg0 (8,3 8.6 - - - s Qg1 (g4 Q87 .- - s ag 2 ag.5 8.8 - - -

Figure 4: Vectors x and y respectively redistributed as row-projected and column-projected vectors. The
column-projected vector y(Mc, *) here is to be used to compute local results that will become contributions
to a column vector y(V¢,) which will result from adding these local contributions within rows of nodes. By
comparing and contrasting this figure with Figure 3 it becomes obvious that redistributing z(Vg) to z(Mpg)
requires an allgather within colums of nodes while y(V¢) results from scattering y(M¢) within process rows.

distribution if it is assigned to this linear array of nodes in a round-robin fashion, one element at a
time.

In other words, consider vector y. Its element 1; is assigned to node (i mod 7, (i/r) mod c¢), where /
denotes integer division. Or, equivalently in matlab-like notation, node (s,t) stores subvector y(u :
p:m—1), where u(s,t) = s + tr equals the rank of node (s,t) when the nodes are viewed as a
one-dimensional array, indexed in column-major order. The distribution of y is illustrated in Figure 3.

Row-major vector distribution Similarly, a row-major vector distribution views the r x ¢ mesh of nodes
as a linear array of p nodes, numbered in row-major order. The vector is then assigned to this linear
array of nodes in a round-robin fashion, one element at a time.

In other words, consider vector x. Its element x; is assigned to node (j mod ¢, (j/c) modr). Or,
equivalently, node (s, t) stores subvector z(v:p:n—1), where v = sc + t equals the rank of node (s, t)
when the nodes are viewed as a one-dimensional array, indexed in row-major order. The distribution
of z is illustrated in Figure 3.

At this point, we suggest comparing Eqn. 1 with Figure 3.

2.4 Parallelizing matrix-vector operations

In the following discussion, we assume that A, , and y are distributed as discussed above? .

Computing y := Ax: The relation between these distributions of a matrix, column-major vector, and row-
major vector is illustrated by revisiting the most fundamental of computations in linear algebra, y := Ax,
already discussed in Section 2.2. An examination of Figure 3 suggests that the elements of x must be
gathered within columns of nodes (allgather within columns) leaving elements of z distributed as illustrated
in Figure 4. Next, each node computes the partial contribution to vector y with its local matrix and copy of
x. Thus, in Figure 4, 1; in each node becomes a contribution to the final 1;. These must be added together,
which is accomplished by a summation of contributions to y within rows of nodes. An experienced MPI
programmer will recognize this as a reduce-scatter within each row of nodes.
Under our communication cost model, the cost of this parallel algorithm is given by

Ty=az(m,n,r,c)

- o[]S [2] 5 + e 200 A,

Cc

c c r
local mvmult allgather = reduce-scatter y
mn m n r—1n c—1m c—1m
~ 2—7+ Co—v+Ci—y +logy(pla+ ———F+ —B+ —
P r c roc c r r
—_——
load imbalance
We simplify this further to
r—1n c—1m c—1m

mn
2—1 + logy (p)or + —B+ —B+ it
P r C c r C r

since the load imbalance contributes a cost similar to that of the communication®. In Appendix A we
use these estimates to show that this parallel matrix-vector multiplication is weakly scalable if r/c is kept

constant, but not if »r =p or ¢ = p.

Computing 7 := ATy: Recall that z = ATy (transpose matrix-vector multiplication) means

Xo = oo+ oottt po1,0Wn-1
X1 = 0010+ ot o+ 11—

Xm—-1= 00 m-1%0 + 01 m_1¥1 + -+ Op1,m—1V¥n_1

or,
X0 = X1 = Xm—-1 =
a,0%0+ ap1Po+ | | aop—1%o+
o091+ o191+ e o1 p—1P1+ (2)
O‘n—l,Own—l an—l,lwn—l ce an—l,n—1¢n—1

An examination of Eqn. 2 and Figure 3 suggests that the elements of y must be gathered within rows of
nodes (allgather within rows) leaving elements of y distributed as illustrated in Figure 4. Next, each node
computes the partial contribution to vector x with its local matrix and copy of y. Thus, in Figure 4 x; in
each node becomes a contribution to the final x;. These must be added together, which is accomplished by
a summation of contributions to x within columns of nodes. We again recognize this as a reduce-scatter,
but this time within each column of nodes.

2We suggest the reader print copies of Figures 3 and 4 for easy referral while reading the rest of this section.
31t is tempting to approximate ZT_I by 1, but this would yield formulae for the cases where the mesh is p x 1 (¢ = 1) or
1 x p (r = 1) that are misleading.

I(Mc,*) .CU(MR,*)

reduce-
scatter
allgather allgather
bcast) bcast
permutation
I(VCa*> I(VRv*)
reduce reduce
(-to-one) (-to-one)
Y Y
l‘(Mc,MR) l‘(MR,Mc)

Figure 5: Summary of the communication patterns for redistributing a vector x. For instance, a method
for redistributing = from a matrix column to a matrix row is found by tracing from the bottom-left to the
bottom-right of the diagram.

Exercise 1. Give a cost estimate for the above parallel algorithm for computing x = ATy. What can you
say about the weak scalability of the algorithm?

Exercise 2. What additional communication needs to be added to the above approaches if one wants to
compute y = ATx and x = Ay? How does this affect weak scalability?

Computing A :=yzT +A4 A second commonly encountered matrix-vector operation is the rank-1 update:
A= ayz” + A. We will discuss the case where a = 1. Recall that

00,0 + YoXo 0,1 +Yox1 e 00,n—1+ YoXn-1
N - a1,0 +P1Xx0 o1 +Yixa a1 n—1+ P1Xn-1
+yr =)
Om—1,0 + Vm—1X0 Cm—1,1F+Vm-1X1 " Om—1n—1+ Vm—-1Xn-1

which, when considering Figures 3 and 4, suggests the following parallel algorithm: All-gather of y within
rows. All-gather of x within columns. Update of the local matrix on each node.

Exercise 3. Analyze the weak scalability for the proposed parallel algorithm that computes A = yz™ + A.
Exercise 4. What additional communication needs to be added to the above approaches if one wants to
compute A = zyT + A?

3 Generalizing the Theme
The reader should now have an understanding how vector and matrix distribution are related to the paral-

lelization of basic matrix-vector operations. We generalize the insights using sets of indices as “filters” to
indicate what parts of a matrix or vector a given process owns.

The insights in this section are similar to those that underlie Physically Based Matrix Distribution
(PBMD) [11] which itself also underlies PLAPACK. However, we formalize the notation beyond that used
by PLAPACK. The link between distribution of vectors and matrices was first observed by Bisseling [4, 5],
and, around the same time, in [16].

3.1 Vector distribution

The partitioning of indices among processes is fundamental to our coming discussions, and the following
formalism simplifies our notation.

Definition 1 (Partition of N). A collection of k sets {Sp,...,Sk—1} is said to be a partition of the
natural numbers (including zero), N, if S; N'S; = () when ¢ # j, and U?;&Sj =N.

The basic idea is to use two different partitions of the natural numbers as a means of describing the distri-
bution of the row and column indices of a matrix.

Definition 2 (Subvectors and submatrices). Let z € R” and S C N. Then z(S) equals the vector
with elements from = with indices in the set S, in the order in which they appear in vector z. If A € R™*"™
and S, T C N, then A(S,T) is the submatrix formed by keeping only the elements of A whose row-indices
are in S and column-indices are in 7T, in the order in which they appear in matrix A.

Note that the above notation is similar to MATLAB notation, but the members of S and 7 need not be
constrained by the sizes of x and A. We illustrate this idea with simple examples:

Qo0 Qp1 Qo2 Qo3 o4

X0
i Q10 Q11 Q12 Q13 Q14
Example 3. Let v = N and A = Qa0 Qo1 Qo2 a3 oo |. IfS = {0,2,4,..} and
2
Y3 Q3o Q31 Q32 Q33 Q34
Q40 0O41 O42 Q43 Q44
Yo Qp,1 Qo3
T ={1,3,5,...}, then z(S) = and A(S,T)=| as1 o3
X2
Q41 Q43

We now introduce two fundamental ways to distribute vectors relative to a logical r x ¢ process grid.

Definition 4 (Column-major vector distribution). Given p = rc¢ processes configured into a logical
r X ¢ grid, we say that the tuple Vo = (VCQ,Vé, e Vé’_l) is a column-magjor vector distribution if there
exists some alignment parameter o € {0,...,p — 1} such that, for any given grid positions s € {0,...,7 — 1}
and t € {0,...,c — 1},

Ve ={NeN:N=s+tr+o (modp)}. (3)

The shorthand y(V¢) will refer to the vector y distributed such that process (s,t) stores y(VST).

Definition 5 (Row-major vector distribution). Similarly, we call the tuple Vg = (V3, V3, ..., Vf;fl) a
row-magor vector distribution if there exists some alignment parameter o such that, for every grid position
(s,t), where 0 < s < rand 0 <t < ¢,

Vi ={NeN:N=t+sc+o (modp)} (4)

The shorthand y(Vz) will refer to the vector y distributed such that process (s, t) stores y(V55¢).

Remark 6. The members of any column-major vector distribution, Vi, or row-major vector distribution,
Vg, form a partition of N.

Remark 7. The names column-major vector distribution and row-major vector distribution come from
the fact that the mappings (s,t) — s+ ¢r and (s,t) — t + sc respectively label the r x ¢ grid with a
column-major and row-major ordering.

Remark 8. A comparison of (3) and (4) reveals that to redistribute y(Ve) to y(Vg), and vise versa,
requires a permutation communication (simultaneous point-to-point communications).

Remark 9. In the preceding discussions, our definitions of Vi and Vi distributions allowed for arbitrary
alignment parameters. For the rest of the paper, we will only treat the case where all alignments are zero,
i.e., the top-left entry of every matrix is owned by the process in the top-left of the process grid.

3.2 Induced matrix distribution

We are now ready to discuss how matrix distributions are induced by the vector distributions. For this, it
pays to again consider Figure 3. The element «; ; of matrix A, is assigned to the row of processes in which
1; exists and the column of processes in which x; exists. This means that in y = Az elements of = need
only be communicated with columns of processes and local contributions to y need only be summed within
rows of processes. This induces a Cartesian matrix distribution: Column j of A is assigned to the same
column of processes as is x;. Row 4 of A is assigned to the same row of processes as ;. We now answer the
related questions “What is the set Mg of row indices assigned to process row s?” and “What is the set M},
or column indices assigned to process column ¢?”

Definition 10. Let Mg, = [JiZ) V&' and MY = Uy V', Given matrix A, A(Mg,, M%) denotes the
submatrix of A with row indices in the set M§ and column indices in M}. Finally, A(M¢, Mg) denotes
the distribution of A that assigns A(ME, M}) to process (s,t).

We say that (Mc, Mg) is induced by (V, Vr) because the process to which ¢ ; is assigned is determined
by the row of processes, s, to which y; is assigned and the column of processes, t, to which z; is assigned,
so that it is ensured that in the matrix-vector multiplication y = Az communication needs only be within
rows and columns of processes. The above definition lies at the heart of our communication scheme.

3.3 Vector duplication

Two vector distributions, encountered in Section 2.4, still need to be specified with our notation. The vector
x, duplicated as needed for the matrix-vector multiplication y = Az, can be specified as x(M¢) or, viewing
x as a n X 1 matrix, (Mg, x). The vector y, duplicated so as to store local contributions for y = Ax, can
be specified as y(Mg) or, viewing y as a n x 1 matrix, y(Mg, *). Here the * should be intrepreted as “all
indices”. In other words, * = N.

3.4 Of vectors, columns, and rows

A matrix vector multiplication or rank-1 update may take as its input/output vectors (z and y) the rows
and/or columns of matrices, as we will see in Section 4. This motivates us to briefly discuss the different
communications needed to redistributed vectors to and from columns and rows. In our discussion, it will
help to refer back to Figures 3 and 4.

10

Algorithm: y := Az (GEMV) Comments

(Mg, *) + x(Vg, *) Redistribute z (allgather in columns)

y O (Mg, *) == A(ME, ME) (M,) Local matrix-vector multiply

y(Vo, %) = /Z\ty(t)(MC, *) Sum contributions (reduce-scatter in rows)

Figure 6: Parallel algorithm for computing y := Ax.

Algorithm A := A + zy” (GER) Comments

x(Ve, *) < x(Vg, %) Redistribute x as a column-major vector (permutation)
(Mg, *) + x(Vo, x) Redistribute z (allgather in rows)

y(Vg, *) < y(Ve, %) Redistribute y as a row-major vector (permutation)
y(Mg, x) + y(Vg, *) Redistribute y (allgather in cols)

A(ME, M) == o(Mg, =) [y(Mb,)" Local rank-1 update

Figure 7: Parallel algorithm for computing A4 := A + xy?.

Column to and from column-major vector Consider Figure 3 and let a; be a typical column in A. It
exists within one single process column. Redistributing a;(Mc, Mg) to y(Ve) requires simultaneous scatters
within process rows. Redistributing y(Ve) to a;(Mc, Mg) requires simultaneous gathers within process rows.

Column to and from row-major vector Redistributing a;(Mc, Mg) to x(Vg) can be accomplished
by first redistributing to y(Ve) (simultaneous scatters within rows) followed by a redistribution of y(V¢) to
z(Vr) (a permutation). Redistributing z(Vg) to a;(Mc, Mg) reverses these communications.

Column to and from column projected vector Redistributing a;(Mc, Mg) to a;(Mc,*) (duplicated
y in Figure 4) can be accomplished by first redistributing to y(Ve) (simultaneous scatters within rows)
followed by a redistribution of y(V¢) to y(Me, *) (simultaneous allgathers within rows). However, recognize
that a scatter followed by an allgather is equivalent to a broadcast. Thus, redistributing a;(Mc, Mg) to
a;(Mc,*) can be more directly accomplished by broadcasting within rows. Similarly, summing duplicated
vectors y(Mc, *) leaving the result as a;(Mc, Mg) (a column in A) can either be accomplished by first
summing them into y(V¢) (reduce-scatters within rows) followed by a redistribution to a;(Mc, Mg). But a
reduce-scatter followed by a gather is equivalent to a reduce(-to-one) collective communication.

All communication patterns with vectors, rows, and columns We summarize all the communication
patterns that will be encounted when performancing various matrix-vector multiplications or rank-1 updates,
with vectors, columns, or rows as input, in Figure 5.

3.5 Parallelizing matrix-vector operations (revisited)

We now show how the notation discussed in the previous section pays off when describing algorithms for
matrix-vector operations.

Assume that A, z, and y are distributed as A(M¢, Mg), ©(Vg, *), and y(V¢, *), respectively. Algorithms
for computing y := Az and A := A + zy” are given in Figures 6 and 7.

11

Algorithm: ¢&; := Ab; (GEMV) Comments

(Mg, *) < bj(Mc, Mg) Redistribute b; as a PBMD. This can be implemented as
z(Ve, *) <= b;(Mc, MR) (scatter in rows)

x(Vg, *) « x(Ve, *) (permutation)

x(Mp,*) < z(Vg,*) (allgather in columns).

y O (Mg, *) == A(ME, M&) x(Mb,) Local matrix-vector multiply

¢i(Me, Mg) := ity(t)(Mc, *) Sum contributions. This can be implemented as
y(Ve, %) = /Z\ty(t)(MC, %) (reduce-scatter in rows)
y(Vr, %) < y(Vo, *) (permutation)

¢i(Me, MRg) < y(Vg,) (gather in rows)

Figure 8: Parallel algorithm for computing ¢; := Ab; where ¢; is a row of a matrix C' and b; is a column of
a matrix B.

Exercise 5. Assume that A, x, and y are distributed as A(Mc, MR), x(Vg, *), and y(Ve, %), respectively.
Propose parallel algorithms for

1. z= ATy,

2. y=ATx, and

3. A=A+ yaT.

The discussion in Section 3.4 provides the insights to generalize these parallel matrix-vector operations
to the cases where the vectors are rows and/or columns of matrices. For example, in Figure 8 we show how
to compute a row of a matrix C, ¢;, as the product of a matrix A times the column of a matrix B, b;.

4 Elemental SUMMA: 2D algorithms (eSUMMA2D)

We have now arrived at the point where we can discuss parallel matrix-matrix multiplication on a r X ¢
mesh, with p = rc. In our discussion, we will assume an elemental distribution: V; = {j,j +p,j +2p,---},
but the ideas clearly generalize.

To fully understand how to attain high performance on a single processor, the reader should familiarize
him /herself with [13].

4.1 Elemental stationary C algorithms (eSUMMA2D-C)

We first discuss the case where C' := C' + AB, where A and B have k columns each, with %k relatively
small*. We call this a rank-k update or panel-panel multiplication [13]. We will assume the distributions
C(Mc,Mg), A(Mc, Mg), and B(M¢c, Mp). Partition

by
-
A:(ao‘a1‘~'~‘ak_1) and B = 1

T
bk—l

so that C := ((--- ((C + aob®) + a1bT) + - --) + ar_1b_,). The following loop computes C := AB + C:

4There is an algorithmic block size, balg, for which a local rank-k update achieves peak performance [13]. Think of k as
being that algorithmic block size for now.

12

A(Mc, *)

reduce-
scatter

allgather

allgather

reduce- permutation reduce-
allgather scatter A(Ve, *) A(Vg,*) scatter pligather
all-to-all all-to-all
Y Y
A(Mec, Mg) A(Mg, Mc)
all-to-all all-to-all
reduce- permutation reduce-
allgather scatter A(*, Vr) A(*, Vo) scatter pligather

Figure 9: Summary of the communication patterns for redistributing a matrix A.

forp=0,...,k—1
ap(Mc, *) < ap(Mc, MR) (broadcasts within rows)
bl (Mg, %) ZA)Z(MC, Mpg) (broadcasts within columns)
C(M¢,Mg) :== C(Mc, Mg) + a,(Mc, *)IA);,F(MR7 *) (local rank-1 updates)
endfor

While Section 3.5 gives a parallel algorithm for GER, the problem with this algorithm is that (1) it creates
a lot of messages and (2) the local computation is a rank-1 update, which inherently does not achieve high
performance since it is memory bandwidth bound. The algorithm can be rewritten as

13

Algorithm: C := GEMM_C(C, A, B)

Bp
where Aj has 0 columns, By has 0 rows
while n(AL) <n(4) do
Determine block size b

Partition A—>(AL|AR),B—><BT>

endwhile

Repartition
B Bo
(AL|AR)—>(A0|A1A2),<BT>—> I
B
By
where A; has b columns, B; has b rows
A1(Mc, *) < A1(Mc, MR)
Bi(*, M) <~ B1(Mc, MR)
C(MC7MR) = C(MC,MR) + Al(Mc, *) Bl(*7MR)
Continue with
B Bo
(AL|AR)<—(A0A1|A2),(BT><— B,
B 5,

Figure 10: Stationary C algorithm for computing C' := AB + C.

forp=0,...,k—1
ap(Mc, *) < ap(Mc, MR)
endfor
forp=0,...,k—1
b (MR, *) + bT (Mc, Mp)
endfor
forp=0,...,k—1
C'(]\fc7 MR) = C(Mc,MR) + ap(Z\fc7 *)bz;(MR7 >)<)
endfor

(broadcasts within rows)

(broadcasts within columns)

(local rank-1 updates)

and finally, equivalently,

A(Mc,) < A(Mc, MR)
B(*, M) < B(Mc, MR)
C(Mc,MR) = C(Mc,MR) + A(Mc,*) B(*, MR)

(allgather within rows)
(allgather within columns)
(local rank-k update)

Now the local computation is cast in terms of a local matrix-matrix multiplication (rank-k update), which can
achieve high performance. Here (given that we assume elemental distribution) A(Me,*) < A(Mc, MR),
allgather if elemental distribution is
assumed! Similarly B(*, M) <+ B(Mc¢, Mg), within each column broadcasts k rows of B from different

within each row broadcasts k columns of A from different roots: an

roots: another allgather if elemental distribution is assumed!

Based on this observation, the SUMMA algorithm can be expressed as a loop around such rank-k updates,
as given in Figure 10°. Notice that, if an elemental distribution is assumed, the SUMMA algorithm should
not be called a broadcast-broadcast-compute algorithm. Instead, it becomes an allgather-allgather-compute
algorithm. We will also call it a stationary C algorithm, since C' is not communicated (and hence “owner
. The primary benefit from a having

computes” is determined by what processor owns what element of C)

5We use FLAME notation to express the algorithm, which has been used in our papers for more than a decade [15].

14

a loop around rank-k updates is that is reduces the required local workspace at the expense of an increase
only in the a term.

Remark 11. We label this algorithm eSUMMAZ2D-C, an elemental SUMMA algorithm targeting a 2D
mesh of nodes, stationary C variant. It is not hard to extend the insights to non-elemental distributions
(ala ScaLAPACK or PLAPACK).

An approximate cost for the described algorithm is given by

2mnk k —1mk r—1nk

Tesummazn—c(m,n, k,r,c) = 5 logy(c)a logz(r)a + 5
alg ulg
2mnk k c—1)mk r—1)nk
S log2<p>a+<) gt TNk
p alg p

T+ esummazn—c(m, n, k,r, c)

This estimate ignores load imbalance (which leads to a 7 term of the same order as the 8 terms) and the
fact that the allgathers may be unbalanced if b, is not an integer multiple of both r and c.

It is not hard to see that the weak scalability of the eSUMMA2D-C algorithm mirrors that of the parallel
matrix-vector multiplication algorithm analyzed in Appendix A: it is weakly scalable when m = n and r = ¢,
for arbitrary k.

4.2 Elemental stationary A algorithms (eSUMMA2D-A)

Next, we discuss the case where C := C'+ AB, where C' and B have n columns each, with n relatively small.
For simplicity, we also call that parameter b,,. We call this a matrix-panel multiplication [13]. We again
assume that the matrices are distributed as C'(M¢, Mg), A(Mc, Mg), and B(M¢, Mg). Partition

C:(co‘cl‘--~‘cn_1) and B:(bo‘b1“bn_1)

so that ¢; = Ab; + ¢;. The following loop will compute C = AB + C"

forj=0,...,n—1
b;j(Vo,*) < b;(Mc, Mg) (scatters within rows)
b;j(Vr,*) < bj(Ve, %) (permutation)
bj(Mg,*) < b;j(Vg,*) (allgathers within cols)
¢;j(Mc,*) == A(Mc, Mp)b;(Mg, *) (local matrix-vector multiplications)
(MC7MR) A ZCJ(MC7) (
endfor

reduce-to-one within rows)

While Section 3.5 gives a parallel algorithm for GEMV, the problem again is that (1) it creates a lot of
messages and (2) the local computation is a matrix-vector multiply, which inherently does not achieve high
performance since it is memory bandwidth bound. This can be restructured as

15

Algorithm: C := GEMM_A(C, A, B)
Partition C — (C, | Cr) ,B— (BL | Br)
where (7, and By, have 0 columns

while n(Cp) <n(C) do
Determine block size b
Repartition
(ColCr) = (ColCr|Ca), (BulBr)—(Bo|Bi|B)
where C; and B; have b columns

Bl(*, MR) <— Bl(Mc, MR)
t S S
CIY (Mg, %) 1= A(Mg, Mfy) By (Mfy, +)

Cy (M, Mg) :== 3,0 (Mg, *)

Continue with
(Co|Cr)«(Co|Ci|Co),(BL|Br)« (Bo|Bi]|B:)
endwhile

Figure 11: Stationary A algorithm for computing C' := AB + C.

forj=0,...,n—1
b;j(Ve,) < bj(Mc, Mg) (scatters within rows)
endfor
forj=0,...,n—1
b;j(Vr,*) + b;(Ve, %) (permutation)
endfor
forj=0,....,n—1
bj(Mg,*) < b;j(Vg, *) (allgathers within columns)
endfor
forj=0,...,n—1
¢;j(Mc,*) = A(Mc, Mg)b; (Mg, *) (local matrix-vector
endfor multiplications)
forj=0,....,n—1
¢;j(Mc, MRg) + /icj (Mg, *) (simultaneous reduce-to-one
endfor within rows)
and finally, equivalently,
B(x, MRg) + B(M¢, Mg) (all-to-all within rows, permutation, allgather
within columns)
C(Mc,*) := AB(x, Mp) + C(Mc, *) (simultaneous local matrix multiplications)
C(Mc, MRg) < iC(MC, *) (reduce-scatter within rows)

Now the local computation is cast in terms of a local matrix-matrix multiplication (matrix-panel multiply),
which can achieve high performance. A stationary A algorithm for arbitray n can now be expressed as a
loop around such parallel matrix-panel multiplies, given in Figure 11.

An approximate cost for the described algorithm is given by

Tesummazp—a(m,n, k,r,c) =

16

o loga(c)a + elkng (all-to-all within rows)

+ ng a+ % %/8 (permutation)

+i logy (7)o + 771 %5 (allgather within columns)

Jr%;.%k'Y (simultaneous local matrix-panel multiplications)
+& logy(c)a + Czl mTkﬁ + %%’“’y (reduce-scatter within rows)

As we discussed earlier, the cost function for the all-to-all operation is somewhat suspect. Still, if an
algorithm that attains the lower bound for the o term is employed, the 8 term must at most increase by
a factor of log,(c) [6], meaning that it is not the dominant communication cost. The estimate ignores load
imbalance (which leads to a v term of the same order as the § terms) and the fact that various collective
communications may be unbalanced if b, is not an integer multiple of both r and c.

While the overhead is clearly greater than that of the eSUMMA2D-C algorithm, when m = n = k
the overhead is comparable to that of that algorithm; so the scalability results are similar. Also, it is not
hard to see that if m and k are large while n is small, this algorithm achieves better parallelism since less
communication is required: The stationary matrix, A, is then the largest matrix and not communicating it
is beneficial. Similarly, if m and n are large while & is small, then the eSUMMA2D-C algorithm does not
communicate the largest matrix, C'; which is beneficial.

4.3 Communicating submatrices

In Figure 9 we show the collective communications required to redistribute submatrices from one distribution
to another and the collective communications required to implement them.

4.4 Exercises

Exercise 6. Propose and analyze eSUMMA2D-C algorithms for C := ATB 4+ C, C := ABT + C, and
C:=A"BT +C.

Exercise 7. Design and analyze stationary A algorithms for C := ATB + C, C := ABT + C, and C :=
ATBT +C.

Exercise 8. Design and analyze stationary B algorithms for C :== AB+C, C := ATB+C, C := ABT 4+ C,
and C := ATBT 4+ C.

5 Elemental SUMMA: 3D algorithms (eSUMMA3D)

We now view the p processors as forming a r X ¢ X h mesh, which one should visualize as h stacked layers,
where each layer consists of a 7 x ¢ mesh. The extra dimension will be used to gain an extra level of
parallelism, which reduces the overhead of the 2D SUMMA algorithms at the expense of communications
between the layers. The approach on how to generalize Elemental SUMMA 2D algorithms to Elemental
SUMMA 3D algorithms can be easily modified to use Cannon’s or Fox’s algorithms (with the constraints
that come from using those algorithms), or a more traditional distribution for which SUMMA can be used
(pretty much any Cartesian distribution).

5.1 3D stationary C algorithms (eSUMMA3D-C)
Partition, conformally, A and B so that

A=(Ag| | M) md B=| 1 |,

17

where A, and B, have approximately k/h columns and rows, respectively. Then

C+AB= (C+ApBy) + (0+A1B1) +---+ (0+Ap_1Br_1).
—_— ——————
by layer 0 by layer 1 by layer h-1
This suggests the following 3D algorithm:

e Duplicate C to each of the layers, initializing the duplicates by layeres 1 through A — 1 to zero. This
requires no communication. We will ignore the cost of setting the duplicates to zero.

e Scatter A and B so that layer H recieves Ay and Bpy. This means that all processors (I, J,0) simul-
taneously scatter approximately (m + n)k/(rc) data to processors (I, J,0) through (I, J,h —1). The
cost of such a scatter can be approximated by

h—1(m+n)k

1Og2(h)Oé + TTB = lOgQ(h)Oé + (h_l)(;n—i_’n)k

B. (5)
e Compute C := C' + A Bk simultaneously on all the layers. If the eSUMMA2D-C algorithm is used

for this in each layer, the cost is approximated by
mnk k (c —1)ymk

(r—1)nk
277 + b (logy(p) — logy(h)) a + » B+ » B

(6)

T+ esummazn—c(m,n, k/h,r, c)

e Perform reduce operations to sum the contributions from the different layers to the copy of C' in layer
0. This means that contributions from processors (I, J,0) through (I, J, K) are reduced to processor
(I,J,0). An estimate for this reduce-to-one is

mn mn mnh mnh
logy(h)a+ — B+ —7 =logy(h)a+ ——B+ —. (7)
re re P P

Thus, an estimate for the total cost of this eSUMMAZ3D-C algorithm for this case of gemm results from
adding (5)—(7).
Let us analayze the case where m =n =k and r = ¢ = y/p/h in detail. The cost becomes

Cesummasp—c(n, n,n,r,7, h)

n? n (r —1)n? (h — 1)n? n%h n?h
— 2"+ (log, (p) —log, (B))a + 23— 8 L log, (Wa+ 22— 8 L 1og, (B)a + g 4 2
Pl hbalg< g2 (p) — logy(h)) ’ g2 (h)) g2 (h) ’ P
VP 2
n? n (Y —1n h—1)n? n2h n2h
— 2?7—1— [hbl (logg(p)—logQ(h))+2log2(h)}a+2 Vh 5+2() ﬁ+fp ﬂ—i—fp vy
alg

n3 n n?

2;7 + [hbalg(logQ(p) —logy(h)) + 210g2(h)} a+ [2(\\/[%) -1)+3h—-2+ %h ?ﬂ.
Now, let us assume that the a term is inconsequential (which will be true if n is large enough). Then the
minimum can be computed by taking the derivative (with respect to h) and setting this to zero: —\/ﬁh’?’/ 24
B+ K)=0o0r h=(3+K)//p) 23 = ¢p/(3+ K)*?, where K = /3. Typically v/8 < 1 and hence
(3+ K)~2/3 ~ 37%/3 ~ 1/2, meaning that the optimal h is given by h ~ {/p/2. Of course, details of how the
collective communication algorithms are implemented, etc., will affect this optimal choice. Moreover, « is
typically four to five orders of magnitude greater than 3, and hence the a term cannot be ignored for more
moderate matrix sizes, greatly affecting the analysis.

While the cost analysis assumes the special case where m = n = k and r = ¢, and that the matrices is
perfectly balanced among the r x r mesh, the description of the algorithm is general. It is merely the case
that the cost analysis for the more general case becomes more complex.

18

Now, PLAPACK and Elemental both include stationary C' algorithms for the other cases of matrix
multiplication (C := aATB + 3C, C := aABT 4 BC, and C := a AT BT + BC). Clearly, 3D algorithms that
utilize these implementations can be easily proposed. For example, if C := ATBT + C is to be computed,

one can partition

Ao
A= : and B=(By |- | Bu1),

Ap_1

after which

C+A™B" = (C+ATBY) + (0+ATBY) +---+ (0+Af_ Bl).
—_—
by layer 0 by layer 1 by layer h-1

The communication overhead for all four cases is similar, meaning that for all four cases, the resulting
stationary C' 3D algorithms have similar properties.

5.2 Stationary A algorithms (eSUMMA3D-A)

Let us next focus on C := AB + C. Algorithms such that A is the stationary matrix are implemented in
PLAPACK and Elemental. They have costs similar to that of the SUMMA algorithm for C' := AB + C.

Let us describe a 3D algorithm, with a r X ¢ x h mesh, again viewed as h layers. If we partition,
conformally, C' and B so that

C’:(Co‘---‘Ch,l) and B:(Bo‘~-~‘Bh,1),
then
(Co=Co+ABy |-+ | Cho1:=Ch1+ABj_1).
—_———
by layer 0 by layer h — 1

This suggests the following 3D algorithm:

e Duplicate (broadcast) A to each of the layers, initializing the duplicates meshes 1 through A — 1 to
zero. If matrix A is perfectly balanced among the processors, a lower bound for this is given by

mk
1 h —
ogy(h)a + o B
Simple algorithms that achieve within a factor two of this lower bound are known.

e Scatter C' and B so that layer K recieves Cx and Bg. This means having all processors (I, .J,0)
simultaneously scatter approximately (mn + nk)/(rc) data to processors (I, .J,0) through (I, J,h —1).
The cost of such a scatter can be approximated by

h—1(m+Ek)n

logy(h)a + ——-———8 = logy(h)a + (h=1)(m +k)n

h cr P p

e Compute Cx := Cg + ABj simultaneously on all the layers with a 2D stationary A algorithm. The
cost of this is approximated by

2mnk
v+ Tt esummazp—a(m, n/h, k,r,c)

e Gather the Cx submatrices to Layer 0. The cost of such a gather can be approximated by

h—1mn
1 h _—
ogy(h)a + W or
Rather than giving the total cost, we merely note that the stationary A 3D algorithms can similarly be
stated for general m, n, k, r, and ¢, and that then the costs are similar.
Now, PLAPACK and Elemental both include stationary A algorithms for the other cases of matrix
multiplication. Again, 3D algorithms that utilize these implementations can be easily proposed.

19

5.3 Stationary B algorithms (eSUMMA3D-B)

Finally, let us again focus on C' := AB + C. Algorithms such that B is the stationary matrix are also
implemented in PLAPACK and Elemental. They also have costs similar to that of the SUMMA algorithm
for C:=AB+C.

Let us describe a 3D algorithm, with a r X ¢ X h mesh, again viewed as h layers. If we partition,
conformally, C and A so that

Co Ao
C= and A= ,
Ch-1 Ap—1
then

Cy+ ApB by layer 0

Ch1:=Ch_1+A,_1B by layer h — 1
This suggests the following 3D algorithm:

e Duplicate (broadcast) B to each of the layers, initializing the duplicates on meshes 1 through h — 1 to
zero. If matrix B is perfectly balanced among the processors, a lower bound for this is given by

nk
1 h —
ogy(h)a + rcﬂ
Simple algorithms that achieve within a factor two of this lower bound are known.

e Scatter C' and A so that layer K recieves Cx and Ag. This means having all processors (I, .J,0)
simultaneously scatter approximately (mn 4+ mk)/(rc) data to processors (I, J,0) through (I, J,h—1).
The cost of such a scatter can be approximated by

h—1m(n+k)

logy(h)a + —————>8 = logy(h)a + w

h cr P b

e Compute Ck := Ck + A B simultaneously on all the layers with a 2D stationary B algorithm. The
cost of this is approximated by

2mnk

v+ T esummazp—g(m/h,n, k,r,c)

e Gather the C'x submatrices to Layer 0. The cost of such a gather can be approximated by

Again, a total cost similar to those for stationary C' and A algorithms results. Again, PLAPACK and
Elemental both include stationary B algorithms for the other cases of matrix multiplication. Again, 3D
algorithms that utilize these implementations can be easily proposed.

5.4 Exercises

Exercise 9. Propose and analyse eSUMMASD-C for computing C := ATB + C, C := ABT + C, and
C:=ATBT +C.

Exercise 10. Propose and analyse eSUMMAS3D-A algorithms for computing C := ATB+C, C := ABT +C,
and C := ATBT + C.

Exercise 11. Propose and analyse eSUMMAS3D-B algorithms for computing C := ATB+C, C := ABT +C,
and C := ATBT 1+ C.

20

Stationary type: A

m

h=1
3.0f —e- h=2 |{
-a h=4
25 x h=8
' -o- h=16
<
8 2.0t
@
Q
4
o 1l.5¢
=
s
o
1.0
0.5r
0.0
0 1000 2000 3000 4000 5000 6000 7000 8000
number of processors
Stationary type: B Stationary type: C
—— h=1 —— h=1
3.0r -e- h=2 | 3.01 -e- h=2 |
-8 h=4 -3 h=4
25 % h=8 25 % h=8
' -o- h=16 ' -9- h=16
o <
8 2.0r 8 2.01
s s
@ @
aQ a
g g
o 1.5r o 1.5p
))
T ey
G}]
1.0r 1.0r
0.5F 0.5F
0.0 0.0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
number of processors number of processors

Figure 12: Performance of the different implementations when m = n = k = 30,000 and the number of
nodes is varied.

6 Performance Experiments

In this section, we present performance results that support the insights in the previous sections. Implemen-
tations of the eSUMMA-2D algorithms are all part of the Elemental library. The eSUMMA-3D algorithms
were implemented with Elemental, building upon its eSUMMA-2D algorithms and implementations. In all
these experiments, it was assumed that the data started and finished distributed within one layer of the 3D
mesh of nodes so that all communication necessary to duplicate was included in the performance calculations.

As in [17, 18], performance experiments were carried out on the IBM Blue Gene/P architecture with
compute nodes that consist of four 850 MHz PowerPC 450 processors for a combined theoretical peak
performance of 13.6 GFlops per node using double-precision arithmetic. Nodes are interconnected by a three-
dimensional torus topology and a collective network that each support a per-node bidirectional bandwidth
of 2.55 GB/s. In all graphs, the top of the graph represents peak performance for this architecture so that
the attained efficiency can be easily judged.

The point of the performance experiments was to demonstrate the merits of 3D algorithms. For this
reason, we simply fixed the algorithmic block size, ba1g, to 128 for all experiments. The number of nodes, p,
was chosen to be various powers of two, as was the number of layers, h. As a result, the r X ¢ mesh for a
single layer was chosen so that r = ¢ if p/h was a perfect square and r = ¢/2 otherwise. The “zig-zagging”
observed in some of the curves is attributed to this square vs. nonsquare choice of r x ¢. It would have been

21

tempting to perform exhaustive experiments with various algorithmic block sizes and mesh configurations.
However, the performance results were merely meant to verify that the insights of the previous sections have
merit.

In our implementations, the eSUMMAS3D-X algorithms utilize eSUMMA2D-X algorithms on each of the
layers, where X € {A,B,C}. As a result, the curve for eSSUMMA3D-X with h = 1 is also the curve for the
eSUMMAZ2D-X algorithm.

Figure 12 illustrates the benefits of the 3D algorithms. When the problem size is fixed, efficiency can
inherently not be maintained. In other words, “strong” scaling is unattainable. Still, by increasing the
number of layers, h, as the number of nodes, p, is increased, efficiency can be better maintained.

Figure 13: illustrates that the eSUMMA2D-C and eSUMMA3D-C algorithms attain high performance
already when m = n are relatively large and k is relatively small. This is not surprising: the eSSUMMA2D-C
algorithm already attains high performance when k is small because the “large”’” matrix C' is not commu-
nicated and the local matrix-matrix multiplication can already attain high performance when the local k is
small (if the local m and n are relatively large).

Figure 14 similarly illustrates that the eSUMMA2D-A and eSUMMAS3D-A algorithms attain high perfor-
mance already when m = k are relatively large and n is relatively small and Figure 15 illustrates that the
eSUMMAZ2D-B and eSUMMAS3D-B algorithms attain high performance already when n = k are relatively
large and m is relatively small.

Figure 13(c) vs. Figure 14(a) shows that the eSUMMA2D-A algorithm, Figure 14(a) with h = 1,
asymptotes sooner than the eSUMMA2D-C algorithm, Figure 13(c) with h = 1. The primary reason for
this is that it incurs more communication overhead. But as a result, increasing h benefits eSUMMA3D-A
more in Figure 14(a) than does increasing h for eSUMMA3D-C in Figure 13(c). A similar observation can
be made for eSUMMA2D-B and eSUMMAS3D-B in Figure 15(b).

7 Conclusion

We have given a systematic treatment of the parallel implementation of matrix-vector multiplication and
rank-1 update. These motivate the vector and matrix distributions that underly PLAPACK and, more
recently, Elemental. Based on this, we exposed a systematic approach for implementing parallel (2D) matrix-
matrix multiplication algorithms. With that in place, we then extended the observations to 3D algorithms.
We believe that sufficient detail has been given such that a reader can now easily extend our approach to
alternative data distributions and/or more sophisticated architectures. Another interesting direction would
be to analyze whether it would be worthwhile to use the proposed 3D parallelization, but with a different 2D
parallelization. For example, questions such as “would it be worthwhile to use the eSUMMA3D-C approach,
but with a eSSUMMA2D-A algorithm within each layer?” remain.

Acknowledgments

This research was partially sponsored by NSF grants OCI-0850750 and CCF-0917167, grants from Microsoft,
and an unrestricted grant from Intel. Jack Poulson was partially supported by a fellowship from the Insti-
tute of Computational Engineering and Sciences. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357; early experiments were performed on the Texas
Advanced Computing Center’s Ranger Supercomputer.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

22

Stationary type: A Stationary type: A
p = 4096 p = 8192
—— h=1 —— h=1
3.01 -e- h=2 |4 3.0f -e- h=2 |
@ h=4 - h=4
251 < h=8 || 250 < h=8 ||
' -o- h=16 ' -o- h=16
< <
8 2.0 1 S 2.0p 1
@ I
o Q
4 4
S 1.5F . - S 1.5¢ 1
3 2
I - I
V] n- S G -
1.0F ~e-" 7 3 1.0+ x 1
o
X __---4
X -
0.5F - -7
0.0 0.0 "
0 5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
size of k dimension size of k dimension
(a) (d)
Stationary type: B Stationary type: B
p = 4096 p = 8192
—— h=1 —— h=1
3.0r -e- h=2 |4 3.0f -e- h=2
-8 h=4 e h=4
25l o h=8 || 25l *o h=8 ||
’ -o- h=16 ’ -6- h=16
2 <
S 2.0F 4 S 2.0f il
I} I3
a o
-4 &
o 1.5f _-d o 1.5F 1
e s ST IS e
0] e BEmEE v} --d
1o} L) 1 1.0t x 1
e X [L 4
e S
S e
0.5[ﬁ/ P 1 0.5F 1
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of k dimension size of k dimension
(b) (¢)
Stationary type: C Stationary type: C
p = 4096 p = 8192
—— h=1 —— h=1
3.0 -e- h=2 | 3.0f -e- h=2 4
-8 h=4 3-- h=4
25k - h=8 25l % h=8 ||
’ -¢- h=16 ’ -¢- h=16
4 <
S 2.0F 4 S 2.0f il
2 2
I
Q@ S St A 4
o 1.5 q o 1.5¢ E
-] -g
I I
o * V] -E
1.0 1 1.0f l;; _________ S 4
Pe i :
0.5 q 0.5 q
%’5
C"GO 5600 10600 15600 20600 25600 30600 C"GO 5600 10600 15600 20600 25600 30600
size of k dimension size of k dimension
(c) (f)

Figure 13: Performance of the different implementations when m = n = 30,000 and k is varied. As expected,
the stationary C algorithms ramp up to high performance faster than the other algorithms when k is small.

23

Stationary type: A
096

size of n dimension

Stationary type: A
192

p=4 p=38
—— h=1 —— h=1
3.0 -e- h=2 | 3.0p -e- h=2 |4
e h=4 e h=4
25l xo h=8 || 25l *o h=8 ||
’ -¢- h=16 ’ -¢- h=16
2 g
S 2.0f 4 S 2.0F il
e o
@ @
a a
-4 g
o 15~ - g o 1.5p q
rn oo < e
G o eemEE o G- G
LT Gommmmmmmmm === == o ORI SRS q
100 o° T o ---==% g 1.0F 8- 1
, < a
& o - E B
> ‘2‘ e s E R
0.5t d 05l - o
: T =
%o~
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of n dimension size of n dimension
Stationary type: B Stationary type: B
p = 4096 p = 8192
—— h=1 —— h=1
3.0 -e- h=2 | 3.0p -e- h=2 |4
e h=4 e h=4
2.5 - h=8 . . h=8
’ -o- h=16 ’ -o- h=16
2 g
8 2.0f 1 8 2.0f 1
@]
a a
-4 -4
915 IEREVELE 915]
fre e I
[Loz BE [} q
o- -7 e e = - = -
100 i e - - 1 1.0 b
e
%
0.5¢ /D/, 4
o
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of n dimension size of n dimension
Stationary type: C Stationary type: C
p = 4096 p = 8192
—— h=1 —— h=1
3.01 -e- h=2 |4 3.0f -e- h=2 |4
- h=4 - h=4
25 - h=8 . . h=8
’ -o- h=16 ’ -o- h=16
2 g
8 2.0f 1 8 2.0f 1
I}]
a a
4 4
o 1.5 o 15p -1
3 2
fre I
[C) o AR
1.0 1.0t o) B CIIZ=5Y
0.5
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

size of n dimension

Figure 14: Performance of the different implementations when m = k = 30,000 and n is varied. As expected,
the stationary A algorithms ramp up to high performance faster than the other algorithms when n is small.

24

Stationary type: A Stationary type: A
096 192

p=4 p=8
—— h=1 —— h=1
3.0 -e- h=2 | 3.0p -e- h=2 |4
o h=4 o h=4
25l % h=8 25l *o h=8 ||
’ -6- h=16 ’ -6- h=16
< 2
S 2.0f 4 S 2.0F il
e e
@ @
- =
-4 g
o 1.5p 4 o 1.5p q
o B d z
[T R = [G]
- =+
1.0p 1.0p # 1
0.5 , 0.5F
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of m dimension size of m dimension
Stationary type: B Stationary type: B
p = 4096 p =8192
—— h=1 —— h=1
3.01 -e- h=2 |4 3.0F -e- h=2 |
o h=4 o h=4
25 % h=8 25 % h=8
’ -9- h=16 ’ -9- h=16
< <
8 2.0f 1 8 2.0f 1
@]
- =
-4 -4
Sl I it otelolaeh P g 3y |
g e R R o
o} G b
NS
10 F—t= oo Gmmmmmmm = 1.0p o x 1
0.5 1 0.5
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of m dimension size of m dimension
Stationary type: C Stationary type: C
p = 4096 p =8192
—— h=1 —— h=1
3.01 -e- h=2 |4 3.0f -e- h=2 |4
- h=4 -3 h=4
25 % h=8 25 % h=8
’ -9- h=16 ’ -9- h=16
< <
8 2.0f 1 8 2.0f 1
I}]
- S d =
4 I ot -d 0
91.5* 6--"" q 91.5* 77777 A
e -0 o -o-
o} o v V] .
ol T e o x P
1.0r e o-----m <= 1 1.0r x I il g
. -
-
oo ’
0.5/ /o 1
0
0.0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
size of m dimension size of m dimension

Figure 15: Performance of the different implementations when n = k = 30,000 and m is varied. As expected,
the stationary B algorithms ramp up to high performance faster than the other algorithms when m is small.

25

References

[1]

[13]

[14]

[15]

R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performance matrix multiplication algorithm on a
distributed memory parallel computer using overlapped communication. IBM Journal of Research and
Development, 38(6), 1994.

R.C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach to
parallel matrix multiplication. IBM Journal of Research and Development, 39:39-5, 1995.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

R. H. Bisseling. Parallel iterative solution of sparse linear systems on a transputer network. In A. E.
Fincham and B. Ford, editors, Parallel Computation, volume 46 of The Institute of Mathematics and
its Applications Conference Series. New Series, pages 253—-271. Oxford University Press, Oxford, UK,
1993.

R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel architectures.
In B. Pehrson and I. Simon, editors, Technology and Foundations: Information Processing 94, Vol. I,
volume 51 of IFIP Transactions A, pages 509-514. Elsevier Science Publishers, Amsterdam, 1994.

Jehoshua Bruck, Ching tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weathersby. Efficient algorithms
for all-to-all communications in multi-port systems. In IEEE Transactions on Parallel and Distributed
Systems, pages 298-309, 1997.

Lynn Elliot Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD thesis,
Montana State University, 1969.

Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective communication:
theory, practice, and experience. Concurrency and Computation: Practice and Experience, 19(13):1749—
1783, 2007.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120-127. IEEE Comput. Soc. Press, 1992.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Tain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions: have we been doing
it all wrong? Technical Report TR-95-40, Department of Computer Sciences, The University of Texas
at Austin, 1995.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on Concurrent
Processors, volume 1. Prentice Hall, 1988.

Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Soft., 34(3):12:1-12:25, May 2008.

John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A flexible class of parallel matrix
multiplication algorithms. In Proceedings of First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP ’98), pages 110-116, 1998.

John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
Linear Algebra Methods Environment. ACM Trans. Math. Soft., 27(4):422-455, December 2001.

26

[16]

[17]

J. G. Lewis and R. A. van de Geijn. Implementing matrix-vector multiplication and conjugate gradient
algorithms on distributed memory multicomputers. In Proceedings of Supercomputing 1993, 1993.

Jack Poulson, Bryan Marker, Jeff R. Hammond, Nichols A. Romero, and Robert van de Geijn. Elemen-
tal: A new framework for distributed memory dense matrix computations. ACM Trans. Math. Soft. to
appear.

Jack Poulson, Robert van de Geijn, and Jeffrey Bennighof. (Parallel) algorithms for two-sided triangular
solves and matrix multiplication. ACM Trans. Math. Soft. submitted.

Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5d matrix multiplication and
lu factorization algorithms. In Proceedings of the 17th international conference on Parallel processing -
Volume Part II, Euro-Par’11, pages 90-109, Berlin, Heidelberg, 2011. Springer-Verlag.

Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication algorithm.
Concurrency: Practice and Experience, 9(4):255-274, April 1997.

Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.
Field G. Van Zee. libflame: The Complete Reference. 1ulu.com, 2009.

Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S. Quintana-Orti, and Gregorio
Quintana-Orti. The libflame library for dense matrix computations. IEEE Des. Test, 11(6):56-63,
November 2009.

27

A Scalability of Matrix-vector Operations

In this section, we consider the scalability of various algorithms.

A.1 Weak scalability

A parallel algorithm is said to be weakly scalable when it can maintain efficiency as the number of nodes, p,
increases.

More formally, let T(n) and T'(n,p) be the cost (in time for execution) of a sequential and parallel
algorithm (utilizing p nodes), respectively, when computing with a problem with a size parameterized by
n. Nmax(p) represents the largest problem that can fit in the combined memories of the p nodes, and the
overhead T (n,p) be given by

T(n
T*(n,p) = T(n,p) — #
Then the speedup of the parallel algorithm is given by
T'(n) T(n) 1
E == = — .
(nyp) pT(n,p) T(n) + pT—&-(n’p) 1+ T+ (n,p)

T(n)/p

The efficiency attained by the largest problem that can be executed is then given

1
E(nmax(p),p) = T :
’ (Pmax (p),p)
L ¥ G () Y
As long as
T+
lim —(nmax(p),p) <R < o0,

p—r00 T(nmax(p))/p

then the effective efficiency is bounded below away from 0, meaning that more nodes can be used effectively.
In this case, the algorithm is said to be weakly scalable.

A.2 Weak scalability of parallel matrix-vector multiplication

Let us now analyze the weak scalability of some of the algorithms in Section 2.4.

Parallel y := Axz: As discussed in the body of the paper, the cost of the parallel algorithm was approxi-

mated by
mn r—1n c—1m c—1m
Ty::Am(mv n,r, C) = 277 + 10g2(p)0l + 75 + 75 + —7-
p r o c c r c r

Let us simplify the problem by assuming that m = n so that T,.—5(n) = @ and

n? r—1n c—1n c—1n
Ty=na(n,r,c) = 2—7y+ logy(p)a+ B+ —B+ —
P r o c c r c T

T+y::Aw (na T, C)

Now, let us assume that each node has memory to store a matrix with M entries. We will ignore memory
needed for vectors, workspace, etc. in this analysis. Then nmax(p) = /v M and

TH(nmax(p),p) _ _ logy(p)a + "5+ M f 4 € tuax § 4 €24 Bunaxy
T'(nmax(p))/p - 2020/ DY
_ logy(p)a t+ o imax B+ S5 max B+ S5 Nmaxy
B 20205/ DY

28

logy(p)ar + =5V MB + <5V MB + <22/ M~y

2M~
Lg_kr—l 1 §+c—1 1 é+c—1 1
2M~y \p 2VM~y P 2yM~Y P 2VM

We will use this formula to now analyze scalability.

= logy(p)

Case 1: 7 x ¢ =p x 1. Then

T osp)p) o La pml 1§ 5
Tl) B P200y T 75 avary 505375 + P37y

Now, log,(p) is generally regarded as a function that grows slowly enough that it can be treated almost
+

like a constant. Not so for /p. Thus, even if log,(p) is treated as a constant, lim, W — 00

and eventually efficiency cannot be maintained. When r x ¢ = px 1, the proposed parallel matrix-vector

multiply is not weakly scalable.

Case 2: 7 x c =1 x p. We leave it as an exercise that the algorithm is not scalable in this case either.

The cases where r X c =1 X p or r X ¢ = p X 1 can be viewed as partitioning the matrix by columns or rows,
respectively, and assigning these in a round-robin fashion to the one-dimensional array of processors.

Case 3: r x ¢ = ,/p x y/p. Then

T+(nmax<p) p) _ log (p)ig_’_\/ﬁ_l 1 §+\/§_1 1 é_,'_\/ﬁ_l 1
T (nmax(p))/p oMyt b oVMy VP VM b VM
1 « 1 g 1 g 1
——+ —+ -+ .
2M~y 2yMy 2VM~Y 2VM
Now, if logy(p) is treated like a constant, then R(nmax, /P, /P) % is a constant. Thus, the
algorithm is considered weakly scalable, for practical purposes.

~ logy(p)

A.3 Exercises

Exercise 12. Show that the parallel matriz-vector multiplication is not scalable when r X ¢ =1 X p.
Exercise 13. Show that the parallel matriz-vector multiplication is scalable (for practical purposes) if r/c
is kept constant as p increases.

29

