TACC Technical Report TR-12-04

Dense Matrix Computation on a Heterogenous
Architecture: A Block Synchronous Approach

Kyungjoo Kim* Victor Eijkhout* Robert A. van de Geijn*

August 5, 2012

This technical report is a preprint of a paper intended for publication in a journal or proceed-
ings. Since changes may be made before publication, this preprint is made available with the
understanding that anyone wanting to cite or reproduce it ascertains that no published version
in journal or proceedings exists.

Permission to copy this report is granted for electronic viewing and single-copy printing. Per-
missible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no war-
ranty, express or implied, nor assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed.

*  The University of Texas at Austin, Austin, TX 78712



Abstract

We present a strategy for efficient use of all components of a heterogenous compute
node of a typical current generation cluster. Such nodes often comprise multiple sock-
ets with a multicore processor per socket and one or more accelerators, possibly from
different generations and/or types. Our strategy differs from schedulers such as Quark
or SuperMatrix in that it does not rely on a Directed Acyclic Graph, but rather uses a
bulk-synchronous model. Also, it uses dynamic task division rather than aggregation
to deal with the heterogeneous components of a node. Practical experiments show the
merits of our approach.

Keywords

Multicore, MultiGPU, Dense Linear Algebra, Algorithms-by-Blocks, Matrix Factor-
ization, Heterogeneous Architectures, BLAS



Kim et al. Computation on heterogeneous architectures

1 Introduction

Heterogeneous architectures consisting of, for example, multicore processors with at-
tached accelerators are becoming commonplace, especially in nodes for High Perfor-
mance Computing (HPC) platforms. How to harness these resources is now a topic of
research.

For dense matrix computations, a convenient solution has been to view matrices as con-
sisting of blocks (submatrices) and to formulate computations as algorithms-by-blocks
(called tile algorithms by some). Blocks then become units of data, operations with
blocks become tasks (units of computation), and executing an algorithm-by-blocks
generates a Directed Acyclic Graph (DAG) of tasks and dependencies that is then dy-
namically scheduled to compute resources.

The problem with this solution is that when the computational power of the available
resources greatly differs, the homogeneous blocking of the matrix creates a tension
between two conflicting issues:

° The block size should be relatively small to be able to assign smaller units of
computation to slower devices without holding up faster devices.
° The block size should be relatively large in order to get the best performance

from the faster devices.

In previous solutions, the block size has been chosen relatively small, and these smaller
tasks have been implicitly or explicitly aggregated to create larger tasks for the faster
devices. Still, the individual tasks remain small and achieve suboptimal performance
on the fastest devices.

The study described in this paper takes an alternative approach. The matrices are
blocked into a size that allows the fastest devices to achieve high performance. Teams
of slower devices are created that together have computational power similar to that
of the fastest device. Tasks are assigned to these resources (the set of fast devices and
teams) as resources become available. This means that when a task is assigned to a
team, the matrix blocks associated with that task need to be subdivided into smaller
blocks and smaller tasks associates with those smaller blocks scheduled to the mem-
bers of the team, as illustrated in Fig. [T} If there are more than two types of devices,
this may continue recursively. No DAG of tasks is created in our approach; instead,
the computation is staged as a sequence of supersteps. Each superstep consists of tasks
that can be executed concurrently, in a bulk synchronous fashion.

The approach solves an additional common problem: Often some tasks cannot be
performed on the accelerator. For example, the CUBLAS do not include a Choleksy
factorization that executes on a GPUEI, which is needed when implementing a larger

1. More recently, the CULA library and Matrix Algebra on GPU and Multicore Architectures

TR-12-04 1



Kim et al. Computation on heterogeneous architectures

“’f:(___bg:/ level 2
AL ‘
A= . yd ‘ level 1 A=
level 0
(a) Multi-level matrix resulting from irregu- (b) Overlayed structure of partitioned matri-
lar partitioning ces

Figure 1: A multi-level matrix (matrix of matrices) is recursively defined with block
objects which view a part of the base flat matrix. The left figure shows an example for
multi-level partitions layered on the base matrix. Proper index translation is concealed
in each block object. The right figure shows its irregular layout of blocks.

Cholesky factorization. In our approach, such tasks are executed by a team of slower
devices.

Our results are the following.

° We explore dynamic scheduling to improve device efficiency and load balancing
for dense matrix computations.
° The proposed approach can be coded at a high level of abstraction similar to that

used by the FLAME project. It is flexible in its treatment of different heteroge-
neous architectures.

) Performance that is comparable to or better than that of a DAG-based approach
can be achieved. Performance is robust for different device configurations. Thus,
our approach is a viable alternative to existing packages.

2 Related Works

We briefly discuss prior work related to mapping dense matrix computations to multi-
core and multiGPU architectures.

(MAGMA) project do provide such higher level functionality. However, this is often available well after
a device is first introduced.

TR-12-04 2



Kim et al. Computation on heterogeneous architectures

Task parallelism on multicore processors. The Basic Linear Algebra Subprograms
(BLAS) [10, [7, 18] is an interface for routines that perform basic operations with vec-
tors and dense matrices. Multithreaded implementations explore functional-level par-
allelism and each function operates in parallel. Its parallel efficiency is often limited
because of synchronization that occurs at the end of a BLAS call. Typically, multi-
threaded BLAS may devote all resources for a single matrix computation regardless of
problem sizes and the number of independent problems.

Advanced Dense Linear Algebra (DLA) libraries such as 1ibflame [27] and Parallel
Linear Algebra for Scalable Multi-core Architectures (PLASMA) [4] achieve efficient
task-level parallelism for multicore processors by viewing the computation as a DAG
of tasks, to be scheduled to the cores. Matrices are viewed as consisting of blocks
(submatrices) that become units of data. Computation is organized as tasks that oper-
ate on blocks, yielding algorithm-by-blocks (called tile algorithms by the PLASMA
community). These tasks and the data dependencies between them form a DAG. As
the dependencies for tasks become satisfied, they are scheduled to the available cores
by a runtime. The runtime developed by the FLAME project, called SuperMatrix [3, (6]
is another DAG scheduler.

Dense kernels on GPUs.  After Nvidia introduced CUDA[16] for general purpose ap-
plications, Graphic Processing Units (GPUs) have received substantial attention from
the HPC community due to the high efficiency that they can attain via data parallelism
(stream processing). Nvidia also offers numerical libraries that are optimized for a sin-
gle GPU, the CUBLAS [[15]. Impressive performance improvements were made to the
CUBLAS by adopting Volkov’s implementations [29]. As for the newest architecture
Fermi, CUBLAS uses an improved version of GEMM [14, 23]]. The problem with
the CUBLAS is that they only target operations executed entirely on a single GPU,
ignoring the host processor or other attached devices. The MAGMA [[1] project also
provides BLAS and Linear Algebra PACKage (LAPACK) functionality on GPUs.

Hybrid computing accelerated by GPUs. It was quickly observed that DAG schedul-
ing of tasks can just as easily target multiple GPUs and/or heterogeneous platforms.
When a task can be performed on a GPU, it can be scheduled to a GPU. When it
must be performed on a conventional core, it can be scheduled to a conventional core.
The runtime system, SuperMatrix for the 1ibflame library [19] and more recently the
Quark scheduler for PLASMA, can manage the resources [24]. Both DLA libraries
extend their task scheduling algorithms that are originally developed for homogeneous
multicore architectures to heterogeneous computing, However, both approaches are
limited as they use uniform blocks in matrices, which causes inefficiency on differ-

TR-12-04 3



Kim et al. Computation on heterogeneous architectures

Algorithm: A := LU_UNB(A) Algorithm: A := LU_BLK(A)
ArrlA ArrlA
Partition A — (iﬂ) Partition A — (iﬂ)
AprL | ABr ApL | ABR
where A7 is0Ox0 where Appis0x0
while n(ATL) < }’I(A) do while I’l(ATL) < n(A) do
Determine block size b
Repartition Repartition
Aoo | aor |A Ao lApr |A
Ar|Arg 20 01 22 Ar | Ark 00 | Ao1 [Ao2
A5 | Aok — | ajp|%1|ag, 2o | Aok — | Awo|A11|A12
Ao | az1 |Ax2 Ao |A21 |A22
where o] is a scalar where A isbxb
o1 = o (no-op) Ay = {L\U};; =LU_UNB(A})
asz = aTz (no-op) App = Ll_llAlz
a1 = a1 /oy Az = Ay Uy
Ap = Ay —ayal, Ay 1= Ay —AyAp
Continue with Continue with
Aoo | ao1 | A2 Aoo |Aot |Aoz
ArL|ATR Ar|A
(A_IA_ | afylan]a], ATL ATR — | Ao]A1 A
BL | ABR
Ao | a2y | A2 BLIZBR Ao |A21 | A2z
endwhile endwhile

Figure 2: Unblocked and blocked algorithms (left and right) for the LU factorization
without pivoting. Here, n(B) stands for the number of columns of B.

ent devices. Song et al. [22] uses 1D rectangular partitions and statically distributes
corresponding blocks to GPUs and a multicore processor. Providing non-uniform 1D
partitions on matrices, the approach can efficiently exploit the asymmetric performance
of different devices. However, their approach adds complexity by requiring an auto-
tuning procedure for workload balancing and it is difficult to obtain higher efficiency
using 1D static partitions on complex heterogeneous systems that are more than two
types of devices.

3 Motivating Example

In this section, we use the examples of LU factorization without pivoting to motivate
the proposed approach.

TR-12-04 4



Kim et al. Computation on heterogeneous architectures

LU |TRsM i TRsM'!

777777777777777777777

TRSM | GEMM | GEMM —> LU TRSM >
TRSM | GEMM{GEMM ! ! TRSM | GEMM! | ! Lu
1st Iteration 2nd lteration 3rd lteration

Figure 3: Identified tasks during block LU factorization without pivoting.

3.1 Blocked algorithms

Given a matrix A € R"*", the LU factorization computes L and U such that A = LU,
where L is n x n unit lower triangular and U is n X n upper triangular. In Fig. |2 so-
called right-looking unblocked and blocked algorithms are given for computing L and
U using the Formal Linear Algebra Methods Environment (FLAME) notation [[18),26]
that hides indexing details. The blocked algorithm casts most computation in terms of
matrix-matrix multiplication, which can attain high performance.

3.2 Algorithms-by-blocks

A number of projects have suggested that matrices should be viewed as collections of
blocks (submatrices), possibly hierarchically [9, 11} 25]. Algorithms such as LU with-
out pivoting can then be formulated as algorithm-by-blocks, where blocks are units of
data and computation with blocks are tasks [4} [20]. For example, in Fig. [3|the matrix
is partitioned into an N X N matrix of blocks:

A(I,O) A(Ll) A(I:Nfl)
A =
A(N;I,O) A(N;l,l) A(Nfi,Nfl)

In the first iteration,
A00) §g factored,
fori=1,...,N—1 block A"9 is overwritten by A0 00)=1. thig triangular
solve with multiple right-hand sides is done with the BLAS routine TRSM;

° fork=1,...N —1block A°X is overwritten by L(*0) ~1A(OK); this is a triangular
solve with multiple right-hand sides, executed by TRSM, and

° fori,k=1,...,N—1blocks A% are overwritten by A(“*X) — A0 A(OK): requires
a matrix-matrix multiplication using the BLAS routine GEMM.

This and subsequent iterations are illustrated in Fig. 3]

TR-12-04 5



Kim et al. Computation on heterogeneous architectures

3.3 Scheduling DAGs

In a currently popular approach, parallelism is extracted from algorithm-by-blocks by
organizing the tasks and dependencies into a DAG, and then scheduling the tasks to
threads as dependencies are satisfied. Optimizations include scheduling the tasks out-
of-order to improve temporal and/or spacial locality.

When targeting heterogeneous architectures, e.g, multicore processors with multiple
(GPU) accelerators, this poses challenges:

° The typical accelerator attains much greater performance than a traditional CPU
core.

° Not all operations with blocks may have been implemented on the accelerators.
For example, the LU without pivoting is not supported as part of the CUBLAS
for Nvidia GPUs.

The second problem is overcome by executing that task on one or more cores. The
first problem creates a tension between wanting to keep matrix blocks large, since then
tasks achieve higher efficiency on the accelerators, and wanting to keep them small
since otherwise the tasks that must be (or are chosen to be) executed on one of more
cores may become a bottleneck.

3.4 Bulk synchronous scheduling

Earlier work on task scheduling mostly focused on how to sort tasks and dispatch
these to a number of threads in an attempt to minimize idle time on threads. Tasks
are typically created by a uniform partitioning of the matrix and fast devices such as
GPUs are accommodated by task aggregation of these smaller tasks. However, fast
devices typically have a larger optimal block size so this approach meaning that the
most potent resource is suboptimally utilized. We solve this problem by taking the
opposite approach: we block the data and tasks with a block size that tailors to the
fastest devices, and dynamically subdivide this for the slower devices. Another way of
thinking of this is that instead of aggregating tasks for the fastest devices, we aggregate
slower devices for the coarse block size.

In this section, we illustrate this with a concrete example, where we let our target archi-
tecture consist of a quad-core processor and a GPU. The general case is discussed in
Section[5} Simplified performance profiles for the both devices are depicted in Fig.
In this example, the performance of the single core unit approaches its peak at the
problem size b and stay relatively flat whereas the GPU starts to show peak perfor-
mance at Bb, with B = 2 in this example. Additionally, we state that the GPU is three
times faster than the multicore processor.

TR-12-04 6



Kim et al. Computation on heterogeneous architectures

3P
‘ GPU

Performance

Pr 7 4x processor

1x processor

b 2b
Problem size

Figure 4: Performance profiles of an example multicore processor and a single GPU.

Determining block sizes. In the hybrid context, it is unlikely that a single algorithmic
block size is optimal for all heterogeneous computing resources, and an appropriate
block size should be selected for each device. A block size is usually determined by
taking account various computer architectural features, such as memory hierarchy, the
number of processing units, and performance profiles. Higher performance in a GPU
naturally leads to use a larger block size while a smaller block size is preferred for a
multicore processor to improve parallel efficiency and workload balance. In this exam-
ple, the multicore processor prefers a block size of b whereas a GPU prefers 2b. Block
sizes can be empirically found by examining the performance of a single device.

Heterogeneous task scheduling. We now return to the LU factorization without piv-
oting for a N x N block matrix that is uniformly partitioned with the GPU block size.
Top-level parallelism is extracted from a main loop body depicted in Fig.[3] Approach-
ing this algorithm in a bulk-synchronous manner, we find three supersteps in each
iteration: (1) the LU factorization of the pivot block needs to be done by itself; (2) all
TRSM operations can be scheduled independently; and (3) all GEMM operations can
be scheduled independently. In each superstep, we observe that the multicore proces-
sor, being three times slower than the GPU, should be utilized for roughly one task
in four. Any task that is assigned to the multicore processor is dynamically refined to
its block size b, and these subdivided tasks are scheduled to the cores. Regarding the
LU factorization of the pivot block, in our current setup, the GPU is incapable of this
operation, so it is assigned to the multicore processor.

The scheduling of these three supersteps over the two devices is illustrated in Fig. [3]
As stated, the first LU task is not processed on the GPU but redirected to the multi-
core processor. To use all cores, the block is subdivided and through a recursive call

TR-12-04 7



Kim et al. Computation on heterogeneous architectures

LU TRSM i TRSM —LU—| TRSM i TRSM

i i Gl G
TRSM | GEMM | GEMM ; :> TRSM | GEMM ———

i i e i

3 3 )T ! 3
TRSM | GEMM! GEMM! 3k GEMM | GEMM !

(a) Multi-level partitions resulting from adaptive subdivision of
tasks

GEMM || GEMM || GEMM TRSM

TRSM :> GPU Workqueue

TRSM TRSM TRSM TRSM
4

GEMM || GEMM

3

GEMM
2

GEMM

> 1 Top-level Task Queue

= l
j Subdivision of Blocks
1

1

‘ §> Multi-core Workqueue

—
)
[%2}
=

yasat]

aﬁ
©

[ 1
000000
0000060

L |

Taskwait Taskwait

(b) Heterogeneous task scheduling

Figure 5: Workloads are partitioned to heterogeneous devices based on their perfor-
mance ratio. When a task is executed on a multicore processor, corresponding blocks
are subdivided and create smaller tasks calling recursive block algorithms.

of a block LU factorization, fine grain tasks are created and scheduled to the multicore
processor. None of the so created smaller tasks are scheduled to the GPU. The TRSM
and GEMM operations are executed in separate bulk-synchronous supersteps. For in-
stance, the subdivision of a single GEMM task (C = A x B) using 2 x 2 block matrices
creates 16 smaller GEMM tasks.

clb) | ¢t AL | A02) B | 12
( CeT [ 0 ) = ( AT [ ACD) > < B2 | B2 )

4 Tools

It has been long recognized that hand-coding of low level kernels is unlikely to be
a match to the use of expertly developed library software, both in code quality and

TR-12-04 8



Kim et al. Computation on heterogeneous architectures

resulting performance. With heterogeneous architectures where each component can
have its own programming model this is even more true, and we limit our focus to
developing the framework that lets these libraries work together harmoniously. Here,
we describe the architecture-specific library tools on which we rely.

4.1 1libflame

The 1ibflame library [27] is a modern alternative to the widely used LAPACK library.
It uses an Application Programming Interface (API) so that algorithms represented in
code closely resemble the algorithms in Fig. 2] Using different algorithmic variants,
the library can be easily tuned for various machine configurations. An extension of
this API, Formal Linear Algebra Scalable Hierarchical API (FLASH) [11]], allows the
specification of and computation with hierarchically partitioned matrices (matrices of
matrices). It is this API that facilitates the implementation of algorithm-by-blocks. A
runtime system, SuperMatrix [6], is part of 1ibflame and can be optionally used to
schedule algorithm-by-blocks to multicore and/or multiGPU architectures. This run-
time uses an explicitly formed DAG. There also exist other DLA libraries that offer
similar functionality and performance to 1ibflame, but these differ in that they do
not stress programmability to the degree that 1ibflame does. We believe, as do the
developers of 1ibflame, that while programmability has been considered as the sec-
ond issue to performance, modern transient technologies require more productivity in
porting libraries to new environments in a limited time, putting programmability cen-
ter stage. Successful examples in this philosophy can be found many FLAME project
related publications [13} 21]].

4.2  Architecture specific BLAS or DLA libraries

Dense linear algebra libraries cast their computation in terms of operations supported
by the BLAS interface, for portable high performance. The Nvidia CUBLAS [15] li-
brary is used when targeting GPUs with these operations, with a BLAS compatible
interfaces. In our setup, tasks are most often BLAS operations with matrix blocks.
When scheduling such an operation to a standard core, traditional BLAS are used.
When targeting a GPU, the CUBLAS are used.

43 OpenMP

With cache coherence protocols that provide a hardware support to scalable parallelism
on Symmetric Multi-Processings (SMPs), OpenMP has been widely used in many par-
allel applications. OpenMP has typically been used in loop-based work sharing since it
was introduced in 1990s. Recently, OpenMP 3.0 in 2008 [[17] supports task parallelism

TR-12-04 9



Kim et al. Computation on heterogeneous architectures

to deal with increasing complexities in applications. In this work, OpenMP drives high-
level task parallelism, where tasks are defined as BLAS or DLA functions executed on
target devices. There are other parallel programming languages for runtime systems
(e.g, Cilk [3]], Intel TBB, and StarPU [2]) that offer advanced task scheduling, but
OpenMP is almost unbeatable in terms of portability.

OpenMP 3.0 extended its programming model by adding explicit tasks. The new task
scheme consists of two compiler directives: #pragma omp task to construct a new
task and #pragma omp taskwait for the synchronization of invoked tasks. A task
is defined with an executable code and its data environments. An important feature
in OpenMP tasking is that a task can recursively create its children tasks. Tasks are
scheduled in a Breadth First Search (BFS) manner; when a thread meets a directive
omp taskwait, it suspends the executing task until its children tasks are completed.
This feature makes it easy to employ OpenMP tasking to more irregular parallelism
(e.g, recursion, pointer chasing, and tree traversal).

5 A Generic Task Scheduling Model for Heterogeneous Architectures

In this section, we give a formal description of the scheduling strategy that was pre-
sented in Section [3] In particular, we present a task scheduling model for general het-
erogeneous architectures that may integrate two or more different kinds of devices.

Our proposed scheduling strategy has a set-up phase and a use phase. The setup phase
deals with hardware characteristics, and has to be performed only once for a given
hardware configuration. The use phase then does the actual scheduling. In the setup
phase, we characterize the heterogeneous compute node, such as the number of cores
of the CPU and the number and type of attached devices. We also determine experi-
mentally the optimal block sizes and the ratio of respective device performances. The
scheduling phase then concerns itself with scheduling tasks according to capabilities
and relative computing power of the various devices, and the dynamic subdivision of
tasks.

5.1 Node characterization

In this section, we describe the relevant parameters describing the heterogeneous node
that are used in the scheduling algorithm.

Device structure. We target node-level heterogeneous architectures that integrate one
or more general purpose multi-core processing units on shared main memory, with

TR-12-04 10



Kim et al. Computation on heterogeneous architectures

Main Memory

| | 1
(i 0 || o

Group A (host) Group B Group C

L

(a) Network of devices

(10

Group A (host)

[ -

Group B

-

Group C

(b) Mapping device groups to multi-level hierarchical matrices

Figure 6: Relation of devices and hierarchical matrices

specialized co-processors or external accelerators grouped according to their blocksize
and peak performance.

Accelerator units are typically equipped with fast local memory. In our computing
model, all data are initially located in main memory. Necessary input blocks are sent to
target devices, and corresponding output blocks in main memory are locked while tasks
are being processed. As soon as a task has completed on the target device, the output
blocks are written back to main memory and unlocked. For now, all data transfers are
made through main memory, and direct peer-to-peer communication among devices is
not allowed.

Fig. [6] describes a diagram that describes the hierarchy of devices, data, and tasks.
Device groups are ordered with respect to their block sizes and mapped to different
partition level of blocked matrices. Starting from initial blocks, recursive subdivision
of blocks creates finer tasks that are distributed to the next group of devices. We also
need to take into account the fact that devices may have different capabilities; for
instance, in Section [3| the GPU is only capable of BLAS functions, so the scalar LU

TR-12-04 11



Kim et al. Computation on heterogeneous architectures

factorization is performed on the CPU.

Block size and balance ratio. Next, we consider two parameters that are empirically
determined: the block size and the balance ratio.

In our heterogeneous approach to scheduling, the granularity of tasks is dynamically
adapted to executing devices through subdivision of blocks.

Let us consider the concerns:

° We want to have each device execute as efficiently as possible. For this reason,
we want to pick the block size for a target device to be at least large enough so
that tasks achieve near-asymptotic performance.

° We want to maximize load balance. For this reason, we should pick the block
size no larger than necessary, since it is generally the case that the larger the
block size, the worse the load balance.

. We will create teams of slower devices that together attain performance similar
to the next faster device. For this reason, we may want to increase the block size
for the faster device to ensure that all slower devices are kept busy with another
task.

For 0 < k < #levels, we let P, and N; equal

P, = Effective peak performance of a single device at level &
Ny = #ofdevices in a team at level k
then
. Py - Nk
Balanceratio=0; =14+ ———
b Pei1 - N

where level k = 0 corresponds to the fastest devices. This balance ratio By is used as
follows: in the global work queue, tasks are assigned to the fastest device, but one in
every Py is assigned to the slower device(s). This rule is applied recursively in case
there are more than two device classes.

Although the above parameters are rough estimates, our experiments shows that they
effectively control the global workload balance on heterogeneous devices.

5.2 Bulk-synchronous scheduling

We use a bulk synchronous approach to task scheduling. We assume that for a particu-
lar superstep the algorithm gives us a set of independent tasks. In our implementation,
a parallel code is transparently derived from its algorithm using FLAME environments

TR-12-04 12



Kim et al. Computation on heterogeneous architectures

def hier.LU_nopiv (FLA_Obj A) {
FLA_Part_2x2 (A, ATL, ATR,
ABL, ABR, From_Top_Left);

while (ATL.length < A.length):

Repart_2x2_to_3x3 (ATL, ATR, AQ0, AOQ01, AO02,
Al0, All, Al2,
ABL, ABR, A20, A21, A22,

From_Bottom_Right);
internal.LU_nopiv (A11(0,0))

for j in Al2.width:
#pragma omp task firstprivate (All, Al2, 3)
internal.trsm(A11(0,0), A12(0,7))

for i in A21.length:
#pragma omp task firstprivate (All, A21, 1)
internal.trsm(A11(0,0), A21(i,0))

#pragma omp taskwait

for j in Al2.width:
for i in A21.length:
#pragma omp task
internal.gemm (A21(i,0), Al2(0,73), A22(i,7))

#pragma omp taskwait

Cont_with_3x3_to_2x2 (ATL, ATR, A00, AO1, AO02,
Al10, All, Al2,
ABL, ABR, A20, A21, A22,

From_Top_Left)

Figure 7: A pseudo code for LU factorization with OpenMP tasking.

and OpenMP directives [28]. For example, Code [7| describes a pseudo code corre-
sponding to the algorithm depicted in Fig.[2] This code creates tasks that are synchro-
nized in supersteps, as shown in Section[3] Inside each superstep, task groups can then
be dynamically subdivided and reinserted to accomodate slower devices.

5.3 Multi-level task scheduling

The objective of heterogeneous scheduling is to keep a proper workload balance across
heterogeneous devices. This is done through recursive task inheritance: in each task
group a portion of tasks determined by the performance ratio between two adjacent
device groups is inherited to the next-level device group. Fig. [8|and Fig. [5illustrate this
procedure to recursively distribute tasks to different devices. Initially, a set of coarse
grain tasks is available, delimited by superstep barriers. Tasks are locally executed or

TR-12-04 13



Kim et al. Computation on heterogeneous architectures

.. — Group A

(host)

D(-1)

Task n-1 = =| Task1l Task O —» | Group C

ol|lo ollg| |2 MIE
12|18 REHICIAREIE

D(i-1

Figure 8: Tasks are initially created based on uniform blocks. After all devices in Group
C are busy for processing given tasks, next task is subdivided and redistributed to
devices in Group B. This process is recursively repeated until tasks reach the host
device group.

i |4 TRSM | TRSM

1
1 5
1
1
1
1
4
i ] l ! i
1 JRsm [TRSM | | ' GEMM | GEMM |
1 1 1 1
! ! N GEMM!
1 s [ TRsm 1 1 | GEMM | GEMM | 1
,,,,,,,,,,,, J RPN | RPN S s |

Aqo = L' Ais
Az 1= Aleﬁ]

Ay = LU(A11) Agg 1= Agg — Az1Aj2

Figure 9: A scenario that blocks are recursively partitioned with three different block
sizes during the first iteration of block LU factorization. Dot lines represent partitions
on read-only blocks while solid lines partition output blocks that are exclusively man-
aged in order to keep consistency in distributed data.

inherited to the next devices by performance ratios of device groups. Tasks are also
inherited to the next devices if the encountered devices do not support relevant func-
tions. We assume that the last device group is a general purpose multi-core processor
with a full set of DLA libraries. For example, Fig. J)illustrate a scenario for this recur-
sive process among three different device groups. In this example, block LU tasks on
diagonal blocks are always executed by a multi-core processor as we limit the use of
other devices on BLAS functions only (e.g, supported by CUBLAS).

TR-12-04 14



Kim et al. Computation on heterogeneous architectures

def op.apply(<list of blocks>, device):
op.counter = 0
for block im <list of blocks>:
op.execute (block, device)

def op.execute(block, device):
if op.counter % device.performance_ratio_to_next_device == 0:
<list of blocks> =
block.subdivide (get_next_block_size (block.size))
op.apply (<list of blocks>, device.next_device)
else:
r_val = device.execute (op, block)
if r_val == NOT_SUPPORT:
<list of blocks> =
block.subdivide (get_next_block_size (block.size))
op.apply(<list of blocks>, device.next_device)

Figure 10: A pseudo code for multi-level task scheduling.

5.4 Data caching

Heterogeneous task scheduling that relies on block algorithms inherently requires a
large number of data transfers among devices. Such data transfers constitute overhead.
In our model, data reside with a (shared memory) host which maintains consistency as
blocks may be copied to local device memories. Fig. [11|illustrates data transfer over-
heads between main memory and a GPU, connected via a PCI Express bus. The graph
shows there is a significant loss in GPU performance due to the limited bandwidth of
a PCI Express bus. Such overheads still accounts for a certain portion in total numeric
costs even for large problems; they reduce DGEMM performance by least 40%. This
implies that a GPU can perform twice faster if all input blocks are already placed in
its local memory as shown in Fig. [I2] Hence, it is essential to reduce the number of
communications between devices in order to achieve higher performance.

We implemented a simple mechanism, a software cache, to detect when data are still
cached on a device so that it can be reused. Consistency of stored data in a local cache
is maintained through the write-through policy (data are synchronously written in both
local cache and main memory). This means that, after a task is processed on a device,
any relevant updates on output blocks are immediately copied back to main memory.
Communications between devices are governed by a host multi-core processor. Each
device cache maintains its local copies consistent to data on main memory and there is
no peer-to-peer communication between devices. This is described in Fig.

Fig. [14] compares GPU performance with various data transfer regimes between main
memory and the GPU. In this comparison, we assume that all matrices are initially
created at main memory. The highest performance is achieved by a CUBLAS call,

TR-12-04 15



Kim et al. Computation on heterogeneous architectures

Lonestar PCI Express (16 lane, Generation 2) Lonestar Double Precision GEMM with M =N, K =1024
5.0 16

45
===Time Ratio (Data Transfer / GEMM)

4.0

3.0
25

GB/sec

2.0

0.7
1.0

=é=Data Transfer Rate
0.5

0.0 T T 1 0.4 T T
0 2500 5000 7500 10000 12500 15000 0 2500 5000 75'(‘1‘0 10000 12500 15000
N

(a) 16-lane PCI Express 2.0 (b) (Time for data transfer / Time for DGEMM)

Figure 11: Left: data transfer rate of PCI Express 2.0 as a function of matrix size.
Right: cost ratio of data transfers over DGEMM depicted in Fig. @

Lonestar Double Precision GEMM with M =N , K =1024
300 St ——
250 W—h
200

150 -
e

100

GFLOPS

=/w=CUBLAS
=0=CUBLAS+Data Transfers
“Z=Multithreaded MKL

50

0 2000 4000 6000 8000 10000
N

Figure 12: DGEMM performance with M = N and K = 1024 for a 12x Intel Xeon
X5680 @ 3.33GHz processor and a single Fermi GPU M2070 at TACC Lonestar.

which takes only a single data transfer. Still, we note that this transfer results in halving
of its peak performance (to 300 GFLOPS). We compare this to the performance of our
scheduler, with and without cache. Clearly, even our simple caching strategy makes a
noticeable difference, although we do not reach CUBLAS performance. However, our
scheduler is fully general in what operations it can accommodate.

TR-12-04 16



Kim et al. Computation on heterogeneous architectures

def device.execute (op, block):
local_block_ptr = device.cache.lookup (block)
if local_block_ptr == NULL:
local_block_ptr = device.cache.copy_in (block)

# invoke vendor provided libraries to execute a task
r_val = execute(op, local_block_ptr)

device.cache.copy_out (block)

return r_val

Figure 13: A pseudo code for data management.

Lonestar Double Precision GEMM with M =N, K =1024

180.0
160.0
140.0
120.0
£100.0
o
£ 800
& 8o
60.0
=O=CUBLAS with Data Transfer
40.0
=2=Bulk without cache
20.0 =rBulk with cache
0.0

0 2500 5000 7500 10000 12500 15000
N

Figure 14: Performance of block DGEMM against CUBLAS DGEMM. Note that
CUBLAS DGEMM includes communication overheads (Nvidia Fermi M2070 con-
nected via PCI Express 2.0). Block DGEMM uses hierarchical matrices that are parti-
tioned with a blocksize(2048) and a software cache(160 blocks).

6 Experimental Results

In this section, we evaluate our proposed block synchronous approach on three dif-
ferent platforms, for which details are tabulated in Fig. [I5] Our hybrid DLA package,
implementing LU on top of Bulk Synchronous Block Scheduling (BS2), is compared
against other DLA libraries: MAGMA version 1.2 for a single GPU and Supermatrix
for multiGPUﬂ We summarize these libraries in Fig.|16} the most salient point is their
treatment of devices. First of all we note that all three packages execute the point LU

2. The project that produced the MAGMA software also has reported on a version of the Quark scheduler
that handles the heterogeneous case [12]]. However, the software is in an experimental state and we were
not able to use it.

TR-12-04 17



Kim et al. Computation on heterogeneous architectures

| | Longhorn [ Lonestar [ Lorca |
Processors 8x Core, 2x Hex-Core, 2x Quad-Core,
(Intel) Nehalem 2.53 GHz Westmere 3.33 GHz | Harpertown 2.83 GHz
Memory 48 Gbytes 24 Gbytes 16 Gbytes
BLAS Intel MKL 10.3
DLA library libflame ver 6192
DGEMM Peak 10 GFLOPS/core { 13.3 GFLOPS/core { 11 GFLOPS/core
Interconnection BUS PCI Express 2.0
2x NVIDIA Quadro 2x NVIDIA Tesla 4x NVIDIA Tesla
GPUs FX 5800 (4 GB RAM) | M2070 (6 GB RAM) S1070 (3 GB RAM)
Compiler GNU 4.4.1 GNU 4.4.5 GNU 4.4.1
DGEMM
peak/device 70 GFLOPS 300 GFLOPS 300 GFLOPS

Figure 15: Specification of testing machines. Longhorn and Lonestar are installed at
TACC. Lorca is installed at the Universidad Jaume I De Castellén, Spain.

| | MAGMA | SuperMatrix | Bulk (ours)
Algorithm Blocked Alg. Alg. by blocks
Blocking Auto-tune (64-256) | Single blk. (768) ‘ Multi-level (GPUs 2048, Cores 256)
Data hosting Device (6GB) Main memory (24GB)
Block Factorization Single threaded Multithread
BLAS on GPUs on GPUs and Cores
Scheduling Static [ Dynamic (DAG) Dynamic (Bulk)

Figure 16: Distinct features in different DLA libraries. Specific parameters are based
on the Lonestar machine equipped with Fermi GPUs.

factorization on the CPU; the packages then differ in how they treat BLAS operations,
which in principle can be executed on either device. The packages also differ in how
they offload data to the GPU.

. BS2 schedules any operation to any device, using only availability and load bal-
ancing as criterium. Task data are moved to a device as the operation is executed.

. SuperMatrix divides devices by functionality: the point LU factorization is ex-
clusively executed on the CPU and BLAS operations are exclusively assigned
to the GPU(s).

° MAGMA uses a reverse model: the top level operation is executed as much as

possible on the GPU, and for this the matrix is transferred in full. (Note that
this limits the size of the problem that can be handled.) Since the point LU
factorization needs to be done on the CPU, data are moved there from the device.
Since this involves very little data, the cost of this is negligible.

All experiments were performed in double precision and results are presented in GFLOPS
(10° Floating-point Operations Per Second). We also report an efficiency measure de-

TR-12-04 18



Kim et al. Computation on heterogeneous architectures

0.8
07 -\&
0.6 -

Bulk -1 Thread 0.4
Bulk -2 Threads 03

=#=Bulk - 4 Threads =#=Bulk -1 Thread

20 Butk=2 Threads——
4 =<Bulk - 8 Threads 02 ;
“H=MAGMA 0.1 =#=Bulk -4 Threads
0 ==Bulk -8 Threads

0 4000 8000 12000 16000 20000 0.0 T T T
N 0 4000 8000 12000
N

Efficiency
o
o

(a) Performance (b) Efficiency

Figure 17: [Longhorn] LU nopiv accelerated by a single GPU, using block sizes of
192 and 768 for the multicore team and GPU, respectively, and a 128 block software
cache.

fined by

the system performance of hybrid algorithms

efficiency = _
4 sum of the performance of devices

which is appropriate for heterogeneous architectures: this formula measures the effi-
ciency of integrating the components into one system, rather than comparing against

some purely theoretical peak performance. For the GPU performance, we use that ob-
tained from MAGMA.

6.1 Longhorn

Longhorn is a cluster where each node consists of an eight-core processor (Intel Ne-
halem) with two GPUs (Nvidia Quadro FX5800). Our computational model estimates
the practical GPU performance as 60% of its on-device peak due to data transfer over-
heads in hybrid algorithms. The aggregate performance of the multicore processor
exceeds that of a single GPU, so heterogeneous scheduling is set to distribute tasks
almost evenly between the multicore processor and the GPUs, with the following pa-
rameters:

Blocksize | B
2x GPU 768 2
8x CPU 192 -

TR-12-04 19



Kim et al. Computation on heterogeneous architectures

===Supermatrix - 2 Threads
==Bulk - 2 Threads
Bulk -4 Thread

E
/7 '
s i
40 'Supermatrix 2 Threads 03
==Bulk - 2 Threads
20 Bulk -4 Threads. 0.2
=te=Bulk -
Bulk - 8 Threads 01 >

0 «=dr=Bulk - 8 Threads
0 4000 8000 12000 16000 20000 0.0
N 0 4000 N 8000 12000

(a) Performance (b) Efficiency

Figure 18: [Longhorn] LU nopiv accelerated by two GPUs, using block sizes of 192
and 768 for the multicore team and GPU, respectively, and a 128 block software cache.

A single GPU. Fig. 17 shows the absolute performance and relative efficiency (as
defined above) of the proposed hybrid algorithms when only one GPU is used together
with the multicore processor.

Some observations:

° Hybrid algorithms make good use of threads in the multicore processor: overall
performance increases with the number of threads, and efficiency is more or less
independent of this number (for large enough problems).

. Thanks to the performance added from a multicore processor, hybrid algorithms
that only use high-level features in existing DLA libraries outperform the op-
timized implementations in MAGMA. This higher performance is attained de-
spite the cost of numerous data transfers incurred by the algorithm-by-blocks.
Performance for MAGMA is not reported for bigger problems due to limited
local memory for a GPU.

Two GPUs.  Fig.[I8|compares the performance of hybrid multi-level LU factorization
against libflame + SuperMatrixEl Regarding the hybrid efficiency, we compute the
reference performance for multiGPUs by linearly scaling the single GPU performance
from the use of MAGMA.

Fig. [18b] shows that Supermatrix is less efficient for smaller problems since LU tasks
are computed by a single thread. A blocksize(768) in this experiment is set to take more
benefits from GPUs rather than a host multicore processor. Indeed, the performance

3. MAGMA version 1.2 also supports multiple GPUs statically distributing the matrix.

TR-12-04 20



Kim et al. Computation on heterogeneous architectures

=o=Bulk - 1 Thread
Bulk - 12 Threads
«i=MAGMA DPOTRF

0 5000 10000 15000 20000 25000 30000
N

Figure 19: [Lonestar] Cholesky factorization accelerated by a single GPU, using block
sizes of 256 and 2048 for the multicore team and GPU respectively, and a 160 block
software cache.

on a multicore processor is traded to GPUs’ performance until BLAS operations are
dominant enough for large problems. However, multi-level scheduling dynamically
refines tasks when they are executed on a multicore processor. This unique feature
supplies fine grain tasks to a multicore processor while coarse grain tasks are still
available for GPUs to keep their higher performance.

6.2 Lonestar

This machine is equipped with two Fermi GPUs (a more current Nvidia GPU), which
delivers an order of magnitude higher double-precision performance (DGEMM 300
GFLOPS). A single GPU on this machine demonstrates much higher performance
compared to the multicore team with 12 cores.

Blocksize | B
2x GPU 2048 4
12x CPU 256 -

Due to such higher contrast in performance, hybrid scheduling is tuned for most tasks
to flow into GPUs. Meanwhile, a host processor is responsible for the factorization of
diagonal blocks and only some of the BLAS operations.

A single Fermi GPU. Fig. [19 reports performance for the Cholesky factorization
executed by the proposed hybrid scheduling, compared to the MAGMA implementa-

TR-12-04 21



Kim et al. Computation on heterogeneous architectures

300

250

200

150

GFLOPS

100
=¢=Bulk - Partial pivoting

Bulk - Pivoting within diagonal block
=>=Bulk - No pivot
«i=MAGMA DGETRF
T T

50

t
0 5000 10000 15000 20000 25000 30000
N

Figure 20: [Lonestar] LU factorization with various pivoting strategies with a single
GPU acceleration, using block sizes of 256 and 2048 for the multicore team and GPU
respectively, and a 160 block software cache.

tion. The hybrid performance on this machine is not so higher than the performance
obtained by MAGMA from a single GPU because we did not implement Cholesky fac-
torization on the GPUs but instead direct those tasks to the multicore processor. This
lowers overall hybrid performance because Cholesky tasks on diagonal blocks are on
the critical path, they are sequentially dispatched, and they create data traffic between
the multicore team and the GPU.

Fig. 20| reports the effects of different pivoting strategies on the proposed hybrid LU
factorization. Applying pivots on a multicore processor invalidates some blocks stored
in a GPU software cache, which then triggers more data transfers. Pivoting within the
diagonal block selects a pivot from a diagonal block reduces the number of blocks to
be flushed in a soft-cache. Meanwhile, partial pivoting that examines an entire column
invalidates almost all blocks stored in a GPU soft-cache. Although numerical stability
is traded to performance, pivoting within a large block size that is typically used for
GPUs can be considered in most dense matrix problems.

Two Fermi GPUs. Fig. reports performance for hybrid LU factorization with-
out pivoting. Decreasing efficiency for small problems is artificial because GPUs con-
tribute nothing until the problem size is larger than the GPU block size.

Lorca This machine has an eight-core processor accelerated by four Fermi GPUs. In
our hybrid computational model, four threads are now used for controlling the GPUs

TR-12-04 22



Kim et al. Computation on heterogeneous architectures

10

=o=Bulk - 12 Threads 09
Bulk - 12 Threads + 1 GPU 08
=#=Bulk - 12 Threads + 2 GPUs

07
06 4
05 M{_/“—__"—Q
04
150 - 03
—
100 %f T 02 Bulk - 12 Threads + 1 GPU
50 01 =#=Bulk - 12 Threads + 2 GPUs

0 0.0 T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000
N N

GFLOPS
Efficiency

(a) Performance (b) Efficiency

Figure 21: [Lonestar] LU nopiv accelerated by multiGPUs, using block sizes of 256
and 2048 for the multicore team and GPU respectively, and a 160 block software cache.

and the other four threads can execute tasks. However, performance obtained from the
rest of four threads notably lags behind the much higher performance of the GPUs.

Blocksize | B
4x GPU 2048 -
8x CPU 256 -

Dispatching tasks to them merely incurs more data transfers because blocks updated
by a multicore processor invalidates device local copies. Considering the limited band-
width of PCI Express bus that are shared by four GPUs, data transfer overheads are
more dominant than for the other testing machines. Hence, a multicore processor is set
to devote all its resources to factorize diagonal blocks only; no BLAS operation is al-
lowed on a multicore processor. Fig. 22]reports how the hybrid scheduling algorithms
cooperate with a eight-core machine accelerated by four Fermi GPUs.

7 Conclusion

We have presented a generic framework for scheduling on heterogeneous multicore
architectures, and applied this to computing with dense matrices. The proposed hybrid
scheduling is based on multi-level task parallelism where tasks are dynamically iden-
tified and adapted to target devices. The main goal of hybrid multi-level schemes is to
run each device with its highest runtime efficiency so as to boost overall system per-
formance. Workloads are dynamically balanced while distributing non-uniform block
tasks to heterogeneous devices. The proposed hybrid scheduling is flexible and can be

TR-12-04 23



Kim et al. Computation on heterogeneous architectures

500

=4=Bulk - 1 GPU
Bulk - 2 GPUs

400 =ir=Bulk -3 GPUS

=>&Bulk - 4 GPUs

450

350
300
250

S
T 200
o

150

100

50

0 T
0 5000 10000 15000 20000 25000 30000 35000 40000
N

Figure 22: [Lorca] LU nopiv accelerated by multiGPUs, using block sizes of 256 and
2048 for the multicore team and GPU respectively, and a 80 block software cache.

extended to work with diverse heterogeneity. The multi-level scheduling is also tunable
with a few parameters characterizing heterogeneous architectures.

By way of demonstration of our scheduling strategy, we implemented LU factoriza-
tion by using high-level device specific DLA library components written by experts.
Experimental results shows that hybrid scheduling can achieve 70% of each device’s
peak performance. Testing the algorithms on different testbeds, our general approach
was seen to perform better or equivalent to MAGMA and other DLA libraries.

Our scheduling approach can accomodate current as well as future architecture de-
signs. For example, one could consider adding Out-Of-Core (OOC) devices to a hy-
brid GPU model. Using random access devices such as Solid State Devices (SSDs) and
fast peripherals, the hybridization with OOC devices are more attractive. In our frame-
works, OOC device is considered as a processing device although it does not compute
anything but upload data from OOC to in-core memory. Using multi-level hierarchi-
cal matrices, larger blocks are efficiently pre-loaded. This can significantly reduce the
number of access to OOC devices.

Acknowledgement

We thank TACC at the University of Texas at Austin, and the Universidad Jaume I De
Castellon for allowing to use their equipments in this work. This research was spon-
sored by National Science Foundation (NSF) under grant no. 0904907. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

TR-12-04 24



Kim et al. Computation on heterogeneous architectures

The code that this paper describes has been developed based on 1ibflame and OpenMP.
Codes are available under the GNU Lesser General Public License (LGPL) for the
non-commercial use at http://code.google.com/p/uhm.

References

[1] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak,
J. Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear
algebra on emerging architectures: The PLASMA and MAGMA projects. Jour-
nal of Physics: Conference Series, 180(1):1-5, 2009.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and P.A. Wacrenier.
STARPU : A unified platform for task scheduling on heterogeneous multicore ar-
chitectures. Concurrency and Computation: Practice and Experience, 23(2):187—
198, 2011.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proceedings of the fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, volume 37, pages 207-216, August 1995.

[4] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A Class of
Parallel Tiled Linear Algebra Algorithms for Multicore Architectures. Parallel
Computing, 35(1):38-53, 2009.

[5] Ernie Chan, Robert van de Geijn, and Andrew Chapman. Managing the com-
plexity of lookahead for LU factorization with pivoting. In Proceedings of the
22nd ACM Symposium on Parallelism in Algorithms and Architectures - SPAA
’10, pages 200-208, New York, New York, USA, 2010. ACM Press.

[6] Ernie Chan, Field G. van Zee, Enrique S. Quintana-Orti, Gregorio Quintana-Orti,
and Robert van de Geijn. Satisfying your dependencies with Supermatrix. In
2007 IEEE International Conference on Cluster Computing, pages 91-99. IEEE,
2007.

[7] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and lain Duff. A set of
level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1-
17, March 1990.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson.
An extended set of FORTRAN basic linear algebra subprograms. ACM Trans.
Math. Soft., 14(1):1-17, 1988.

[9] Fred G. Gustavson, Isak Jonsson, Bo Kagstrom, and Per Ling. Towards peak
performance on hierarchical SMP memory architectures - new recursive blocked
data formats and BLAS. In Parallel Processing for Scientific Computing, 1999.

TR-12-04 25


http://code.google.com/p/uhm

Kim et al. Computation on heterogeneous architectures

[10] C.L.Lawson,R.J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):308-323, 1979.

[11] Tze Meng Low. An API for manipulating matrices stored by blocks. Techni-
cal report, FLAME Working Note 12, TR-2004-15, The University of Texas at
Austin, Depar, 2004.

[12] Hatem Ltaief, Stanimire Tomov, Rajib Nath, and Jack Dongarra. Hybrid multi-
core Cholesky factorization with multiple GPU accelerators. IEEE Transaction
on Parallel and Distributed Systems, 2010.

[13] Bryan Marker, Ernie Chan, Jack Poulson, R. van de Geijn, R.F. Van der Wijn-
gaart, T.G. Mattson, and T.E. Kubaska. Programming many-core architectures
- a case study: dense matrix computations on the Intel SCC processor. Concur-
rency and Computation: Practice and Experience, 2011.

[14] R. Nath, S. Tomov, and J. Dongarra. An Improved MAGMA GEMM For Fermi
Graphics Processing Units. International Journal of High Performance Comput-
ing Applications, 24(4):511-515, November 2010.

[15] Nvidia. CUBLAS User Guide. http://developer.nvidia.com.

[16] Nvidia. CUDA C Programming Guide. http://developer.nvidia.com.

[17] OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 3.0. http://www.openmp.org, 2008.

[18] Enrique Quintana-Orti, Gregorio Quintana-Orti, Xiaobai Sun, and Robert van de
Geijn. A note on parallel matrix inversion. SIAM J. Sci. Comput., 22(5):1762—
1771, 2001.

[19] Gregorio Quintana-Orti, Francisco D. Igual, Enrique S. Quintana-Orti, and
Robert A. van de Geijn. Solving dense linear systems on platforms with multiple
hardware accelerators. In Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming, volume 44, pages 121-130,
February 2009.

[20] Gregorio Quintana-Orti, Enrique S. Quintana-Orti, Robert A. van de Geijn,
Field G. van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for
thread-level Parallelism. ACM Transactions on Mathematical Software, 36(3):1—
26, July 2009.

[21] Gregorio Quintana-Orti and Robert van de Geijn. Level-3 BLAS on a GPU:
Picking the Low Hanging Fruit. Technical report, FLAME Working Note 37,
DICC 2009-04-01, The University of Texas at Austin, Department of Computer
Sciences, 2009.

[22] Fengguang Song, S. Tomov, and Jack Dongarra. Efficient support for matrix
computations on heterogeneous multi-core and multi-GPU architectures. Tech-
nical report, LAPACK Working Note 250, UT-CS-11-669, The University of Ten-
nessee at Knoxville, EECS department, 2011.

TR-12-04 26



Kim et al. Computation on heterogeneous architectures

[23] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, and Yungang Bao.
Fast implementation of DGEMM on Fermi GPU. In SC2011- International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
pages 35:1-11. ACM, 2011.

[24] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear al-
gebra for hybrid GPU accelerated manycore systems. Parallel Computing, 36(5-
6):232-240, 2010.

[25] Vinod Valsalam and Anthony Skjellum. A framework for high-performance
matrix multiplication based on hierarchical abstractions, algorithms and opti-
mized low-level kernels. Concurrency and Computation: Practice and Experi-
ence, 14(10):805-839, August 2002.

[26] Robert A. van de Geijn and Enrique S. Quintana-Orti. The Science of Program-
ming Matrix Computations. www. lulu. com, 2008.

[27] Field G. van Zee. libflame: The Complete Reference. http://www.lulu.com,
2009.

[28] Field G. van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de Geijn.
Scalable parallelization of FLAME code via the workqueuing model. ACM
Trans. Math Software, 34(2):10:1-29, 2008.

[29] Vasily Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear al-
gebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 31:1-11, 2008.

TR-12-04 27



	Introduction
	Related Works
	Motivating Example
	Blocked algorithms
	Algorithms-by-blocks
	Scheduling DAGs
	Bulk synchronous scheduling

	Tools
	libflame
	Architecture specific BLAS or DLA libraries
	OpenMP

	A Generic Task Scheduling Model for Heterogeneous Architectures
	Node characterization
	Bulk-synchronous scheduling
	Multi-level task scheduling
	Data caching

	Experimental Results
	Longhorn
	Lonestar

	Conclusion

