
Theory and Practice of Fusing Loops when Optimizing

Parallel Dense Linear Algebra Operations

FLAME Working Note #64

Tze Meng Low
Bryan Marker

Robert van de Geijn

Department of Computer Science
The University of Texas at Austin

Austin, TX 7872
ltm@mezmedia.com,

bamarker@gmail.com,
rvdg@cs.utexas.edu

August 20, 2012

Abstract

Dense linear algebra (DLA) algorithms for distributed memory architectures are often implemented
as sequences of highly optimized parallel implementations of individual sub-operations. This can hinder
performance because better load balancing and/or reduction in communication overhead can be achieved
when sub-operations are merged/fused together. In practice merging of parallel implementations is often
avoided because each DLA operation can be instantiated through multiple algorithms and each such
algorithm has its various implementations, creating a combinatorial search space. Our approach divides
the optimization problem into two phases: one which identifies fusion-compatible algorithms and one
that transforms the merged algorithms into high-performance parallel implementations. By exploit-
ing high-level information related to loop invariants, multiple sets of fusion-compatible algorithms can
be found without a need for an exhaustive examination of different combinations of implementations.
Through the use of an automated tool, DxTer, that understands the cost of computation and collective
communications, the merged algorithm that analytically attains the best performance can then be iden-
tified and code can be generated. We illustrate the benefits of this two-phase approach with performance
numbers on an IBM Blue Gene/P system. This takes us one step closer to the complete mechanical
generation of dense linear algebra libraries from expert knowledge.

1 Introduction

Our ultimate goal is to mechanically generate high-performance dense linear algebra (DLA) libraries.
Input will be a high-level specification of the operations to be supported, expert knowledge about these
algorithms, and knowledge about a target architecture. Output will be a highly optimized library for
the target architecture. To reach this goal, what an expert does has to be carefully examined and made
systematic to the point where it can be automated. One thing that an expert does when developing
high-performance code for distributed memory architectures (clusters) is to merge loops so as to expose

1

more opportunities for optimization [5]. This paper focuses on the theory and practice of automating this.
While the results are general, we illustrate them within the setting of DLA and the FLAME project [11].

We attack the problem with a two-phase approach. Given two DLA operations, the first phase identifies
pairs of loop-based algorithms that can be merged. For DLA, loop invariants (in the sense of Dijkstra and
Hoare) can be constructed from the mathematical specifications of a given operation [4]. We prove that
the mathematical specifications of the operations and the loop invariants provide all information needed to
determine the legality of loop fusion. The second phase optimizes each resulting merged loop via Design-by-
Transformation (DxT, pronounced “dext”) [16], an approach to software engineering that codifies design
knowledge. A prototype tool that builds on DxT, DxTer, implements this second phase, exploring and
choosing the best implementation based on cost estimates. Together they accomplish what an expert would
do: identify multiple loops for each operation, determine which can be merged, analyze implementations,
and generate code for the best solution.

2 Motivation

In this section, we motivate the two-phase approach. We do so by considering lower triangular matrix L and
the operation that overwrites that matrix with its inverse, TriInv, and then multiplies the transpose of the
result times itself, overwriting L with the lower triangular part (since the resulting matrix is symmetric),
TrTrmm (Triangular Triangular Matrix Multiplication): L := L−1; L := LTL. This sequence of the two
operations are the last two steps in computing the inversion of the symmetric positive definite matrix[5].
More importantly, they are representative of a large class of DLA operations.

2.1 Algorithms

The FLAME approach [4] to deriving algorithms yields three algorithmic variants1 for each of these oper-
ations, presented in the left two columns of Figure 1 using the FLAME notation. For this paper, one has
to understand only part of the FLAME approach for deriving algorithms. First, the triangular matrix is

partitioned into quadrants: L →
(
LTL 0

LBL LBR

)
. These quadrants track how the computation marches

through the matrix (see Figure 1). Second, the final contents of L, in terms of these quadrants, are given
by(

LTL ≡ L̂−1TL 0

LBL ≡ −L̂−1BRL̂BLL̂
−1
TL LBR ≡ L−1BR

)
and

(
LTL ≡ L̂T

TLL̂TL + LT
BLL̂BL ?

LBL ≡ L̂T
BRL̂BL LBR ≡ L̂T

BRL̂BR

)

for L := L−1 and L := LTL, respectively. Here L̂ represents the original contents of L, 0 represents a
block of zero elements, and ? the symmetric part of the matrix that is neither stored nor computed. These
are the recursive definitions of the operations, which we call the Partitioned Matrix Expressions (PMEs)
of the respective operations. The PME is a succinct description of all the computations that needs to be
performed in terms of regions of the matrix in order to compute the given DLA operation.

Finally, the state of the quadrants of L before and after each iteration for each of the algorithms in
Figure 1 can be described by the conditions given above the algorithms in Figure 1. These conditions are
called the loop invariants for the loop: Variant i maintains the state indicated by Invariant i above the

1Actually, the methodology yields more algorithmic variants than given in Figure 1. However, we will only need the given
subset for our discussion.

2

L := L−1 L := LTL L := L−1; L := LTL

PME: PME:(
LTL ≡ L̂−1

TL

LBL ≡ −L̂−1
BRL̂BLL̂

−1
TL LBR ≡ L̂−1

BR

) LTL≡ L̂T
TLL̂TL

+ LT
BLL̂BL

LBL ≡ L̂T
BRL̂BL LBR ≡ L̂T

BRL̂BR


TriInv Invariant 1: Trtrmm Invariant 1:(

LTL ≡ L̂−1
TL

LBL ≡ L̂BL LBR ≡ L̂BR

) (
LTL ≡ L̂T

TLL̂TL

LBL ≡ L̂BL LBR ≡ L̂BR

)

TriInv Invariant 2: Trtrmm Invariant 2:

Algorithm: L := L−1; L := LTL

Partition L→
(
LTL ∗
LBL LBR

)
where LTL is 0× 0

while m(LTL) < m(L) do
Determine block size b
Repartition(
LTL ∗
LBL LBR

)
→

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22


where A11 is b× b

Merged Variant 1
L21 := −L21L

−1
11

L21 := L−1
22 L21

L11 := L−1
11

TriInv Variant 2

L00 := LT
10L10 + L00

L10 := LT
11L10

L11 := LT
11L11

Trtrmm Variant 1

Merged Variant 2
L21 := −L21L

−1
11

L21 := L−1
22 L21

L11 := L−1
11

TriInv Variant 2

L10 := LT
11L10

L10 := LT
21L20 + L10

L11 := LT
11L11

L11 := LT
21L21 + L11

Trtrmm Variant 2

Merged Variant 3
L10 := L−1

11 L10

L20 := L20 − L21L10

L21 := −L21L
−1
11

L11 := L−1
11

TriInv Variant 3

L00 := LT
10L10 + L00

L10 := LT
11L10

L11 := LT
11L11

Trtrmm Variant 1

Continue with(
LTL ∗
LBL LBR

)
←

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22


endwhile

 LTL ≡ L̂−1
TL

LBL ≡
− L̂−1

BRL̂BLL̂
−1
TL

LBR ≡ L̂BR


LTL ≡ L̂T

TLL̂TL

+LT
BLL̂BL

LBL ≡ L̂BL LBR ≡ L̂BR


TriInv Invariant 3: Trtrmm Invariant 3:(

LTL ≡ L̂−1
TL

LBL ≡ −L̂BLL̂
−1
TL LBR ≡ L̂BR

) LTL ≡ L̂T
TLL̂TL

+LT
BLL̂BL

LBL ≡ L̂T
BRL̂BL LBR ≡ L̂BR


Algorithm: L := L−1

Partition L→
(
LTL 0

LBL LBR

)
where LTL is 0× 0

while m(LTL) < m(L) do
Determine block size b
Repartition(
LTL 0

LBL LBR

)
→

L00 0 0

L10 L11 0

L20 L21 L22


where A11 is b× b

TriInv Variant 1
L10 := L10L00

L10 := −L−1
11 L10

L11 := L−1
11

TriInv Variant 2
L21 := −L21L

−1
11

L21 := L−1
22 L21

L11 := L−1
11

TriInv Variant 3
L10 := L−1

11 L10

L20 := L20 − L21L10

L21 := −L21L
−1
11

L11 := L−1
11

Continue with(
LTL 0

LBL LBR

)
←

L00 0 0

L10 L11 0

L20 L21 L22


endwhile

Algorithm: L : LTL

Partition L→
(
LTL ∗
LBL LBR

)
where LTL is 0× 0

while m(LTL) < m(L) do
Determine block size b
Repartition(
LTL ∗
LBL LBR

)
→

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22


where A11 is b× b

Trtrmm Variant 1
L00 := LT

10L10 + L00

L10 := LT
11L10

L11 := LT
11L11

Trtrmm Variant 2
L10 := LT

11L10

L10 := LT
21L20 + L10

L11 := LT
11L11

L11 := LT
21L21 + L11

Trtrmm Variant 3
L11 := LT

11L11

L11 := LT
21L21 + L11

L21 := LT
22L21

Continue with(
LTL ∗
LBL LBR

)
←

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22


endwhile

Figure 1: Algorithms for the two separate operations and the resulting merged algorithms. Updates like
Lij := L−1ii Lij are actually implemented as a triangular solve with multiple right-hand sides rather than
inverting Lii and multiplying. This is important for numerical stability reasons.

3

algorithm. A loop invariant describes which quadrants of the output matrix have been updated, how the
quadrants have been updated and where the values used to update the quadrants originate.

In the FLAME methodology, the loop invariants are systematically derived from the PME and the
algorithm is then derived from the loop invariant. For this paper, it suffice to know that that a loop
invariant has been derived from the PME and each loop invariant represents an algorithm. The details of
deriving the algorithm from the loop invariant is not pertinent.

2.2 Merging the algorithms

In [18, 5], it is extensively documented that, for operations very similar to those discussed in this paper,
merging loops of DLA algorithms is beneficial, especially on cluster. There are at least two reasons: (1)
Merging the loops exposes opportunities to combine communications2 required for the operations in each
of the separate loops and (2) the computation can often be better load balanced.

Now, in order to merge loops, there must be implementations of the algorithms available that can
be merged. In ScaLAPACK [8], TriInv and TrTrmm are implemented by the functions PDTRTRI and
PDLAUUM respectively. Examining the implementations of these functions in that library, one quickly rec-
ognizes that the loops for the chosen algorithms cannot be merged. In PDTRTRI, L := L−1 is computed
row-wise from the bottom row upwards (an algorithm not given in Figure 1 for space reasons) and PDLAUUM

computes L := LTL row-wise from the top row downwards. As the two implementations march through L
in opposite directions, they cannot be merged. Dependencies between the different regions of L also prevent
the application of simple loop transformations such as loop reversal to transform the implementations into
compatible versions for loop fusion to take place.

However, by carefully selecting the right algorithmic variants for the two operations, the expert can
find multiple algorithmic variants that result from merging algorithms, as illustrated in Figure 1(Right).
The benefit can be dramatic, as illustrated in Figure 2 where we show performance estimates generated
by our automated system DxTer, to be discussed in Section 4. Of the three possible merged algorithms,
only one merged variant (Variant 3) is predicted to perform better than the unmerged operations found in
ScaLAPACK. This implies that (1) it is necessary to find multiple pairs of algorithms that can be fused
and (2) it is important to be able to pick the correct merged algorithm to implement and optimize.

This still leaves a number of questions in our quest to automate the actions of an expert: (1) How
does one easily determine that two algorithms can be merged? For a broad class of DLA algorithms, the
answer can be found in how the loop invariants relate to the PMEs so that this determination can be easily
automated; (2) Even if we know that there exist algorithms that can be merged, what if these algorithms
are not found in ScaLAPACK? Fortunately, Elemental [17], a modern alternative to ScaLAPACK, does
implement all the needed algorithmic variants. In Section 3, we also describe a constructive approach to
identifying fusion-compatible loop invariants such that the derived algorithms can be merged; (3) Once
merged, how do we optimize the merged loop and differentiate between all possible optimized variants?
For this we employ DxT, as described later in the paper.

3 Phase 1: Principles for Identifying Fusion-Compatible Algorithms

The fundamental thesis of the first phase of our two-phase approach is that the PMEs and the loop
invariants contain all information necessary to determine whether two loops can be merged.

2In the case of DLA, these communications are invariably collective in nature [20, 23].

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Problem Size (x103)

E
st

im
at

ed
 T

im
e

in
 C

lo
ck

 c
yc

le
s

(x
10

11
)

DxTer’s Performance Estimates For Different Merged Algorithms

ScaLAPACK’s algorithms
Merged Variant 1
Merged Variant 2
Merged Variant 3

Figure 2: Performance Estimate of different merged algorithms compared to ScaLAPACK’s unmerged
algorithms

3.1 Example

Let us focus on TriInv Invariant 2 and Trtrmm Invariant 1:(
XTL ≡ L̂−1

TL

XBL ≡���−L̂−1
BRL̂BLL̂

−1
TL XBR ≡ L̂��−1

BR

)
and

(
LTL ≡ XT

TLXTL�����
+XT

BLXBL

LBL ≡���XT
BRXBL LBR ≡���XT

BRXBR

)
.

We show the loop invariant by striking out parts of the PME, to emphasize how the loop invariant and
PME differ. Here we use X in order to indicate that the output of the first loop, X, is input to the second
loop. It is important to remember that X overwrites L.

By comparing the loop invariant and the PME for the second operation, we notice that the second
loop requires XTL to partially update the top-left quadrant. Since XTL was completely computed by
the first operation (as no parts of the expression in the top-left quadrant was struck out and, thus, left
uncomputed), the information is available for the second loop at the time the computation happens. Also,
the first loop only partially updated the bottom-left quadrant, which means the second loop cannot yet
alter values in the bottom-left quadrant, which it has not. We know this because all operations in the
bottom-left quadrant have been struck out (and thus none of that computation has been performed).
Finally, no information needed by the first loop has been overwritten by the second loop (the bottom-right
quadrant has not been changed by the second loop). Thus, we conclude that the loops can be merged.

Now, compare TriInv Invariant 1,(
LTL ≡ X−1

TL

LBL ≡���−X−1
BRXBL���X−1

TL LBR ≡ X��−1
BR

)

and Trtrmm Invariant 2 (given above). Again, we use X to denote the output of the first loop. The

5

problem this time is that, if merged, the second loop overwrites LTL before the first loop has completed
computing LBL. Hence, the loops cannot be merged.

In our analysis above, we reason about the legality of loop fusion with the information in the PME
and loop invariants, without an analysis of the code. The advantage of being able to reason about
loop fusion without code is that even when the update statements within the loops are
implemented in terms of subroutine calls to highly optimized black-box libraries (which
often is the case in the domain of DLA), loop fusion can still be performed as long as the
status of the different regions of the output is captured by the loop invariant.

In the rest of this section, we provide the theory for the analysis performed above and describe how it
is applied to identify multiple pairs of algorithms that merge without an exhaustive search.

3.2 Notation and assumptions

Let us assume that the two linear algebra operations that we intend to merge have the following form:

B := F (B̂, Ĉ, {A}); C := G(B, Ĉ, {A}) (1)

where {A} represents the set of all (other) input matrices whose values are read but not written. We use B̂
and Ĉ to emphasize that the inputs required by the operations are the original values of B and C. Notice
that the set {A} needs not be the same for both calls, but we can always (artificially) take the union of
the separate sets. Similarly, it is possible that C and B are not used in the first and second operation,
respectively, or that C and B are one and the same matrix.

Consider the algorithms in Figure 1. The initial partitioning, loop guard, repartitioning, and “continue
with” all are related to indexing, and we will refer to this as the loop skeleton. It takes the place of the loop
header, i.e. “for (i=0; i<n; i+=b){}”, in a typical C loop. The remainder (assignment to submatrices)
is what we will call the update statements. We will require that the skeleton is identical for the two loops.

We summarize our assumptions as follows: (1) Loop-based algorithms for computing the operations
march through B and C by partitioning them into regions (quadrants for L in Section 2); and (2) Both
algorithms march through all operands in the same direction, corresponding iterations of the loops use the
same block size b, and the size of the same matrix is used in the stopping criteria (loop guard) for both
loops. These two assumptions imply that the loops always have the same number of iterations and at each
step the same regions are exposed for all operands. We assume these conditions hold for the rest of the
discussion in this section.

Let PF denote the PME of the first operation in (1). Then PF can be defined as

PF =

(
BTL ≡ PF

TL BTR ≡ PF
TR

BBL ≡ PF
BL BBR ≡ PF

BR

)
,

where PF
X are legal mathematical expressions which express the computation required to be performed with

the different regions of the input and/or output matrices in order to computeBX forX ∈ {TL, TR,BL,BR}.
This means that the operands of PF

X must be regions of the input/output matrices of the first operation,

B := F (B̂, C, {A}). Hence the operands of PF
X must come from the following set:{

B̂TL, B̂TR,

B̂BL, B̂BR,

CTL, CTR,
CBL, CBR

}
∪
{
{ATL}, {ATR},
{ABL}, {ABR}

}
In the FLAME methodology, a loop invariant represents a partial state of computation that contributes
towards the result expressed in the PME. Therefore, a strategy for obtaining loop invariants is to remove

6

subexpressions from the PME. This implies that a loop invariant IF obtained through this method must be
partitioned in the same manner as PF . In addition, the expressions in each quadrant of the loop invariant
must be subexpressions of the expression in the corresponding quadrant of the PME. Hence,

IF =

(
BTL ≡ IFTL BTR ≡ IFTR

BBL ≡ IFBL BBR ≡ IFBR

)
where IFX is a subexpression of PF

X for X ∈ {TL, TR,BL,BR}.
Notice that PF

X and IFX are expressions that describe how BX needs to be changed. We define functions
FX and fX as follows:

FX(B̂X) = PF
X and fX(B̂X) = IFX

where FX and fX treat operands other than BX as constants and evaluates the expressions PF
X and IFX

respectively.
In addition, recall that IFX is obtained by removing subexpressions from PF

X . These removed subexpres-

sions represent computation that will need to be performed on fX(B̂X) in the future in order to obtain the
final results. Hence, we also define “Remainder” functions, fRX to represent the removed subexpressions
for each region of B such that

FX(B̂X) = fRX (fX(B̂X))

where X ∈ {TL, TR,BL,BR}, and operands other than BX are treated as constants. The relationship
between FX , fX and fRX can be summarized as follows: The “Remainder” functions are computations
to be performed in the future, the functions fX are computations performed in the past and together,
they compute the same value as FX which computes the desired final result. For simplicity, we say fX(or
similarly fRX) updates BX when we mean the computations represented by fX (or similarly fRX) updates
BX .

GX , gX , and gRX can similarly be defined for the second operation with the PME PG, loop invariant
IG.

As we illustrated in Section 3.1, whether loops can be merged hinges on whether certain submatrices
have been updated appropriately (so that they can be used for the computation associated with the second
loop) and other submatrices have not yet been touched (because they are still needed for the first loop).
This leads us to propose the following definition:
Definition 1 The status of a region X of an output matrix B, denoted as σ(BX), takes on one of three
values, depending on the relationship between the PME and the loop invariant:

σ(BX) =


Fully Updated if PF

X ≡ IFX .
Partially Updated if PF

X 6= IFX
and IFX 6= B̂X .

Not Updated IFX ≡ B̂X .

We similarly define σ(CX) in terms of PG
X and IGX .

In essence, σ(BX) is Not Updated, means that the values in BX are the original values from before
the loop commenced. Similarly, when σ(BX) is Fully Updated, the values in BX are the final result.
This implies that BX was updated in past iterations and will no longer be updated in future iterations
of the first loop. Conversely, when σ(BX) is not Fully Updated, it means that computation must be
performed on the values stored in BX and during each iteration of the loop, some amount of computation
will be performed on a subset of the values stored in BX . We call this subset of BX a subregion of BX .

Definition 2 In the FLAME notation (illustrated in Figure 1), a subregion of a region BX is a subset of
the values of BX and is denoted with a lowercase subscript(e.g Bx) or a two-digit subscripts from the set
{00, 01, 02, 10, 11, 12, 20, 21, 22}.

7

3.3 Dependence analysis of loop invariants and PMEs

Unlike traditional dependence analysis which requires an examination of the implementation (code), our
approach analyzes the essence of a loop-based algorithm, the loop invariant and the PME.

Recall that a loop invariant describes the state of computation at the start of every iteration of the loop.
At the start of any given iteration, if σ(CY) is not Fully Updated, then it implies that values stored in
CY do not contain the final result and more computation is required in order to completely compute CY .
This means that there must exist at least one update statement Cy := opy(. . .) in the loop where Cy is a
subregion of CY . If such a statement does not exist then elements in CY will never be updated to their
final values.

Now recall that the function gRY represents the “remaining” operations that needs to be performed on
CY in order to compute the final result. Since gRY represents computation on all elements in CY , then it
must represent computation on the values of all subregions of CY , including the subregion Cy. From this,
we can deduce that the operands of the function opy(. . .) must be subregions of operands of the function
gRY .

Notice that the loop invariant is also true at the end of every iteration of the loop. An arbitrary update
statement Bx := opx(. . .) would have updated the values in Bx at the end of an iteration. Since subregion
Bx must belong to some region BX , and the function fX represents computation that was performed in
the past, then at the end of the iteration the function fX must also represent the updates performed by
Bx := opx(. . .). This implies that the operands of opx(. . .) must also be subregions of operands of the
function fX .

In short, the loop invariant and PME captures information regarding regions used in the past and
regions that will be used in the future. For any given update statement Bx := opx(. . .) or Cy := opy(. . .),
the operands to the update statement before it is computed is given by the operands to the remainder
function fRX or gRY . After the update statement has been computed, the operands to the same update
statement are identified from the operands to the function fX and gY . Since we can identify, from the
loop invariant/PME, the regions from which the operands of an update statement originate, we can also
deduce the dependences between the update statements from the dependences between regions of the
loop invariants/PME. This implies that traditional dependence analysis of code can be replaced with a
dependence analysis of the loop invariant/PME.

3.4 Status and preservation of dependence after loop fusion

Given two loops with identical loop bounds/loop limits, traditional compilers determine if loop fusion can
be legally applied to the given loops by ensuring that dependences are preserved under loop fusion. The
condition to ensure dependences are preserved can be paraphrased with the following condition [26]:
Condition 3 For dependence to be preserved after loop fusion, the dependence must flow from an update
statement in iteration i of the first loop to an update statement in iteration j of the second loop where
j ≥ i.
Traditionally, the loop is indexed by a loop counter that tracks the iteration number and accesses into the
matrices/arrays are through indices. By tracking the loop counter and the indices, a compiler can reason
about dependences between iterations i and j.

In contrast, as our starting point is the mathematical specification (PME and loop invariant) of the
algorithms to be merged, there is no concept of such a loop counter, nor indices. However, an equivalent
way of stating this condition is as follows:

Condition 3 (Alternate) Let two loops be merged by concatenating, in order, their update statements.
Then for dependence to be preserved, the dependence between the two loops must flow from the update

8

statements of the first loop to the update statements in the same iteration or future iterations of the second
loop.

This removes the need of a loop counter, or indices when arguing about the correctness of loop fusion: the
condition for loop fusion is now cast in terms of dependences between the update statements of the two
loops within the same iteration and dependences between the update statements of the first loop from past
(inclusive of the current) to update statements of the second loop in future iterations.

3.5 The Theorem

When the loops are not fused, all computation of regions of B is completed before any computation of
regions of C commenses. Suppose that CY ≡ gY (ĈY) holds at the end of the current iteration of the merged
loop (as indicated in the loop invariant). Then, if BX is a region of B on which (computations represented
by) the function gY depends or BX is updated by (computations represented by) gY , BX must have been
fully computed in a previous (or the current) iteration. What this means is that σ(BX) = Fully Updated
must hold. Otherwise, either the computation of CY would use values of BX that are not the final values
and the computation of CY might not be correct, or computation that update BX in the future will
overwrite the values written into BX by gY . Similarly, if BX is not Fully Updated (meaning that the
remainder function fRX is not the identity) and fRX depends on CY or CY will be updated by fRX , then CY

cannot yet have been updated. Otherwise, either the computation of BX would (in general) not be using
the original values in CY and might compute BX incorrectly, or values in CY would be overwritten by fRX
in the future. This would mean the results in CY might not be correct.

These observations motivate the following theorem:
Theorem 4 Let BX and CY be arbitrary regions of matrices B and C that were respectively updated by
the first and second operation. In addition, let there be a dependence that requires BX to be computed
before CY . If the loop invariants for the two algorithms satisfy the following two conditions:

1. If BX was updated by gY (i.e., B and C are the same matrix and BX is CY) or BX is required by
gY , then σ(BX) = Fully Updated, and

2. If CY will be updated by fRX (i.e., B and C are the same matrix and BX is CY) or CY is required by
fRX , then σ(CY) = Not Updated,

then dependences are preserved after loop fusion.

Proof: We prove the theorem with a proof by contradiction. Assume that BX and CY are arbitrary
regions in matrices B and C that are updated by the first and second operation, respectively. In addition,
assume that the two conditions hold for the loop invariants for the respective algorithms, for these regions.
Furthermore, assume that there exist a dependence such that BX must be computed before CY and that
this dependence is not preserved after loop fusing. We will show this leads to a contradiction.

Because the dependence is not preserved, either (1) CY has to be updated before BX in the same
iteration and BX is used to compute CY (a dependence flows from CY to BX in the same iteration); or
(2) CY was updated in some iteration in the past and CY is used to compute BX in future iterations (a
dependence flows from BX in future iterations to CY in past iterations). Each of these cases leads to a
contradiction:

Case 1: A dependence flows from CY to BX in the same iteration. Since the dependence requires BX

to be computed after CY has been computed, it follows that σ(BX) 6= Fully Updated. The
contrapositive of the first condition tells us that if σ(BX) 6= Fully Updated, then BX was not be
updated by computations represented by gY and BX is not required by gY . Since BX is not required

9

by gY and not updated by gY , then BX must not be required to update CY and BX cannot be the
same region as CY . Hence, there cannot be a dependence between the BX and CY . Therefore, a
contradiction is obtained.

Case 2: A dependence flows from BX in future iterations to CY in past iterations. Since CY is (either
partially or fully) computed in past iterations, it follows that σ(CY) 6= Not Updated. σ(CY) 6=Not
Updated and the contrapositive of the second condition tells us that CY is not updated by com-
putations represented by fRX and CY is not required by fRX . Since CY is not updated by fRX , it
implies that CY is not the same region as BX . In addition, since fRX represent updates to BX in
future iterations, then CY must not be required to compute BX in future iterations. Therefore, there
cannot exist a dependence between BX and CY . Hence a contradiction is found.

In both cases, we have shown that if a fusion-preventing dependence exists, then a contradiction with one
of our assumptions is found and thus no fusion-preventing dependence can exist if both conditions are
satisfied. �

3.6 Merging more than two loops

Merging two DLA loop-based algorithms is a matter of ensuring that the different regions of B and C have
the appropriate status. If we know the status of the regions of B and C after merger, then determining
if additional DLA algorithms can be merged via loop fusion is just a matter of iteratively applying the
analysis of the status for each new algorithm. We discuss how the status of a region of the merged algorithm
can be determined from the status of the region of the separate loop invariants.

Recall that the update status of a region in the loop invariant is defined in terms of when the region is
updated: either in the past, in the future or both. This means that if a region CY is only updated by the
second algorithm, then the status of CY in the merged algorithm is determined by the status of the loop
invariant for the second algorithm. Similarly, if BX is only updated by the first algorithm, then σ(BX) in
the merged algorithm is the same as σ(BX) in the loop invariant of the first algorithm.

For the case where the region BX and CY refers to the same region and both algorithms update CY ,
it is necessary to examine if CY will be updated in future iterations. When both algorithms that were
merged update CY only in past iterations (σ(CY) is Fully Updated), we know that no update to CY will
occur in the future. Therefore, σ(CY) will remain as Fully Updated. Similarly, when both algorithms
update CY only in the future iterations, σ(CY) will remain as Not Updated. For all other combinations of
σ(CY), either the first or second operation will update XY in future iterations. Hence, σ(CY) is Partially
Updated after merger.

3.7 Multiple pairs of fusion-compatible loop invariants

In order to find a single pair of fusion-compatible implementations, traditional compilers first analyze
the given implementations to determine if they can be merged. If there exist a dependence that is not
preserved after loop fusion, other loop transformations (e.g. loop reversal, loop interchange, etc) are
applied to one or both of the implementations, and the new implementations are then analyzed again.
Even when we know that fusion is desired, depending on the input implementations, different sequences of
loop transformations may be required before implementations that merge can be found. Since compilers
apply loop transformations in phases, the incorrect ordering of the transformation phases could potentially
prevent compatible implementations from being identified. This is the phase-ordering problem [22, 1].
The problem is exacerbated when multiple pairs of fusion-compatible implementations are required of the
traditional compiler.

10

In our setting, the information required to determine when two algorithms can be merged, namely
the PME and loop invariants, are readily available for libraries developed as part of the FLAME project
(libflame [24] and Elemental [17]). In these libraries, most algorithms were systematically derived from
the PME of the operations and related loop invariants to be provably correct. Now, the same information
can be used to determine if two algorithms can be merged.

Subroutines in DLA libraries (not resulting from the FLAME project) can also be annotated with
information regarding the PME and loop invariants to enable extensible compilers (compilers that allow
end-users to include domain-specific knowledge through annotations or transformational rules), such as
Broadway[13], PetaBricks[3], Telescoping Languages[7], Active Libraries[25], to simplify the analysis of
determining when subroutines can be merged.

3.8 Constructing fusion-compatible loop invariants

The astute reader may recognize that a library that encodes all algorithmic variants of commonly used
operations will quickly become bloated and conducting a pair-wise search to identify fusion-compatible
algorithms requires searching through a space that is combinatorially increasing with each additional
operation to merge.

Instead, we describe how to constructively identify loop invariants for the loops that can be merged
from the PMEs of the operations that we want to merge. The construction algorithm is similar to that
described in [10] but we additionally impose the constraints described in Theorem 4 at the appropriate
points in the algorithm when constructing the loop invariants. We illustrate the construction using the
example from Section 2.

Recall that PMEs show all computation, in terms of regions, required to compute the final result. It
follows that by removing appropriate subexpressions from the PME, loop invariants that represent partial
computation can be obtained. Hence, in order to derive fusion-compatible loop invariants, we start with
the separate PMEs as shown below:(

LTL := L−1TL ∗
LBL := L̂−1BRL̂BLL̂

−
TL1 LBR := L̂−1BR

)
;

(
LTL := LT

TLLTL + L̂T
BLL̂BL ∗

LBL := L̂T
BRL̂BL LBR := L̂T

BRL̂BR

)
.

At the end of the last iteration of the loop, the loop invariant must imply that the operation has been
computed. This means that at the end of the loop, one of the subregions of L must contain the final result,
which implies that expressions highlighted in red below must be part of the loop invariants:(

LTL ≡ L−1TL ∗
LBL ≡ L̂−1BRL̂BLL̂

−
TL1 LBR ≡ L̂−1BR

)
;

(
LTL ≡ LT

TLLTL + L̂T
BLL̂BL ∗

LBL ≡ L̂T
BRL̂BL LBR ≡ L̂T

BRL̂BR

)
.

One could have chosen LBR ≡ L̂−1BR to be highlighted in red, which would mean that the algorithm
computes from the bottom-right quadrant of L and proceeds towards the top-left. This would be similar
to the algorithm implemented by ScaLAPACK for the TriInv. However, recall that our assumption was
that merged algorithms must march through all operands in the same manner. Since dependences in the
PME of Trtrmm requires us to compute Trtrmm from top-left to bottom-right, we restrict the algorithms
that compute TriInv to those that compute L−1 from top-left to bottom-right.

At the start of the first iteration, the loop invariant must imply that no computation has been performed.
This means that the bottom-right region of L for both TriInv and Trtrmm must contain the original
value of L: LBR ≡ L̂BR. Then by striking out the appropriate expressions in the respective PME to ensure

11

that the bottom-right subregion of L contains its original value, we get the following expressions:(
LTL ≡ L−1TL ∗

LBL ≡ L̂−1BRL̂BLL̂
−
TL1 LBR ≡ L̂��−1BR

)
;

(
LTL ≡ LT

TLLTL + L̂T
BLL̂BL ∗

LBL ≡ L̂T
BRL̂BL LBR ≡�

��L̂T
BRL̂BR

)
.

Next, we consider dependences between the two operations and apply the two conditions described in
Theorem 4. Recall that a region is an operand of a remainder function if it is part of a subexpression that
was removed from the PME. Therefore, if a region cannot be an operand of a remainder function, then it
must not be struck off from the PME.

Notice that any loop invariant of the second operation which ensures that the final result is stored in LTL

at the end of the operation will not preserve the value of LTL computed by the first operation i.e. σ(LTL) 6=
Not Updated for the second loop. Condition 2 of Theorem 4 tells us that LTL cannot be read/written
by any remainder functions of the first loop invariant. This means that the expression LBLLTL must be
included in any fusion-compatible loop invariant for the first operation. A second dependence that exists
between the two operations is the use of LBR. This means that the first operation must compute the
value of LBR before the second operation can update LBL. However, LBR ≡ L̂BR, which means σ(LBR) 6=
Fully Updated in the first loop. Condition 1 of Theorem 4 requires that the second operation not use
LBR in past iterations. This implies that the expression LT

BR is must be stricken off from the PME for the
second operation.(

LTL ≡ L−1TL ∗
LBL ≡ L̂−1BRL̂BLL̂

−1
TL LBR ≡ L̂��−1BR

)
;

(
LTL ≡ LT

TLLTL + L̂T
BLL̂BL ∗

LBL ≡�
��L̂T
BRL̂BL LBR ≡�

��L̂T
BRL̂BR

)
The astute reader may recognize that the above set of expressions are the loop invariants for TriInv Variant
2 and Trtrmm Variant 2. These fusion-compatible loop invariants can be merged to create Merged Variant
2.

In order to find other fusion-compatible loop invariant pairs, we continue to examine the PME for
subexpressions that can be optionally removed and when we remove a subexpression, we need to ensure
that the conditions in Theorem 4 are maintained. Notice that for the second operation, the only expression
that can be optionally removed from the PME is the expression L̂T

BLL̂BL and in order for the expression
not to be removed, Condition 1 of the Theorem 4 requires that σ(LBL) = Fully Updated for the first
loop invariant. This implies LBL ≡ L̂−1BRL̂BLL̂

−1
TL.

Similarly, the only expression that can be optionally removed from the PME of the first operation is
L̂−1BR from the expression in the bottom-left region of L. If L̂−1BR is removed, then LTL ≡ LT

TLLTL.
The different ways of optionally removing subexpressions from the pair of PMEs are summarized in

Figure 3. From Figure 3, it becomes obvious that there are three pairs of loop invariants that can be
merged and these pairs of fusion-compatible loop invariants correspond to the three merged algorithms in
Figure 1

Notice that with this constructive approach to identify fusion-compatible loop invariants, multiple pairs
of loop invariants can be identified while avoiding the phase-ordering problem encountered by traditional
compilers. In addition, by starting with the PMEs, there is no need to search a combinatorially increasing
search space nor is there a need for a large library of DLA routines.

4 Phase 2: Practical Implications for Parallel Processing on Clusters

Design by Transformation (DxT) [16, 19] is an approach to software engineering that enables the codi-
fication of design knowledge for a domain. In our setting, it allows algorithms, expert knowledge about

12

Possible expressions for Possible expressions for
LBL of first loop invariant LTL of second loop invariant

LBL ≡ L̂−1BRL̂BLL̂
−1
TL −→ LTL ≡ L̂T

TLL̂TL + L̂T
TRL̂TR

↘
LBL ≡ L̂BLL̂

−1
TL −→ LTL ≡ L̂T

TLL̂TL

Figure 3: Relationship between subexpressions in the two PME that can be optionally removed. Arrows
denote combinations that preserve dependences after loop fusion.

those algorithms, and knowledge about target architectures to be encoded so that a tool can transform
this knowledge into “high quality” implementations. The principle behind DxT is that knowledge used
by an expert to develop implementations of algorithms can be encoded as a series of transformation rules
that apply design knowledge of domain software. By iteratively/recursively applying the transformation
rules used by the expert on an abstract description of an input algorithm, the abstract description is
transformed into implementations composed from basic building blocks (routines) via a process similar to
what an expert would go through when implementing the algorithm manually. To select between different
implementations, DxT requires mathematical cost functions to be associated with each building block, so
that the overall cost of an implementation can be estimated and a best implementation can be chosen.
DxTer [15] is a prototype tool that implements DxT by automatically applying the transformation rules
and evaluating the costs of resulting implementations.

4.1 Encoding dense linear algebra expert knowledge

Knowledge in DxTer can be classified into three broad categories, namely building blocks, refinements and
optimizations. We discuss the knowledge that was encoded in DxTer for the domain of parallel DLA on
clusters.

Building Blocks For the domain of parallel DLA on clusters, the building blocks of software are sequen-
tial implementations of common linear algebra operations found in the Basic Linear Algebra Subroutines
(BLAS) [9] and LAPACK [2] and the collective communications found in the Message-Passing Interface
(MPI) [21]. Associated with each of the building blocks is a cost estimate as a function of the matrix size
and machine parameters (e.g., latency and bandwidth).

Refinements Refinements are transformation rules that represent expert knowledge on how to imple-
ment algorithms in terms of the building blocks. For our particular domain, refinements describe how an
expert would transform a DLA update statement (e.g., L10 := −L−111 L10) into a parallel implementation.
This typically consists of some redistribution via a collective communication followed by local computation
on each process (e.g., MPI process) followed by another collective communication to reduce local contri-
butions to a global result and/or redistribute the result. An expert will choose how to parallelize a given
update statement from a set of parallelization patterns that are known to be good. These desirable paral-
lelization patterns identified by the expert are encoded as multiple refinement rules in DxTer. For example,
two possible refinements for the Triangular Solve with Multiple Right-hand Sides (TRSM) operation that
computes the update statement L10 := −L−111 L10 are encoded in DxTer as shown in Figure 4.

13

Optimizations Optimizations are transformation rules that represent expert knowledge on how to op-
timize inefficient code patterns that show up repeatedly in domain software. Examples of optimizations
include equivalences of sequences of DLA operations and/or collective communications [16], so inefficient
patterns can be replaced with better implementations. For example, it is known that broadcast can be im-
plemented as a scatter followed by an allgather and vise versa [6]. An expert understands this. DxT enables
us to encode this knowledge. DxTer explores these options automatically and estimates the performance
of resulting codes.

4.2 The output

The expert developer uses a Domain Specific Language (DSL) to implement DLA algorithms on clusters.
Several exist, all implemented as libraries: ScaLAPACK [8], PLAPACK [23], and (more recently) Elemen-
tal [17]. We choose Elemental as the output language for DxTer because its implementations closely mirror
the algorithms as presented in Figure 1 and it expresses computation and communication at a very high
level of expression. It also typically achieves the best performance of all three libraries so that matching or
surpassing the performance of the hand-coded implementation in Elemental is a significant achievement.

4.3 From an abstraction to multiple implementations

Our input to DxTer is an abstract DLA algorithm. The abstract algorithm is specified in two parts, a
loop skeleton and a pipe-and-filter model of the update statements. The pipe-and-filter model is a directed
acyclic graph (DAG) where vertices are abstractions representing computations and the edges represent
data flow. This representation is similar in concept to the data dependence graph constructed by traditional
compilers.

To transform this abstract algorithm into an implementation, refinement rules are applied on the
vertices to refine (replace) each abstract vertex to either a building block or a subgraph of equivalent
functionality but with more specific implementation choices. For example, the vertex representing the
update statement L10 := −L−111 L10 is refined by one of the refinements rules in Figure 4 into a subgraph
whose vertices represent data redistributions and local computation. In cases where there are multiple
possible refinements (as shown in Figure 4), one DAG is created from each application of a refinement
rule. This creates multiple DAGs, representing a family of possible implementations. Optimization rules
are applied in a similar fashion, where inefficient subgraphs are replaced with more efficient ones and
additional DAGs are created when necessary. All created DAGs are stored to allow for cost comparison.

Eventually, the process of applying refinement and optimization rules yields many DAGs expressed
in terms of building blocks. Each DAG represents one of many parallelization approaches and a distinct
combination of optimizations. A cost for each implementation is then estimated by adding the costs of
the building blocks3. A simple comparison of the cost allows the best4implementation to be identified, for
which Elemental code is then generated.

4.4 Fusing automated

Now, let us assume that DxTer is to provide an optimized implementation for L := L−1; L := LTL.
To allow DxTer to use the status of the loop invariants to perform loop fusion, we annotate the abstract

algorithms of the separate operations with the status of the different regions of the output matrix. In this

3DLA algorithms tend to be block synchronous, which simplifies the cost estimation.
4There may be multiple candidates for best implementation, depending on (for example) the matrix size.

14

sense, DxTer is similar to the extensible compilers that understand domain-specific knowledge through
annotations.

DxTer first picks a loop-based algorithm for each of the operations and uses the status of the regions to
determine if the algorithms can be merged. If they can be merged, operands are added to the separate loop
skeletons to create the loop skeleton for the merged algorithm. In addition, the separate pipe-and-filter
models are then composed together to form the pipe-and-filter model of the update statements of the
merged algorithm. The refinement/optimization of the merged algorithm is then performed.

DxTer repeats this process for all pairs of algorithms. In the end, the best merged algorithm is chosen
from all the implementations that are thus generated.

4.5 Performance

In this section, we present performance results obtained on a BlueGene/P supercomputer. We tested
on 8192 cores (2 racks), which have a combined theoretical peak of over 27 TFLOPS. Double precision

arithmetic was used in all computation. For an input matrix L ∈ Rn×n, an operation count of n3

3 floating-

point operations (flops) was used for TriInv and Trtrmm operations and 2n3

3 flops was used for the merged
operation. We compare DxTer-generated Elemental code to ScaLAPACK performance across a range of
algorithmic block sizes and present the best performance attained for each5. In all experiments, DxTer
generated the same optimized parallel code as the expert who implemented Elemental so only comparison
with ScaLAPACK is shown.

In Figure 5, we show results (from top to bottom) for L := L−1 (TriInv), L := LTL (Trtrmm), and
the combined operation L := L−1; L := LTL. In each graph, two-thirds of the theoretical machine peak
is at the top of the graph.

“Inlined” codes are implementations of the algorithm where only refinement rules were applied. “Op-
timized” codes are implementations where both refinement and optimization rules were applied. “Fused”
codes are those that have been fused and optimized, while “Unfused” codes are optimized version of the
separate algorithms run separately.

All three graphs demonstrate that poorly-selected algorithmic variants result in bad performance.
These variants have update statements that incur significantly more data communication, which is costly
overhead on clusters. TriInv variant 2, for example, has the update L21 := L−122 L21, (a large triangular
solve with few right-hand sides) which parallelizes poorly because the large submatrix L22 is communicated
in each iteration of the loop. This communication is amortized over relatively little computation and thus
the performance suffers. The fused algorithms with this variant similarly perform badly. For these bad
variants, even DxTer optimizations cannot overcome suboperations that do not parallelize well, so the
“inlined” code performs roughly the same as “optimized” code.

In Figure 5 (Bottom), we show DxTer-generated optimized implementations of the three fused algo-
rithms in Figure 1 when compared to ScaLAPACK. Notice that Merged Variant 3 is the only merged
algorithm that performs better than ScaLAPACK. This was exactly predicted by DxTer in Figure 2.
Again, choosing the wrong variant of the fused algorithms produces very bad performance. These merged
implementations were generated, parallelize and optimize automatically by DxTer through the use of the
status of the regions.

To quantify the benefits of loop fusion, we compare the fused algorithm (Merged Variant 3) against the
non-fused (but optimized) implementation (TriInv Variant 3 + Trtrmm Variant 1). The fused algorithm
performed approximately 10% better than the unfused one. The difference in performance can be attributed
to DxTer applying optimization rules that reuse intermediate distributions and reduce communication.

5In other words, the graphs show performance for when the block sizes, which are tuning parameters, were optimized.

15

void DistTrsmToLocalTrsmVar1::Apply(Poss *poss, Node *node) const {

Trsm *trsm = (Trsm*)node;

//Distribute Triangular Matrix, L

RedistNode *distL = new RedistNode(D_VC_STAR);

distL->AddInput(node->Input(0),node->InputConnNum(0));

//Distribute RHS Matrix, X

RedistNode *distX = new RedistNode(D_VC_STAR);

distX->AddInput(node->Input(1),node->InputConnNum(1));

//Local Computation

LocalTrsm *trsm = new LocalTrsm(trsm->m_side, trsm->m_tri,

trsm->m_trans, trsm->m_coeff);

trsm->AddInput(distL,0); trsm->AddInput(distX,0);

//Distribute X

RedistNode *redistX = new RedistNode(D_MC_MR);

redistX->AddInput(trsm,0);

//Refine Abstract Vertex & Clean up

poss->AddNodes(4, distL, distX, trsm, redistX);

node->RedirectChildren(redistX,0);

node->m_poss->DeleteChildAndCleanUp(node);

}

void DistTrsmToLocalTrsmVar2::Apply(Poss *poss, Node *node) const {

Trsm *trsm = (Trsm*)node;

//Distribute Triangular Matrix, L

RedistNode *distL = new RedistNode(D_STAR_STAR);

distL->AddInput(node->Input(0),node->InputConnNum(0));

//Distribute RHS Matrix, X

RedistNode *distX = new RedistNode(D_STAR_VC);

distX->AddInput(node->Input(1),node->InputConnNum(1));

//Local Computation

LocalTrsm *trsm = new LocalTrsm(trsm->m_side, trsm->m_tri,

trsm->m_trans, trsm->m_coeff);

trsm->AddInput(distL,0); trsm->AddInput(distX,0);

//Distribute X

RedistNode *redistX = new RedistNode(D_MC_MR);

redistX->AddInput(trsm,0);

//Refine Abstract Vertex & Clean up

poss->AddNodes(4, distL, distX, trsm, redistX);

node->RedirectChildren(redistX,0);

node->m_poss->DeleteChildAndCleanUp(node);

}

Figure 4: 2 out of 6 different refinement rules encoded in DxTer for the TRSM operation that is used to
implement L10 := −L−111 L10. Notice that they differ only in the way the oeprands L and X are distributed.

16

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Problem size (x104)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

TriInv Performance on Intrepid

ScaLAPACK
Variant 1 Optimized
Variant 1 Inlined
Variant 2 Optimized
Variant 2 Inlined
Variant 3 Optimized
Variant 3 Inlined

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Problem size (x104)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Trtrmm Performance on Intrepid

ScaLAPACK
Variant 1 Optimized
Variant 1 Inlined
Variant 2 Optimized
Variant 2 Inlined
Variant 3 Optimized
Variant 3 Inlined

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Problem size (x104)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Combined Performance on Intrepid

ScaLAPACK
Merged Variant 1
Merged Variant 2
Merged Variant 3
TriInv 3 + Trtrmm 1

Figure 5: Performance results comparing algorithmic variants and ScaLAPACK on Intrepid. 2/3 of theo-
retical peak is at the top of the graphs. Variants 2 and 3 of Trtrmm are almost the same, so they appear
on top of each other in the graph. Variant 3 is slightly faster.

17

5 Conclusion and Future Directions

In this paper, we described a two-phase approach that makes it practical for loop fusion to be applied
when automatically optimizing DLA operations for distributed memory architecture.

The first phase analyzes the dependences in the mathematical specifications embedded in the PME and
constructs loop invariants that possess the property that their derived algorithms can be merged through
loop fusion. The theory presented in the paper, coupled with a constructive algorithm for generating
loop invariants allows multiple pairs of algorithms to be identified while side-stepping the phase-ordering
problem faced by traditional compilers. This work supports the hypothesis of the authors of [14] where it
was suggested in the conclusion that the feasibility of loop fusion can be deduced from the loop invariants.
We demonstrated how the theory can be used to annotate algorithms/subroutine code which extensible
compilers can use to perform loop merging by annotating the status of regions in the refinement rules for
our automated system, DxTer,to allow automated loop fusion.

The second phase uses an automated system, DxTer, to replicate the work of an expert when optimiz-
ing parallel DLA operations for clusters. DxTer implements an approach to software engineering called
Design-by-Transformations (DxT). DxTer analytically estimates the relative performance of possible im-
plementations and identifies if it is worthwhile to merge two given operations. Automatically generated
optimized code from DxTer matches or surpasses both hand-coded implementations and implementations
found in commonly used parallel libraries.

We believe that more can be done through a better understanding of the PME and loop invariant.
In the area of annotations for extensible compilers, we note that the required annotations usually involve
information as to whether an input to a subroutine has been (or may be) updated or remains pristine
at the end of the subroutine[12, 13]. This information is then used for dependence analysis in place of
actual code. In our analysis of loop fusion, no examination of code was performed. Instead, dependence
analysis was performed on the loop invariants and PME. This seemed to suggest that it suffice to annotate
a loop-based algorithm with its loop invariant (or properties of the loop invariant) instead of having to
provide annotations for all subroutines that may be called by the algorithm.

Even if the presented loop merging analysis only finds practical application within DLA, the impact will
be considerable. Opportunities for merging loops abound within the operations, algorithms, and libraries
encountered in that domain, and the performance improvement is real. Because the analysis presented
in this paper was reasoned in terms of disjoint regions of arbitrary shapes, though, we believe it can be
extended to domains other than DLA.

Acknowledgments

This research was sponsored in part by NSF grants OCI-0850750 and CCF-0917167, a grant from Microsoft,
and the UTAustin-Portugal Colab Program. Bryan Marker was sponsored by a fellowship from Sandia
National Laboratories and an NSF Graduate Research Fellowship under grant DGE-1110007. This research
used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References

[1] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika Sub-
ramanian, Linda Torczon, and Todd Waterman. Finding effective compilation sequences. SIGPLAN

18

Not., 39(7):231–239, June 2004.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). SIAM,
1999.

[3] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman
Amarasinghe. Petabricks: a language and compiler for algorithmic choice. SIGPLAN Not., 44(6):38–
49, June 2009.

[4] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert A.
van de Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft.,
31(1):1–26, March 2005.

[5] Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. Families of algorithms related to the
inversion of a symmetric positive definite matrix. ACM Trans. Math. Softw., 35(1):1–22, 2008.

[6] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective communication:
theory, practice, and experience: Research articles. Concurr. Comput. : Pract. Exper., 19(13):1749–
1783, September 2007.

[7] Arun Chauhan, Cheryl McCosh, Ken Kennedy, and Richard Hanson. Automatic type-driven library
generation for telescoping languages. In Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting, SC ’03, pages 51–. ACM, 2003.

[8] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[10] Diego Fabregat-Traver and Paolo Bientinesi. Automatic generation of loop-invariants for matrix op-
erations. In Proceedings of the 2011 International Conference on Computational Science and Its
Applications, ICCSA ’11, pages 82–92. IEEE Computer Society, 2011.

[11] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[12] Jichi Guo, Mike Stiles, Qing Yi, and Kleanthis Psarris. Enhancing the role of inlining in effective
interprocedural parallelization. In ICPP’11, pages 265–274, 2011.

[13] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. SIGPLAN
Not., 35(1):39–52, December 1999.

[14] Tze Meng Low, Robert A. van de Geijn, and Field G. Van Zee. Extracting SMP parallelism for dense
linear algebra algorithms from high-level specifications. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP’05, pages 153–163, New York,
NY, USA, 2005. ACM.

[15] Bryan Marker, Don Batory, and Robert van de Geijn. DxTer: A program synthesizer for dense linear
algebra. Computer Science report TR-12-17, Univ. of Texas at Austin, 2012.

19

[16] Bryan Marker, Jack Poulson, Don Batory, and Robert van de Geijn. Designing linear algebra algo-
rithms by transformation: Mechanizing the expert developer. In International Workshop on Automatic
Performance Tuning (iWAPT2012). Proceedings of VECPAR 2012 Conference, July 2012.

[17] Jack Poulson, Bryan Marker, Jeff R. Hammond, Nichols A. Romero, and Robert van de Geijn. El-
emental: A new framework for distributed memory dense matrix computations. ACM Trans. Math.
Soft. to appear.

[18] Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on parallel
matrix inversion. SIAM J. Sci. Comput., 22(5):1762–1771, 2001.

[19] Taylor Riche, Don Batory, Rui Goncalves, and Bryan Marker. Architecture design by transformation.
Computer Science report TR-10-39, Univ. of Texas at Austin, 2010.

[20] Martin D. Schatz, Jack Poulson, and Robert A. van de Geijn. Scalable universal matrix multipli-
cation algorithms: 2d and 3d variations on a theme. ACM Transactions on Mathematical Software.
submitted.

[21] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI: The
Complete Reference. The MIT Press, 1996.

[22] Sid-Ahmed-Ali Touati and Denis Barthou. On the decidability of phase ordering problem in optimizing
compilation. In Proceedings of the 3rd conference on Computing frontiers, CF ’06, pages 147–156, New
York, NY, USA, 2006. ACM.

[23] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[24] Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-
Ort́ı. The libflame library for dense matrix computations. IEEE Computation in Science & Engineer-
ing, 11(6):56–62, 2009.

[25] Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indiana University
Computer Science, May 2004.

[26] Michael Joseph Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley Long-
man Publishing Co., Inc., 1995.

20

