
TACC Technical Report TR-12-05

A Parallel Sparse Direct Solver via Hierarchical
DAG Scheduling

Kyungjoo Kim∗ Victor Eijkhout∗

October 2, 2012

This technical report is a preprint of a paper intended for publication in a journal or proceed-
ings. Since changes may be made before publication, this preprint is made available with the
understanding that anyone wanting to cite or reproduce it ascertains that no published version
in journal or proceedings exists.

Permission to copy this report is granted for electronic viewing and single-copy printing. Per-
missible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no war-
ranty, express or implied, nor assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed.

∗ The University of Texas at Austin, Austin, TX 78712

Abstract

We present a scalable parallel sparse direct solver for multi-core architectures based
on Directed Acyclic Graph (DAG) scheduling. Recently, DAG scheduling has become
popular in advanced Dense Linear Algebra libraries due to its efficient asynchronous
parallel execution of tasks. However, its application to sparse matrix problems is more
challenging as it has to deal with an enormous number of highly irregular tasks. This
typically results in substantial scheduling overhead both in time and space and causes
overall parallel performance to be suboptimal. The described parallel solver is based
on the multi-frontal method exploiting two-level parallelism: coarse grain task par-
allelism is extracted from the assembly tree, then those tasks are further refined in
the matrix-level computation using algorithms-by-blocks. Resulting fine grain tasks
are asynchronously executed after their dependencies are analyzed. Our approach is
distinct from others in that we adopt a two-level scheduling strategy to mirror the two-
level parallelism. As a result we reduce scheduling overhead, and increase efficiency
and flexibility. The proposed parallel sparse direct solver is evaluated for the particular
problems arising from the hp-Finite Element Method where conventional sparse direct
solvers do not scale well.

Keywords

Gaussian elimination, Directed Acyclic Graph, Direct method, LU, Multi-core, Multi-
frontal, OpenMP, Sparse matrix, Supernodes, Task parallelism, Unassembled Hyper-
Matrix

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

1 Introduction
Many scientific applications require a considerable amount of time to solve a linear
system of equations Ax = b, where A is usually a large and sparse matrix. Large sparse
systems can be solved by either direct or iterative methods. The major disadvantage of
iterative methods is that the solution may not converge: usually the success of itera-
tive methods depends on the construction of good preconditioners that boost the con-
vergence rate. On the other hand, direct methods based on Gaussian elimination are
robust but expensive. Required memory for the solution in 2D problems is O(NlogN)
and 3D problems increases the space complexity O(N5/3) when a matrix is permuted
by nested dissection ordering [23, 25]. The performance of sparse direct methods gen-
erally varies according to the sparsity of problems [27]. No single approach is the best
in solving all types of sparse matrices. The approach selected is based on characteris-
tics of the sparsity pattern such as banded, (un)symmetric, and/or (un)structured. Thus,
a sparse direct solver should be customized to the type of sparse matrices derived from
a class of numerical algorithms. In our previous work [10], a new sparse direct solver
using Unassembled HyperMatrices (UHMs) was designed and developed for the Finite
Element Method (FEM) with hp-mesh refinements. In the adaptive context, the solver
effectively uses the application information in solving a sequence of linear systems
that are locally updated, and the solver stores partial factors previously computed and
exploits them to factorize the current sparse system. In this paper, extending our pre-
vious work, we present a fully asynchronous parallel sparse direct solver targeting
large-scale sparse matrices associated with the hp-FEM that range from 100k to a few
million unknowns 1.

There are two important aspects to hp-adaptive FEM matrices that we use in our solver.
First of all, the structure of the factorization is inherit from the refinement nature of the
problem. Our overall factorization approach is similar to the multi-frontal method [22,
28, 29, 35]: we recursively find multiple parallel entry points into the factorization
and eliminate them. Unlike traditional multi-frontal factorizations, we do not need to
discover this parallelism from a matrix (or finite element) structure, but we derive it
from the refinement history of the mesh, giving us an assembly tree that also becomes
the factorization tree (see our paper [10] for more details).

Secondly, matrices from hp-adaptive problems have dense subblocks – and this is more
so in the unassembled case – implying that there are essentially no scalar operations: all
operations are dense, which allows highly efficient Basic Linear Algebra Subprogram
(BLAS) level 3 functions [21] to be utilized.

Since we target our solver to a multicore and shared memory model, we develop a so-

1. The advanced hp-FEM typically provides an order of magnitude higher solution resolution than con-
ventional linear FEM by using both variable element size (h) and higher order of approximation (p).

TR-12-05 1

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

lution based on Directed Acyclic Graph (DAG) scheduling. DAG scheduling in Dense
Linear Algebra (DLA) has been developed over the last decade [12, 15, 39]. Unlike
the classic fork-join parallel model, this approach adopts asynchronous parallel task
scheduling using the DAG of tasks, where nodes stand for tasks and edges indicate
dependencies among them.

While these methods have been successful in the context of dense matrices, the appli-
cation of DAG scheduling to sparse matrices is not trivial for the following reasons:

1. There are two types of parallelism: task parallelism that decreases as the fac-
torization progresses, and finer grained parallelism in handling the dense blocks
that increases accordingly.

2. The overall factorization has a large number of tasks, which increases scheduling
overhead.

3. Tasks are inherently irregular, owing to the sparse matrix structure, the hp-
adaptivity, and the growing block size during the factorization.

4. Numerical pivoting of sparse matrices may create additional fills and cause dy-
namic changes to the workflow. Consequently, out-of-order scheduling based on
a DAG becomes less efficient.

Possibly due to the above difficulties, we have found only one case which uses the
DAG scheduling in sparse Cholesky factorization [32]. To the best of our knowledge,
no implementation based on DAG scheduling exists for sparse LU factorization with
pivoting.

In our scheme, irregular coarse grain tasks are decomposed into regular fine-grain tasks
using algorithms-by-blocks. Refined tasks are scheduled in a fully asynchronous man-
ner via multiple DAG schedulers. A key aspect of this solver is that a DAG scheduler
locally analyzes a series of block operations associated with a set of dense matrices.
The DAG scheduler developed here and its interface have the following features that
are distinct from other advanced DLA libraries such as SuperMatrix [15] and Parallel
Linear Algebra for Scalable Multi-core Architectures (PLASMA) [1]:

• OpenMP framework. Our DAG scheduling is implemented based on the OpenMP
framework. Users can create and insert their own tasks directly using OpenMP
environments or our tasking objects. PLASMA also allows user-defined tasks
through QUeuing And Runtime for Kernels (QUARK) [44]. However, users
need to redesign their codes for adoption in QUARK environments. OpenMP
is considered the de facto standard in parallel processing on the shared-memory
processor. OpenMP, using high-level compiler directives, has superior portabil-
ity and programmability.

• Storage format. The proposed DAG scheduler uses the traditional column-major
matrix format while both SuperMatrix and PLASMA use a locally packed stor-

TR-12-05 2

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

age scheme called storage-by-blocks. Compared to storage-by-blocks, the column-
major format may incur more cache misses in computation [30]. On the other
hand, storage-by-blocks generally increases overhead in the assembly procedure
as the entries of a matrix need to be hierarchically indexed. In addition, matrix
repacking overhead occurs when a solver interfaces to an application which does
not use the same blockwise matrix format. Later, we argue that the benefit of the
blockwise storage is low compared to this repacking cost.

• Task scheduler object. While both SuperMatrix and PLASMA are designed
as an infrastructure, which has a global scope to wrap a parallel region, our
DAG scheduler is designed as a local object. Users can create a scheduler ob-
ject, and select tasks to be associated with a specific scheduler. This feature
enables nested DAG scheduling; in effect we are scheduling schedulers. For
multiple dense problems, multiple schedulers can be used for different sets of
independent dense problems. Although tasks are separately analyzed, they are
asynchronously executed together through the unified tasking environment in
OpenMP.

Together, these insights advance the state-of-the art.

The paper is organized as follows. In Section 2, we discuss characteristic sparse pat-
terns created from hp-FEM. Section 3 explains the basic methods adopted to imple-
ment our parallel solver. Section 4 explains the design and components of the pro-
posed parallel sparse direct solver. In Section 5, the solver interfaces with hp-FEM
and is evaluated against other state-of-the-art parallel sparse direct solvers. Finally, we
summarize achievements and future works in Section 7.

2 Sparse Matrices from the hp-Finite Element Method

The FEM is widely used for solving engineering and scientific problems. The method
approximates solutions using piecewise polynomial basis functions in a discrete do-
main which creates a large sparse system of equations. The system of equations must
be solved, and the numerical cost is a trade-off with the quality of the solution. For an
efficient solution process it is essential to understand the characteristics of the sparse
system.

The advanced hp-FEM uses an adaptive strategy to deliver highly accurate solutions
while keeping the cost low. In hp-FEM, the adaptive procedure controls both mesh size
(h) and polynomial order of approximation (p). A large body of mathematical litera-
ture [8, 9, 42] on the theoretical analysis of hp-FEM proves its superior performance
compared to the conventional linear FEM or with fixed p.

TR-12-05 3

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

To solve problems formulated with hp-FEM, a direct method is often preferred to iter-
ative methods. The difficulty with iterative methods is an increasing condition number
with the approximation order [7, 13], which leads to a slow convergence or failure to
find solutions.

1

1 1

p-1

p-1

p-1

(p-1)(p-2)/2

(a) High order FE

P-1

P-1

P-1

(P-1)(P-2)/2

(b) Element matrix

Figure 1: The left figure shows the number of DOFs related to topological nodes with
a polynomial order p. The figure on the right illustrates the shape of an unassembled
element matrix corresponding to the finite element depicted on the left.

Compared to other linear methods, hp-discretization creates a more complex spar-
sity pattern due to the variable order of approximation. In hp-discretization, multiple
DOFs, corresponding to the polynomial order, are associated with the same topolog-
ical node, as illustrated in Fig. 1a. The number of DOFs increases with the order of
approximation 2 as follows:

Edge Face Volume
of DOF O(p) O(p2) O(p3)

Thus, the sparse system derived from hp-discretization can be characterized in terms
of topological nodes and associated DOFs rather than individual DOFs. However, a
general purpose sparse direct solver does not recognize the presence of such a struc-
ture. In our solver, the hp-discretization is directly associated with a weighted graph
structure. The connectivity of element matrices can be illustrated by blocks, as de-
picted in Fig. 1b. Mirroring the hp-mesh leads to a more efficient solver because it
significantly reduces the size of the graph that represents the sparse system, as well as
giving increased reliance on level 3 BLAS operations.

By assembling element matrices, a global sparse system can be formed; a typical sparse
matrix created by hp-FEM is shown in Fig. 2. Our solver is based on keeping element

2. In general, the order of approximation selected by hp-FEM is 3-4 for 2D and 5-6 for 3D problems.

TR-12-05 4

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

(a) A sparse pattern based on hp-discretization (b) Factors

Figure 2: The left figure shows a sparse matrix based on hp-discretization, which is
ordered by nested dissection. The figure on the right includes additional fill resulting
from the factorization.

matrices unassembled as long as possible during the factorization. Since element ma-
trices are characterized by (almost) dense blocks, this leads to a very efficient factor-
ization; see our earlier work [10]. This is somewhat similar to existing work on su-
pernodes [6, 17, 19, 28]; it differs in that supernodes are not discovered in our solver,
but rather given a priori.

3 Factorization Algorithms

A general procedure for direct methods consists of four phases: ordering, analysis, fac-
torization, and forward/backward substitution. In the first phase, a fill-reducing order
of the sparse matrix is constructed. Next, a symbolic factorization is performed in the
analysis phase to determine workspaces and supernodes. The heaviest workload is en-
countered within the numerical factorization. Once factors are computed, the solution
is obtained by forward/backward substitution.

Our factorization adheres to the same schema, but several aspects differ from the gen-
eral case because of our application area. For an overview of existing algorithms and
literature, we refer to the book [16]. In the next two sections, we first consider the
ordering stage, which is fairly simple in hp-FEM context: we can construct a nested
dissection ordering based on the refinement tree. Then, we focus on various aspects of
the numerical factorization stage, where again we benefit from our application context.

TR-12-05 5

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

3.1 Ordering strategy

1st Separator 2nd Separators

1

0 2

3

4 5
6

Domain

Figure 3: A nested dissection ordering is applied to a 2×2 quadrilateral mesh. Nodes
are divided and numbered by “separators”.

Typically, the factorization order of the unknowns is determined through graph anal-
ysis. In our application we derive it from the way the matrix is constructed hierarchi-
cally. This hierarchy is either the refinement history, or an a posteriori reconstruction
from the hp-mesh.

Let a given sparse matrix A be associated with the mesh depicted in Fig. 3. The figure
describes how a sequence of nested dissections is applied to the domain. For conve-
nience, a set of nodes is amalgamated by a separator, and numbered. Factorization can

A064A60 A066

A046A40 A044

A06A04A00

A46 A266

A64A44

A164A61 A166

A146A41 A144

A16A14A11

A365A63 A366

A356A53 A355

A36A35A33

A465A62 A466

A456A52 A455

A62A25A22

A65 A566

A56A55

A66

0

4

6

1 6

2

5

3

4 6 5

6

Figure 4: An assembly tree can be organized by coarsening a mesh. The superscript of
blocks represents temporary storage for Schur complements computed in each UHM.

proceed either within an assembled form or alternatively with unassembled matrices.
In hp-FEM, storing unassembled matrices is advantageous in the adaptive context be-
cause this format provides a potential opportunity to reuse partial factors previously

TR-12-05 6

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

computed for the solutions of a new updated system. For notation consistent with our
previous work [10], we denote the unassembled frontal matrices as UHMs.

The ordering shown in this example can decouple the system into several subsystems
that are hierarchically related, as depicted for a simple examples in Fig. 4. The UHM
solver organizes unassembled matrices as a tree structure, which can be derived from
either graph analysis or mesh refinements. The factorization is then a recursive appli-
cation of the following cycle:

• We can eliminate interior nodes within UHMs, giving a partial elimination.
• Joining together such partially eliminated elements, the nodes on interior bound-

aries become fully assembled interior nodes.

This procedure is recursively driven by post-order tree traversal; slightly more formally
we describe this recursion as follows:

1. Update. A UHM assembles its children.

A := merge
(

Ale f t
BR ,Aright

BR

)
where Ale f t

BR and Aright
BR represent the Schur complements from children. Leaf-

level UHMs do not need this step.
2. Partition of UHM. The UHM is partitioned into four blocks, where AT L contains

the fully assembled nodes.

A→
(

AT L AT R

ABL ABR

)
3. Partial factorization. We compute the block LU factorization of the partitioned

matrix A as shown below, where LT L and LBR are lower triangular matrices with
unit diagonal entries, and UT L and UBR are upper triangular matrices.(

AT L AT R

ABL ABR

)
→
(

LT L 0
LBL LBR

)(
UT L UT R

0 UBR

)
Interior nodes are eliminated by a standard right-looking LU algorithm com-
puting factors LT L and UT L. Respectively, interface matrices LBL and UT R are
computed and overwritten on ÂBL and ÂT R. Next, the Schur complement ÂBR =
ABR−LBLUT R is computed for the following update to its parent.(

ÂT L ÂT R

ÂBL ÂBR

)
←
(

LT LUT L UT R := L−1
T LAT R

LBL := ABLU−1
T L LBRUBR := ABR−LBLUT R

)
The recursive factorization finishes at the root, where ABR is an empty matrix.

TR-12-05 7

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

LU TRSM

TRSM GEMM

TRSM

TRSM GEMM

GEMM

GEMM LU TRSM

TRSM GEMM LU

1st Iteration 3rd Iteration2nd Iteration

Figure 5: Block LU factorization without pivoting is applied to a 3× 3 block matrix,
and the corresponding workflow produces a series of fine-grain tasks.

3.2 Algorithms-by-blocks

The multi-frontal method has a natural parallelism from its recursive post-order tree
traversal; tasks on separate branches can be processed simultaneously. However, closer
to the root, task parallelism decreases, while the blocks to be factored grow. Thus, fur-
ther parallelism in processing these dense blocks is essential to improve the efficiency
of the overall algorithm.

For processing these blocks, we use so-called algorithms-by-blocks [39], which refor-
mulate DLA algorithms in terms of blocks. Consider for example the partial factoriza-
tion described above. The factorization algorithm is presented in terms of blocks, but
only two independent tasks are available:

AT L := {L\U}T L LU
↓

ABL := L−1
T LABL AT R := AT RU−1

T L TRSM
↓

ABR := ABR−AT RABL GEMM

Further task-level parallelism can be pursued by organizing a matrix by blocks (sub-
matrices). For instance, consider a matrix AT L with 3×3 blocks, where each block Ai j

has conforming dimensions with adjacent blocks:

AT L =

 A00 A01 A02
A10 A11 A12
A20 A21 A22


The LU factorization can be reformulated as an algorithm-by-blocks changing the unit
of data from a scalar to a block. A number of tasks are identified from the resulting
workflow. For example, Fig. 5 describes a block LU factorization without pivoting.
In the first iteration of the algorithm, four independent TRSM and four independent
GEMM tasks are created after the unblocked LU factorization is performed on the first

TR-12-05 8

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

diagonal block. The algorithm generates tasks by repeating this process. In the same
way, coarse-grain TRSM and GEMM tasks encountered within the elimination tree
are decomposed into fine-grain tasks. These fine-grain tasks are mostly regular and
are related through input/output dependencies. After their dependencies are analyzed,
tasks are scheduled asynchronously, which leads to highly efficient task parallelism on
modern multi-core architectures. This has been explored in the past for parallelizing a
sequential workflow of dense matrices [12, 39]. For the case of SuperMatrix [15], two
separate task queues (i.e., a task queue and a waiting queue) are used to store enqueued
tasks and tasks ready to execute.

1. A task in the waiting queue is executed on an idle thread selected by a data
(thread) affinity policy.

2. After the task is completed, task dependencies are updated. Then, tasks for
which dependencies are satisfied are moved into the waiting queue.

This procedure repeated until the task queue is empty. In the next section, we explore
how to incorporate such algorithms in the context of a sparse solver.

4 A Fully Asynchronous Parallel Sparse Direct Solver

Figure 6: Macro tasks are created by recursive multi-frontal factorization on the as-
sembly tree. Tasks are irregular and hierarchically related.

In the course of a sparse factorization, as depicted in Fig. 6, we have two oppositely
behaving types of parallelism: on the one hand a decreasing amount of task parallelism
as the factorization progresses from the leaves to the root of the tree; on the other
hand, an increasing opportunity for parallelism inside the blocks as their sizes grow.
The question is how to exploit the two-level parallelism in harmony to extract the near-
optimal computing power from multi-core architectures avoiding excessive complexity
in the implementation.

TR-12-05 9

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

4.1 The limits of existing approaches

There are various ways of solving a linear system with the sparse matrix of an hp-
adaptive problem that rely on, or at least leverage, existing software [18]. First of all,
we note that existing sparse direct solvers do not do a good job of finding supernodes,
so they are suboptimal on our type of matrices.

Next, we recognize that the two-level factorization leads to a large number of tasks,
which we could schedule through a package like SuperMatrix or QUARK. The prob-
lem here is that the number of tasks is very large. Scheduling them in full would lead
to large scheduling overhead, and the use of a window would make the scheduler less
efficient. A further objection is that the task list is dynamic because of numerical piv-
oting, and these packages can not yet deal with that.

We could also use an approach that recognizes the two-level structure, such as using
multi-threaded BLAS or a DAG scheduler such as QUARK for the nodes, coupled with
a simple Breadth First Search (BFS) tree traversal. This approach suffers from imper-
fect load balance, for instance because each node in the graph has to be assigned to a
fixed number of cores [24, 2], which can then not participate in processing other nodes.
Also, completion of a node subtask is typically a synchronization point, diminishing
the parallel efficiency.

For these reasons we advocate an approach where a single task list is formed from
the subtasks of all the nodes. Our approach does not suffer from excessive scheduling
overhead, since we do not analyze global dependencies: we combine the natural post-
order node ordering in the tree, with a dependency analysis on the subtasks from each
tree node factorization. One might say we use our a priori knowledge of the factoriza-
tion algorithm for the large scale scheduling, and only use a runtime scheduler where
the algorithm does not dictate any particular ordering.

Furthermore, our approach can deal with pivoting and its dynamic insertions and dele-
tions in the task queue. as will be discussed below.

4.2 Parallelization strategy

Our solver strategy is driven by the post-order traversal of the elimination tree: each
node in the tree is a macro task that handles one UHM, and it can not proceed until its
children have been similarly processed. Recursively, this defines the overall algorithm.

We illustrate a macro task in Fig. 7. It consists of a merge of the Schur complement
of the children factorization, which carries an O(n2) cost, followed by level 3 BLAS
operations for the factorization, all of which are O(n3) in the macro block size.

TR-12-05 10

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

Merge children ABR

LU(ATL)

TRSM (ATL,ABL) TRSM (ATL,ABL)

GEMM(ABL,ATR,ABR)

Matrix addition

BLAS 3

Task granularity Workflow Partition

Figure 7: Internal workflow in a macro task associated with the partial factorization
includes mixed task granularity supported by different block partitions.

The block algorithms in each macro task lead to fine-grain tasks related by a DAG;
see Fig. 8. Rather than including the union of all fine-grain tasks in all blocks in a

LU

Trsm

Trsm

Trsm

Trsm Trsm Trsm Trsm Trsm Trsm Trsm Gemm

Gemm LU

Trsm Trsm Trsm Trsm Trsm

Gemm Gemm Gemm Gemm

Trsm Trsm Trsm

Gemm Gemm Gemm

LU

Gemm Gemm Gemm Gemm Gemm Gemm Gemm Gemm Gemm

Trsm Trsm Trsm Trsm Trsm Trsm

Gemm Gemm Gemm Gemm Gemm Gemm Gemm Gemm Gemm

Figure 8: A DAG represents the relation of fine-grain tasks generated by block LU,
TRSM, and GEMM which are applied to 3×3 block matrices.

single parallel region with a global DAG, we first schedule macro tasks related to the
assembly tree in a BFS manner. Next, each group of fine-grain tasks, and the associated
local DAG generated within a macro task, is scheduled in a Depth First Search (DFS)
order. Since no global DAG is used, scheduling overhead is considerably reduced.

4.3 OpenMP tasking

We use OpenMP to schedule all the fine-grained tasks. However, we do not use an ex-
plicit data structure to reflect the schedule according to which tasks are to be executed.
Instead, we rely on OpenMP mechanisms: by declaring tasks in the right execution
order with OMP pragmas, they are entered into the internal OMP scheduler.

TR-12-05 11

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

Note that we do not use the omp parallel for pragma around loops; rather, we se-
quentially let the loop generate OMP tasks. One advantage of this approach is that it
prevents the creation and dismissal of thread pools around each loop. Another reason
for not using OMP parallel loops is that they are not suited to nested parallelism.

The mechanisms we use are part of the explicit task management that was added to
OpenMP 3.0, released in 2008 [37]. The new task scheme includes two compiler di-
rectives:

1. #pragma omp task creates a new task
2. #pragma omp taskwait is used to synchronize invoked (nested) tasks.

In this work, nested parallelism is supported by OpenMP tasking; a task can recur-
sively create descendent tasks. Invoked tasks are scheduled based on a BFS order.
When a task spawns descendent tasks, #pragma omp taskwait can suspend the task
until those tasks are completed. For example, Fig. 9 outlines the parallel multi-frontal
factorization through post-order tree traversal with OpenMP tasking.

For low-level thread binding, we rely on OpenMP primitives. OpenMP utilizes a thread
pool to execute tasks; when a task is ready to execute, an idle thread picks it up to
process the task.

4.4 Scheduling strategy of the block matrix operations

The post order scheduling of the UHM macro tasks is clearly recognized in Fig. 9, in
particular in the structure of the function post_order_macro_task. We do not use the
same mechanism for scheduling the fine-grained tasks, since a DFS strategy is more
appropriate here. The reason for this is that a DFS strategy gives higher priority to
tasks on the critical path.

However, DFS task scheduling is not supported by OpenMP native task scheduling.
To realize DFS scheduling on a DAG, we designed a custom out-of-order task sched-
uler and implemented this using the OpenMP framework. For example, calls such as
create_gemm_task in Fig. 9 add a task to a local scheduler queue (see Fig. 10) for
the UHM macro task.

Details of the scheduler are given in Fig. 11; notably, the execute call causes the DAG
nodes of the dense block to be declared in the proper order as OpenMP tasks. Since
these local schedulers are scheduled in the proper post-order in Fig. 9, we find that all
tasks are executed in the right global order with only local analysis.

TR-12-05 12

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

// ** Sparse factorization via UHMs
i n t factorize_sparse_matrix(Tree::Node *root) {
// begin with the root node
post_order_macro_task(root , &factorize_uhm));
re turn SUCCESS;

}

// ** Post-order tree traversal
i n t post_order_macro_task(Tree::Node *me, i n t (*op_func)(Tree::Node*)) {

f o r (i n t i=0;i<me->get_n_children ();++i) {
// macro task generation for child tree-nodes
#pragma omp task firstprivate(i)
post_order_macro_task(me->get_child(i), op_func));

}

// BFS macro task scheduling
#pragma omp taskwait

// process the function (local scheduling)
op_func(me);

re turn SUCCESS;
}

// ** Partial factorization in UHM
i n t factorize_uhm(Tree::Node* nod) {
// merge the Schur complements from child tree-nodes
nod->merge();

// Local DAG scheduling for LU factorization
Scheduler s;

// tasks are created using algorithms-by-blocks
// and they are associated with a local scheduler
create_lu_tasks(nod->ATL, s);
create_trsm_tasks(nod->ATL, nod->ABL, s);
create_trsm_tasks(nod->ATL, nod->ATR, s);
create_gemm_tasks(nod->ABL, nod->ATR, nod->ABR, s);

// parallel execution of tasks in a DFS-like manner
s.flush();

re turn SUCCESS;
}

Figure 9: Macro tasks are generated through post-order tree traversal within the
OpenMP framework.

TR-12-05 13

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

// ** Fine-grain task generation using algorithms-by-blocks
i n t create_gemm_task(i n t transa , i n t transb ,

FLA Obj alpha , FLA Obj A, FLA Obj B,
FLA Obj beta , FLA Obj C,
Scheduler s) {

// no transpose A, no transpose B
// Matrix objects A, B, and C are hierarchically partitioned
f o r (p=0;p<A.width();++p)

f o r (k2=0;k2<C.width();++k2)
f o r (k1=0;k1<C.length();++k1)
// a task is enqueued with in/out arguements
s.enqueue(Task(name=’’Gemm’’, op=blas_gemm , // function pointer

n_int_args=2, transa , transb , // 2 - integer variables
n_fla_in=4, alpha , A, B, beta , // 4 - FLA input matrices
n_fla_out=1, C); // 1 - FLA output matrix

}

Figure 10: Fine-grain tasks are gathered for out-of-order scheduling when the opera-
tion is equipped with a valid scheduler object.

4.5 Storage scheme for dense problems

Certain current DLA libraries (for instance SuperMatrix and PLASMA) have moved
from the traditional column-major matrix format used in the classic BLAS and Linear
Algebra PACKage (LAPACK) libraries to a format of storage-by-blocks (also called
tile layout); a matrix is divided in blocks, and each block is contiguously laid out in
memory. While this may have certain performance advantages, we argue that it is not
appropriate in our application.

Block formats are motivated by the consideration that, if a block fits in the cache of a
single core, it provides a better data locality. Additionally, the storage scheme improves
the concurrency of multi-threaded operations as false-sharing is reduced. The increased
complexity of global addressing elements in this storage-by-blocks can be resolved by
using high-level programming interfaces [26, 43]. To interface a matrix in column-
major format to such a library, the matrix can be repacked into blocks to exploit the
hierarchy of the memory structure [1, 36].

Our main reason for using column-major storage throughout, and not adopting a block
format, derives from the workflow depicted earlier in Fig. 7. One sees that we have
to reconcile two different partitioning layouts; one is based on an irregular hp-mesh
for the subassembly procedure, and the other is partitioned by a fixed computational
block size for the numerical factorization. While the packed format is computationally
advantageous, it may incur significant overhead in merging the Schur complements
unless data enumeration is carefully managed.

Fig. 12a shows that our choice of storage format does not adversely affect performance:

TR-12-05 14

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

// ** Schedule all tasks
i n t Scheduler ::flush() {

whi le (tasks_not_empty()) {
end = begin + window_size; // set a range of tasks for analysis
analyze(); // construct a DAG for those tasks
execute(); // execute tasks in parallel

}
tasks.clear(); // clean-up task queue

re turn SUCCESS;
}

// ** Execute tasks in an active window
i n t Scheduler ::execute() {

f o r (i=begin;i<end;++i) {
#pragma omp task firstprivate(i)
schedule_tasks(&tasks[i]); // schedule fine-grain tasks using OpenMP

}

#pragma omp taskwait // complete execution of a DAG
begin = end; // close the window

re turn SUCCESS;
}

// ** Recursive DFS-like task scheduling
i n t Scheduler ::schedule_tasks(Task *t) {
// if this task is alreay processed, then skip it
i f (t->get_status() == COMPLETED)

re turn SUCCESS;

f o r (i=0;i<t->get_n_dependent_tasks ();++i) {
// recursively schedule dependent tasks first
#pragma omp task firstprivate(i)
schedule_tasks(t->get_dependent_task(i));

}

#pragma omp taskwait

// after dependent tasks are executed, then the current task is executed
t->execute();

re turn SUCCESS;
}

Figure 11: To execute tasks in a DFS-like order, dependent tasks are recursively exe-
cuted before processing a task.

TR-12-05 15

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

0 2 4 6 8 10 12 14
0

50

100

150

200

Dimension n (in thousands)

G
FL

O
PS

Cholesky

LINAL(DAG)
SuperMatrix
SuperMatrix with packing
PLASMA
PLASMA with packing

0 2 4 6 8 10 12 14
0

50

100

150

200

Dimension n (in thousands)

G
FL

O
PS

LU with partial pivoting

LINAL(DAG)
SuperMatrix
SuperMatrix with packing
PLASMA
PLASMA (col-major)

Figure 12: [Clarksville 24 cores] Dense matrix factorizations are evaluated with a
fixed blocksize 256. Our dense solver adopts the column-major storage format for
both factorizations, and SuperMatrix uses the storage-by-blocks for both factoriza-
tions. PLASMA is evaluated with storage-by-blocks and column-major storage format
respectively for Cholesky and LU factorization with partial pivoting.

TR-12-05 16

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

our software performs similar to, or slightly less than SuperMatrix and PLASMA on
Cholesky factorization. However, if these packages interface to software using column
format, and repacking needs to be included, our performance is far superior.

4.6 LU factorization

A major difficulty for the efficient parallelization of LU factorization lies in the design
of the pivoting operation, which requires an entire column vector. While the traditional
column-major matrix format is well-suited for this purpose, the storage-by-blocks is
problematic since column vectors are scattered among blocks.

Both Supermatrix [14] and PLASMA [20] have strategies for dealing with this prob-
lem. The comparison of LU factorization with partial pivoting depicted in Fig. 12b
shows the performance of our task scheduler matches that of PLASMA for small ma-
trices, but PLASMA achieves a higher performance asymptotically. Both implemen-
tations do not pay an extra cost in converting the format to detect pivots. By contrast,
Supermatrix does not scale well, as it requires copying blocks for each panel factor-
ization.

Alternatively, traditional partial pivoting can be modified into the incremental pivoting
scheme [39]. The scheme updates the column blocks by performing LU factorization
with partial pivoting in a pair of blocks including the upper triangular matrix of a
corresponding diagonal block. Since the pivoting operation is executed separately in
each column block, this approach carries a number of pivoting operations which may
cause excessive element growth [38]. In practice, the incremental pivoting scheme
provides more efficient task parallelism as it removes synchronizations due to pivoting
on column vectors [14].

5 Performance

We present the performance of the proposed solver against state-of-the-art parallel
sparse direct solvers i.e., MUltifrontal Massively Parallel sparse direct Solver (MUMPS)
and PARDISO:

• MUMPS [4, 5] has been developed for distributed architectures via Message
Passing Interfaces (MPI) since 1996. For this comparison, MUMPS version
4.10.0 is interfaced to Scalable Linear Algebra PACKage (ScaLAPACK) with
Basic Linear Algebra Communication Subprograms (BLACS) provided by In-
tel Math Kernel Library (MKL) version 10.2.

• PARDISO [40, 41] solver was developed for multi-core architectures in 2004,
and is part of Intel MKL version 10.2 and higher.

TR-12-05 17

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

Clarksville
Processors 24 Processing Cores, Intel Dunnington 2.66 GHZ

(4x hex-core chips)
Memory 96 GB ccNUMA
Cache 16 MB L3, three 3 MB shared L2 caches

Compiler & OpenMP Intel 11.1
DLA FLAME ver 6883, PLASMA ver 2.0

BLAS Intel MKL 10.2
Theoretical Peak 256 GFLOPS

Figure 13: Experimental setup on the Clarksville machine installed at the Texas Ad-
vanced Computing Center

Test problems
Order p # of DOFs # of non-zeros

1 6,017 524,288
2 45,825 3,276,800
3 152,193 13,107,200
4 357,889 40,140,800
5 695,681 102,760,448
6 1,198,337 231,211,008
7 1,898,625 471,859,200

Figure 14: Sparse matrices are obtained from tetrahedral meshes varying an approx-
imation order from 1 to 7. The maximum # of DOFs reaches 1.9 million, and the
smallest problem includes 6 thousand unknowns.

TR-12-05 18

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

For all cases, we use a 24-core machine and test setup described in Fig. 13.

Test problems are based on the same tetrahedral hp-discretization varying the polyno-
mial order of approximation, p, from 1 to 7; problem sizes and sparsity are described in
Fig. 14. Test problems produce double precision and structurely symmetric matrices.
Test problems are reordered based on the nested dissection by Metis version 4.0 [34],
and LU factorization is performed with partial pivoting.

5.1 Scalability

We assess the strong scalability of our solver by performing an analysis in terms of
Amdahl’s law. Let the normalized workload be divided into serial and parallel frac-
tions s+ p = 1. The serial part is unavoidable for several reasons: mutual dependen-
cies, sequential workflows, shared resources, and start-up overhead, etc. The time cost
performed by a single thread for the normalized workload is

T1 = s+ p

and the time cost needed by N workers for the same workload is

TN = s+
p
N
.

This type of analysis is called strong scaling: we consider the speed-up by increasing
the number of processing units for a fixed problem.

The speed-up of a parallel application is then (Amdahl’s law [3])

S = T1/TN =
1

s+ 1−s
N

.

The law expects that the speed-up of parallel applications eventually converges to 1/s
as N goes to infinity.

Through curve-fitting to Amdahl’s law, the serial part, s, of the solvers can be quanti-
tatively estimated as shown in Fig. 15. Some observations are:

• As shown in the graph, our solver follows Amdahl’s expectation up to 16 cores
with s = 0.030.

• Meanwhile, MUMPS shows increasing speed-up to 12 cores, and its serial part
is estimated as s = 0.195.

• The graph also shows that the UHM solver does not scale well when it does not
exploit fine-grain tasks. This implies that the contribution from using algorithms-
by-blocks and asynchronous task execution are pivotal in gaining parallel per-
formance.

TR-12-05 19

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

5 10 15 20
0

500

1,000

1,500

2,000

2,500

of threads

Ti
m

e
[s

ec
]

PARDISO
UHM no blk
MUMPS
UHM blk 256

0 5 10 15 20
0

5

10

15

of threads

SP
E

E
D

-U
P

Amdahl s=0.030
UHM blk 256
Amdahl s=0.195
MUMPS
UHM no blk
PARDISO

Figure 15: Factorization phase for fixed p = 4 by increasing the number of threads
from 1 to 24.

TR-12-05 20

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

We also note that the number of scalable cores is dependent on the problem size; hence,
the number of effective cores shown in this figure is limited for this case study only.

Based on this evaluation, the two most competitive direct solvers are UHM and MUMPS.
In the next part of this performance comparison, we will evaluate these two solvers.

5.2 Analysis phase

400 800 1,200 1,600 2,000

100

101

102

of dofs (in thousands), increasing p=1-7

Ti
m

e
[s

ec
]

Analysis phase

MUMPS
UHM

Figure 16: Time (lower is better) measured in the analysis phase with increase in the
polynomial order from 1 to 7.

The efficiency of our solver in the reordering and analysis phases can be attributed
to a unique interface that takes into account the hp-discretization process. Instead of
partitioning the matrix graph itself, we let Metis partition a weighted quotient graph
based on the element connectivity, where the weights are the associated number of
DOFs. Hence, the time complexity does not vary if we only vary the polynomial orders.
On the other hand, Fig. 16 shows that MUMPS spends a considerable amount of time
reordering and analyzing the matrix that increases with higher p. Most conventional
direct solvers with an entry-wise interface would suffer the same problem because this
format loses such high-level application information.

On the other hand, for lower order FEM we incurs additional overhead in the conver-
sion from a sparse matrix to a weighted graph.

TR-12-05 21

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

400 800 1,200 1,600 2,000
0

200

400

600

800

1,000

1,200

of dofs (in thousands), increasing p=1-7

Ti
m

e
[s

ec
]

Factorization phase

MUMPS
UHM

400 800 1,200
0

1

2

3

of dofs (in thousands), increasing p=1-7

SP
E

E
D

-U
P

Factorization phase

MUMPS
UHM

Figure 17: Time in the factorization phase; problem size increase is induced by the
increase in the polynomial order from 1 to 7.

TR-12-05 22

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

5.3 Factorization

Both solvers report roughly the same FLoating Point Operation (FLOP) estimates for
the factorization, which is probably caused by the fact that in both cases we use the
same nested dissection algorithm provided by Metis. The overall performance gain of
our solver is mainly due to its efficient parallel execution of fine-grain tasks for the
entire sparse matrix factorization. Fig. 17 shows that our solver is more efficient than
MUMPS for problems with higher p values. The graph also shows that our solver is
slower than MUMPS for the matrices based on linear discretization.

Fig. 18 compares the space complexity of both solvers: the graph records the maximum
amount of memory required for solving the problems. Our solver uses less memory
than MUMPS, which is estimated at more than 100 GB for p = 7. Because of this, we
could not use MUMPS to solve the p= 7 case problem on our test machine. The reason
for the fact that MUMPS requires more memory than our solver, even if both compute
the similar number of FLOPs, is probably that MUMPS includes extra workspaces for
communication as the solver is designed for distributed memory architectures.

6 Related Work

We mention two packages that have similarities to our solver; however, we did not test
these as they are designed for Cholesky factorization only.

TAUCS [33] uses recursive block storage in its multi-frontal Cholesky factorization ac-
companying parallel recursive BLAS. The combination of recursive format and dense
subroutines naturally schedules fine-grain tasks exploiting the memory hierarchy of
modern computing architectures. The basic approach is similar to ours in that the fine-
grain tasks are created within the harmony of two-level parallelism. The difference
is that the solver is parallelized through Cilk [11], and the lookahead based on task
dependencies is not directly used in scheduling tasks.

MA87 [32] uses DAG-based task scheduling for left-looking sparse Cholesky factor-
ization. A global DAG is implicitly created and loosely guides task scheduling. A task,
of which dependencies are relieved, is moved from the task pool to a local thread stack.
After a task in the thread stack is executed, dependencies are updated, and the proce-
dure is repeated. The task pool maintains tasks with a priority based on type; for exam-
ple, factorization on diagonal blocks has the highest priority, and updating blocks has a
lower priority. Additionally, MA87 interfaces in-house dense kernels implemented in
MP54 [31], which also uses DAG-based scheduling. However, the scheme for DAG-
based task scheduling is tied to the numerical algorithms, and requires a large task pool
to avoid global synchronization.

TR-12-05 23

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

400 800 1,200 1,600 2,000
0

50

100

of dofs (in thousands), increasing p=1-7

M
em

or
y

[G
B

]
Factorization phase

MUMPS
UHM

400 800 1,200 1,600 2,000
0

0.2

0.4

0.6

0.8

1

of dofs (in thousands), increasing p=1-7

R
at

io
of

us
ed

m
em

or
y

Factorization phase

MUMPS
UHM

Figure 18: Memory used in the factorization phase with increase in the polynomial
order from 1 to 7.

TR-12-05 24

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

7 Conclusion

This paper presents a novel design for a scalable parallel sparse direct solver that ex-
ploits the features of hp-adaptive FEM problems, outperforming the MUMPS solver.
The proposed direct solver uses two-levels of tasks; macro tasks are associated with
the assembly tree, and fine-grain tasks are related to the partial factorization of each
UHM. Correspondingly, we have treewise scheduling of the macro tasks, where each
task uses a local DAG scheduler. Together, we get efficient scheduling, without the
need for constructing a global DAG. For the assignment of tasks to threads, we fully
rely on the OpenMP task mechanism.

The multi-level task scheduling does not only provides a lookahead opportunity but
also effectively controls the overhead resulting from out-of-order task scheduling as
DAGs are locally built. In addition, the multi-level task scheduling enables a smooth
transition between tree-level and matrix-level parallelism. A macro task dispatched in
a BFS order can naturally associate its subbranches to the same thread, which pro-
vides better locality. Meanwhile, fine-grain tasks can be dispatched to other available
resources, which enables better load balancing.

The high performance of the proposed solver is mainly attributed to the fine-grain
tasks produced by means of algorithms-by-blocks applied to dense subproblems. By
contrast, the currently available advanced DLA libraries strictly control all computing
resources in exploiting DAGs, and do not allow application-level resource manage-
ment. The lack of such application-level resource management in those DLA libraries
may significantly limit overall efficiency when they are interfaced with other applica-
tions that require solutions of multiple dense problems such as a multi-frontal solver.

Our experiments on dense factorization demonstrate that the column-major matrix for-
mat does not significantly lower parallel performance. The experiments also show that
matrix repacking is expensive compared to the benefits of locality obtained from the
blockwise packed format. In fact, the blockwise packed format is not required in driv-
ing algorithms-by-blocks; however, the format is used in SuperMatrix and QUARK
because they analyze data dependencies in terms of continuous array objects. Instead,
we use the column-major matrix format, which allows efficient irregular access to ma-
trix members, and use associated view objects as basic computing units for fine-grain
tasks.

The highly asynchronous parallel performance comes from the blend of all design
points described above. The solver especially aims at the solution of problems based on
hp-discretization. Our experiments shows that the solver outperforms the other state-
of-the-art sparse direct solvers (PARDISO and MUMPS) when a domain is discretized
with a higher order of approximation. This solver is also effective if problems are

TR-12-05 25

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

formulated with a group of variables, which results in similar sparse patterns to high
order discretization.

Acknowledgement

This research was sponsored by National Science Foundation (NSF) under grant no.
0904907. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
NSF. We thank Texas Advanced Computing Center (TACC) at the University of Texas
at Austin for allowing to use their equipments in this work.

The code that this paper describes has been developed based on libflame and OpenMP.
Codes are available under the GNU Lesser General Public License (LGPL) for the
non-commercial use at http://code.google.com/p/uhm.

References

[1] Emmanuel Agullo, Julie Langou, and Piotr Luszczek. PLASMA Users Guide
2.0. http://icl.cs.utk.edu/plasma, 2010.

[2] Pothen Alex and Chunguang Sun. A mapping algorithm for parallel sparse
Cholesky factorization. SIAM Journal on Scientific Computing, 14(5):1253–
1257, 1993.

[3] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS ’67, Spring Joint Computer Conference, pages
483–485, May 1967.

[4] P. R. Amestoy, I. S. Duff, J. Y. L’Excellent, and J. Koster. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Ma-
trix Analysis and Applications, 23(1):15–41, 2002.

[5] P. R. Amestoy, Abdou Guermouche, and J. Y. L’Excellent. Hybrid scheduling for
the parallel solution of linear systems. Parallel Comput., 32(2):136–156, 2006.

[6] Cleve Ashcraft and Roger Grimes. The influence of relaxed supernode parti-
tions on the multifrontal method. ACM Transactions on Mathematical Software,
15(4):291–309, December 1989.

[7] I. Babuška, M. Griebel, and J. Pitkäranta. The problem of selecting the shape
functions for a p-type finite element. International Journal for Numerical Meth-
ods in Engineering, 28(8):1891–1908, August 1989.

[8] Ivo Babuška and Manil Suri. The p and hp versions of the finite element method,
basic principles and properties. SIAM Review, 36(4):578–632, 1994.

[9] Ivo Babuška, B. A. Szabó, and I. N. Katz. The p-version of the finite element
method. SIAM journal on numerical analysis, 18(3):515–545, 1981.

TR-12-05 26

http://code.google.com/p/uhm

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

[10] Paolo Bientinesi, Victor Eijkhout, Kyungjoo Kim, Jason Kurtz, and Robert A.
van de Geijn. Sparse direct factorizations through Unassembled Hyper-Matrices.
Computer Methods in Applied Mechanics and Engineering, 199(9-12):430–438,
December 2010.

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proceedings of the fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, volume 37, pages 207–216, August 1995.

[12] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A Class of
Parallel Tiled Linear Algebra Algorithms for Multicore Architectures. Parallel
Computing, 35(1):38–53, 2009.

[13] P. Carnevali, R. B. Morris, Y. Tsuji, and G. Taylor. New basis functions and com-
putational procedures for p-version finite element analysis. International journal
for numerical methods in engineering, 36(22):3759–3779, 1993.

[14] Ernie Chan, Robert A. van de Geijn, and Andrew Chapman. Managing the com-
plexity of lookahead for LU factorization with pivoting. In Proceedings of the
22nd ACM Symposium on Parallelism in Algorithms and Architectures - SPAA
’10, pages 200–208, New York, New York, USA, 2010. ACM Press.

[15] Ernie Chan, Field G. van Zee, Enrique S. Quintana-Orti, Gregorio Quintana-Orti,
and Robert A. van de Geijn. Satisfying your dependencies with Supermatrix. In
2007 IEEE International Conference on Cluster Computing, pages 91–99. IEEE,
2007.

[16] Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms 2). Number 0898716136. SIAM, Philadelphia, PA, USA, 2006.

[17] Timothy A. Davis and William W. Hager. Dynamic supernodes in sparse
Cholesky update / downdate and triangular solves. ACM Transactions on Math-
ematical Software (TOMS), 35(4):1–23, 2009.

[18] Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszynski, Waldemar
Rachowicz, and Adam Zdunek. Computing with Hp-Adaptive Finite Elements,
Vol. 2: Frontiers Three Dimensional Elliptic and Maxwell Problems with Appli-
cations. Chapman & HallCRC, 2007.

[19] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[20] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achieving
numerical accuracy and high performance using recursive tile LU factorization.
Technical report, LAPACK Working Note 259, 2011.

[21] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of
level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1–17,
March 1990.

TR-12-05 27

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

[22] I. S. Duff. Parallel implementation of multifrontal schemes. Parallel Comput.,
3(3):193–204, 1986.

[23] I. S. Duff, A. M. Erisman, and J. K. Reid. On George’s nested dissection method.
SIAM Numerical Analysis, 13(5):686–695, 1976.

[24] G. A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization.
International Journal of Parallel Programming, 18(4):291–314, 1989.

[25] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm.
Numer. Math., 50(4):377–404, 1987.

[26] Peter Gottschling, David S. Wise, and Michael D. Adams. Representation-
transparent matrix algorithms with scalable performance. In ICS ’07 Proceedings
of the 21st annual international conference on Supercomputing, pages 116–125,
2007.

[27] Nicholas I. M. Gould, Jennifer A. Scott, and Yifan Hu. A numerical evaluation
of sparse direct solvers for the solution of large sparse symmetric linear systems
of equations. ACM Transactions on Mathematical Software, 33(2):10:1–32, June
2007.

[28] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for
sparse matrix factorization. IEEE Transactions on Parallel and Distributed Sys-
tems, 8(5):502–520, May 1997.

[29] Anshul Gupta and Vipin Kumar. A scalable parallel algorithm for sparse
Cholesky factorization. In Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, pages 793–802. ACM, 1994.

[30] Fred G. Gustavson, Isak Jonsson, Bo Kagström, and Per Ling. Towards peak
performance on hierarchical SMP memory architectures - new recursive blocked
data formats and BLAS. In Parallel Processing for Scientific Computing, pages
1–4, 1999.

[31] J. D. Hogg. A DAG-based parallel Cholesky factorization for multicore systems.
Technical Report December, SFTC Rutherford Appleton Laboratory, RAL-TR-
2008-029, Harwell Science and Innovation Campus, 2008.

[32] J. D. Hogg, J. K. Reid, and J. A. Scott. A DAG-based sparse Cholesky solver
for multicore architectures. Technical report, SFTC Rutherford Appleton Labo-
ratory, RAL-TR-2009-004, Harwell Science and Innovation Campus, 2009.

[33] Dror Irony, Gil Shklarski, and Sivan Toledo. Parallel and fully recursive multi-
frontal sparse Cholesky. Future Generation Computer Systems, 20(3):425–440,
April 2004.

[34] George Karypis and Vipin Kumar. METIS : A software package for partitioning
unstructured graphs , partitioning meshes , and computing fill-reducing orderings
of sparse matrices. Technical report, University of Minnesota, 1998.

[35] Joseph W. H. Liu. The multifrontal method for sparse matrix solution: theory and
practice. Siam Review, 34(1):82–109, 1992.

TR-12-05 28

Kim and Eijkhout Parallel Sparse Direct Solver via Hierarchical DAG Scheduling

[36] Tze Meng Low and Robert A. van de Geijn. An API for manipulating matrices
stored by blocks. Technical report, FLAME Working Note 12, TR-2004-15, The
University of Texas at Austin, Depar, 2004.

[37] OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 3.0. http://www.openmp.org, 2008.

[38] Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Updating an LU factoriza-
tion with pivoting. ACM Transactions on Mathematical Software, 35(2):1–16,
July 2008.

[39] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́, Robert A. van de Geijn,
Field G. van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for
thread-level Parallelism. ACM Transactions on Mathematical Software, 36(3):1–
26, July 2009.

[40] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear
equations with PARDISO. In Proceedings of the International Conference on
Computational Science-Part II, pages 335–363. Springer-Verlag, 2002.

[41] Olaf Schenk and Klaus Gärtner. On fast factorization pivoting methods for sparse
symmetric indefinite systems. Electronic Transactions on Numerical Analysis,
23:158–179, 2006.

[42] B. A. Szabó. The p and hp versions of the finite element method in solid mechan-
ics. Computer Methods in Applied Mechanics and Engineering, 80(1-3):185–
195, 1990.

[43] Vinod Valsalam and Anthony Skjellum. A framework for high-performance
matrix multiplication based on hierarchical abstractions, algorithms and opti-
mized low-level kernels. Concurrency and Computation: Practice and Experi-
ence, 14(10):805–839, August 2002.

[44] Asim Yarkhan, Jakub Kurzak, and Jack Dongarra. QUARK Users’ Guide. Tech-
nical Report April, Electrical Engineering and Computer Science, Innovative
Computing Laboratory, University of Tenessee, 2011.

TR-12-05 29

	Introduction
	Sparse Matrices from the hp-Finite Element Method
	Factorization Algorithms
	Ordering strategy
	Algorithms-by-blocks

	A Fully Asynchronous Parallel Sparse Direct Solver
	The limits of existing approaches
	Parallelization strategy
	OpenMP tasking
	Scheduling strategy of the block matrix operations
	Storage scheme for dense problems
	LU factorization

	Performance
	Scalability
	Analysis phase
	Factorization

	Related Work
	Conclusion

