
Implementing Level-3 BLAS with BLIS: Early Experience

FLAME Working Note #69

Field G. Van Zee∗† Tyler Smith∗† Francisco D. Igual‡ Mikhail Smelyanskiy§

Xianyi Zhang¶ Michael Kistler‖ Vernon Austel∗∗ John Gunnels∗∗ Tze Meng Low∗†

Bryan Marker∗ Lee Killough†† Robert A. van de Geijn∗†

April 27, 2013

Abstract

BLIS is a new software framework for instantiating high-performance BLAS-like dense linear algebra libraries.
We demonstrate how BLIS acts as a productivity multiplier by using it to implement the level-3 BLAS on a variety
of current architectures. The systems for which we demonstrate the framework include state-of-the-art general
purpose, low-power, and special purpose architectures. We show how, with very little effort, the BLIS framework
yields sequential and parallel implementations that are competitive with the performance of ATLAS, OpenBLAS
(an effort to maintain and extend the GotoBLAS), and commercial vendor implementations such as AMD’s
ACML, IBM’s ESSL, and Intel’s MKL libraries. While most of this paper focuses on single core implementation,
we also provide compelling results that suggest the framework’s leverage extends to the multithreaded domain.

1 Introduction

This paper discusses early results for BLIS (BLAS-like Library Instantiation Software) [26], a new framework for
instantiating Basic Linear Algebra Subprograms (BLAS) [17, 5, 4] libraries. BLIS provides a novel infrastructure
that refactors, modularizes, and expands existing BLAS implementations [7, 8], thereby accelerating DLA portability
across the wide range of current and futures architectures. An overview of the framework is given in [26].

The current paper demonstrates the ways in which BLIS is a productivity multiplier: it greatly simplifies the
task of instantiating BLAS functionality. We do so by focusing on the level-3 BLAS (a collection of fundamental
matrix-matrix operations). Here, the essence of BLIS is its micro-kernel, in terms of which all level-3 functionality
is expressed and implemented. Only this micro-kernel needs to be customized for a given architecture; routines
for packing as well as the loops that block through matrices (to improve data locality) are provided as part of the
framework. Aside from coding the micro-kernel, the developer needs only choose appropriate cache and register block
sizes to instantiate highly tuned DLA implementations on a given architecture, with virtually no additional work.

A team of BLAS developers, most with no previous exposure to BLIS, was asked to evaluate the framework. They
wrote only the micro-kernel for double-precision real general matrix multiplication (dgemm) for architectures of their

choosing. The architectures on which we report include general purpose processors (AMD A10, Intel R© Xeon
TM

E3-
1220 “Sandy Bridge E3”, and IBM Power7), low-power processors (ARM Cortex-A9, Loongson 3A, and IBM Blue

Gene/Q PowerPC A2), and special purpose architectures (Intel R© Xeon Phi
TM

and Texas Instruments C6678 DSP).
We believe this selection of architectures is illustrative of the main solutions available in the HPC arena, with the
exception of GPUs (see comment in the conclusion). With moderate effort, not only were full implementations of

∗Department of Computer Science, The University of Texas at Austin, Austin, TX 78712.
†Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712.
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dgemm created for all of these architectures, but the implementations attained performance that rivals that of the
best available BLAS libraries. Furthermore, the same micro-kernels, without modification, are shown to support
high performance for the remaining level-3 BLAS (for a single core, at present). Finally, by introducing simple
OpenMP [20] pragmas, multithreaded parallelism was extracted.

2 Why a new open source library?

Open source libraries for BLAS-like functionality provide obvious benefits to the computational science community.
While vendor libraries like ESSL from IBM, MKL from Intel, and AMCL from AMD provide high performance at
nominal or no cost, they are proprietary implementations. As a result, when new architectures arrive, a vendor must
either (re)implement a library or depend on an open source implementation that can be easily retargeted to the new
architecture. This is particularly true when a new vendor joins the high-performance computing scene.

In addition, open source libraries can facilitate research. For example, as architectures strive to achieve lower
power consumption, hardware support for fault detection and correction may be sacrificed. Incorporation of algo-
rithmic fault-tolerance [13] into BLAS libraries is one possible solution [11]. For this, a well-structured open source
implementation facilitates research related to algorithmic fault-tolerance.

Prior to BLIS, there were two open source options for high performance BLAS: ATLAS [27] and OpenBLAS [19],
a fork of the widely used GotoBLAS [7, 8] implementation that is itself no longer supported. The problem is that
neither is easy to maintain or modify and we would argue that neither will easily facilitate such research1.

As a framework, BLIS has commonality with ATLAS. In practice, ATLAS requires a hand-optimized kernel. Given
this kernel, ATLAS tunes the blocking of the computation in an attempt to optimize the performance of matrix-
matrix routines (although in [29] it is shown parameters can be determined analytically). Similarly, BLIS requires a
kernel to be optimized. But there are many important differences. BLIS mimics the algorithmic blocking performed
in the GotoBLAS. To our knowledge, on nearly all architectures, the GotoBLAS outperforms ATLAS, often by a wide
margin. BLIS implements a fundamentally better approach, which is based on theoretical insights [10] that almost
always outperform ATLAS. We believe BLIS to be layered in a way that makes the code easier to understand than
both the autogenerator that generates ATLAS implementations and those generated implementations themselves.
ATLAS-like approaches have other drawbacks. For example, some architectures require the use of cross compilation
processes, which invalidate the possibility of auto-tuning at installation time. ATLAS is also impractical when used
with simulators when designing future processors. This we believe will make BLIS both higher-performing and more
flexible than ATLAS.

While BLIS mimics the algorithms that Goto developed for the GotoBLAS (and thus OpenBLAS), we consider
his implementations difficult to understand, maintain, and extend. Thus, they will be harder to port to future
architectures and more cumbersome when pursuing new research directions. In addition, as we will discuss later,
BLIS casts Goto’s “inner kernel” in terms of a smaller micro-kernel that requires less code to be optimized and,
importantly, facilitates the optimization of all level-3 BLAS. These extra loops also expose convenient opportunities
for parallelism.

3 A layered implementation

In many ways, the BLIS framework is a reimplementation of the GotoBLAS software that increases the reuse of
code via careful layering. We now describe how such an approach layers the implementation of matrix-matrix
multiplication, how BLIS mimics this, and how BLIS differs.

A layered approach The gemm operation computes C := αAB+ βC, where C, A, and B are m×n, m× k, and
k × n, respectively. For simplicity, we will assume that α = β = 1.

It is well-known that near-peak performance can already be attained for the case where A and B are m× kc and
kc × n, respectively, where block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

1We acknowledge that in this paper we present no evidence that BLIS is any easier to decipher, maintain, or extend. The reader will
have to investigate the source code itself.
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Figure 1: Illustration from [26] of the various levels of blocking and related packing when implementing gemm in the
style of [7]. The bottom layer shows the general gemm and exposes the special case where k = kc (known as a rank-k
update, with k = kc). The middle layer shows what is the inner kernel in the GotoBLAS. The top layer shows the
micro-kernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes used by
the higher-level blocked algorithms to partition the matrix problem down to a so-called “block-panel” subproblem
(depicted in the middle of the diagram), implemented in BLIS as a portable “macro-kernel”. Similarly, mr and nr
serve as register block sizes for the micro-kernel in the m and n dimensions, respectively, which also correspond to
the length and width of the individual packed panels of matrices Ãi and B̃, respectively.

To implement this special case (k = kc) matrix C is partitioned into row panels, Ci, that are mc × n, while A
(which is m× kc) is partitioned into mc × kc blocks, Ai. Then C := AB + C means that Ci := AiB + Ci. Now, B
is first “packed” into contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated by the
arrows in that array. Next, for each Ci and Ai, the block Ai is packed into contiguous memory as indicated by the
arrows in Ãi. Then, Ci := ÃiB̃ + Ci is computed with a so-called “inner kernel,” which an expert assembly codes
for a specific architecture. In his approach, Ãi typically occupies half of the L2 cache and B̃ is in main memory (or
the L3 cache).

The BLIS approach The BLIS framework takes the inner kernel and breaks it down into a double loop over
what we call “the micro-kernel.” The outer loop2 of this is already described above: it loops over the n columns of
B, as stored in B̃, nr columns at a time. The inner loop views Ai, stored in Ãi, as panels of mr rows. These loops
(as well as all loops required to block down to this point) are coded in C99. It is then the multiplication of the row
panel of Ãi times the column panel of B̃ that updates an mr × nr block of C, which is typically kept in registers
during this computation. The dimensions mr and nr refer to the “register block sizes,” which determine the size
of the small block of Ci that is updated by the micro-kernel, which is illustrated in the top layer of Figure 1. It is
only this micro-kernel, which contains only a single loop over the k dimension, that needs to be highly optimized for
a new architecture. Notice that this micro-kernel is implicitly present within the inner kernel of GotoBLAS. BLIS
exposes it explicitly as the only routine that needs to be highly optimized for high-performance level-3 functionality.
All loops implementing layers above the micro-kernel are written in C and thus fully portable to other architectures.

2Actually, there is one more loop over blocks of columns of C and B that reduces the work space requirements when packing into B̃.
See [26] for details.
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Beyond C := AB + C The BLAS gemm operation supports many cases, including those where A and/or B are
(conjugate) transposed. The BLIS interface allows even more cases, namely, cases where only conjugation is needed
as well as mappings to memory beyond column- or row-major storage, in any combination. The way the framework
handles this burgeoning space of possible cases is by exploiting the fact that submatrices must always be packed to
facilitate high performance; BLIS strategically casts an arbitrary special case into a common “base case” for which
a high performance implementation is provided. Details can be found in [26].

Other matrix-matrix operations A key feature of the layering of BLIS in terms of the micro-kernel is that it
makes the porting of other matrix-matrix operations (level-3 BLAS) simple. In [16] it was observed that other level-3
BLAS can be cast in terms of gemm. The GotoBLAS took this one step further, casting the implementation of most
of the level-3 BLAS in terms of its inner kernel [8]. (ATLAS has its own, slightly different, inner kernel.) However,
this approach still required coding separate inner kernels for some operations (herk, her2k, syrk, syr2k, trmm,
and trsm) due to the changing assumptions of the structure of either the input matrix A or the output matrix (B
or C). BLIS takes this casting of computation in terms of fewer and smaller units to what we conjecture is the limit:
the BLIS micro-kernel.

The basic idea is that an optimal implementation will exploit symmetric, Hermitian, and/or triangular structure
when such a matrix is present (as is the case for all level-3 operations except gemm). Let us consider the case of the
Hermitian rank-k update (herk), which computes C := AAH + C, where only the lower triangle of C is updated.
Because GotoBLAS expresses its fundamental kernel as the inner kernel (i.e.: the middle layer of Figure 1), a gemm
kernel cannot be used when updating blocks that intersect the diagonal of matrix C, because such a kernel would
illegally update parts of the upper triangle. To address this, GotoBLAS provides a separate specialized inner kernel
that is used to update these diagonal blocks. (Yet another inner kernel is needed for cases where C is stored in the
upper triangle.) Similar kernel specialization is required for other level-3 operations. These special, structure-aware
kernels share many similarities, yet they contribute to, in the humble opinion of the authors, the worst kind of
redundancy: assembly code bloat.

BLIS eliminates most of this code bloat by simply requiring a smaller kernel. It turns out that virtually all of the
differences between these structure-aware kernels reside in the two loops around the inner-most loop corresponding
to the micro-kernel. But because of its chosen design, the GotoBLAS implementation is forced to bury these slight
differences in assembly code, which significantly hinders the maintainer, or anyone trying to read and understand
the implementation. By contrast, since BLIS already compartmentalizes all architecture-sensitive code within the
micro-kernel, the framework naturally allows us to provide generic and portable instances of these specialized inner
kernels (which we call “macro-kernels”). Thus, BLIS simultaneously reduces the size the assembly kernel required
as well as the number of kernels required. This also has the side effect of improving performance of the instruction
cache at runtime.

4 Targeting a single core

The first BLIS paper [26] discussed preliminary performance on only one architecture, the Intel Xeon 7400
“Dunnington” processor. This section reports first impressions on many architectures, focusing first on single core
and/or single thread performance. Multithreaded, multicore performance is discussed in the next section.

For all but one architecture, only the micro-kernel (that iterates over the kc dimension in Figure 1) was created
and adapted to the architectural particularities of the target platform. In addition, the various block sizes were chosen
for the target architecture (we do not discuss here how those were chosen, for space reasons). Figure 2 summarizes
the main BLIS parameters used. On one architecture, the Intel Xeon Phi, a more extensive implementation was
attempted in order to examine modifications that may to be required in order to support many-core architectures.

The performance experiments examined double precision (DP) real versions of the following representative set
of operations: dgemm (C := AB + C); dsymm (C := AB + C, A is stored in lower triangle); dsyrk and dsyr2k
(C := ABT + BAT + C, C is stored in lower triangle); dtrmm (C := AB, A is lower triangular) and dtrsm
(C := A−1B, A is lower triangular). In all cases, the matrices were stored in column-major order.

We now describe a few details of our BLIS port to each architecture. Descriptions focus on issues of interest for the
BLIS developer, and are not intended to be exhaustive. Our goal is to demonstrate how competitive performance can
be reached with basic optimizations using the BLIS framework. For all architectures, there is room for improvement
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Architecture Clock DP flops # FPUs/ DP Peak (GFLOPS) Cache(Kbytes) BLIS parameters

(Ghz) /cycle cores core one core system L1 L2 L3 mr × nr mc × kc nc

/FPU

AMD A10 5800K 3.7 8 4 0.5i 29.6 60.8 16 2048 – 4 × 6 1088 × 128 8192

Sandy Bridge E3 3.1 8 4 1 24.8 99.2 32 256 8092 8 × 4 96 × 256 3072

IBM Power7 3.864 2 8 4 30.9 247.3 32 256 4096 8 × 4 64 × 256 8192

ARM Cortex A9 1 1 2 1 1 2 32 512 – 4 × 4 128 × 256 512

Loongson 3A 0.8 4 4 2 3.2 12.8 64 4096 – 4 × 4 32 × 128 1024

IBM BG/Q A2 1.6 8 16 1ii 12.8 204.8 16 32K – 8 × 8 576 × 256 4096

Intel Xeon Phi 1.09 16 60 1 17.44 1046.4 32 512 – 30 × 8 120 × 240 –

TI C6678 1 1 8 4 4 32 32 512 4096 4 × 4 128 × 256 4096

i One FPU shared by 2 cores. ii Only one can be used in a given cycle.

Figure 2: Architecture summary.

Architecture Compiler Compiler optimizations and architecture-specific flags Micro-kernel comments

(version)

AMD A10 5800K gcc (4.7) -O3 -mavx -mfma3 -march=bdver2 C code + inline assembly code

Sandy Bridge E3 gcc (4.6) -O3 -mavx -march=nocona -mfpmath=sse C code + AVX intrinsics

IBM Power7 gcc (4.7.3) -O3 -mcpu=power7 -mtune=power7 C code + ALTIVEC instrinsics

ARM Cortex A9 gcc (4.6) -O3 -march=armv7-a -mtune=cortex-a9 C code

-mfpu=neon -mfloat-abi=hard

Loongson 3A gcc (4.6) -O3 -march=loongson3a -mtune-loongson3a -mabi=64 C code + inline assembly code

IBM BG/Q A2 gcc (4.4.6) -O3 C code + inline assembly code

Intel Xeon Phi icc (13.1.0) -O3 -mmic C code + inline assembly code

TI C6678 cl6x (7.4.1) -O2 -mv6600 –abi=eabi C code

Figure 3: Summary of compiler/implementation information.

within the framework. The architectures selected for our evaluation are briefly described in Figure 2. Details about
compiler version and optimization flags are reported in Figure 3.

On each architecture, we timed the BLIS implementations as well as the vendor library, ATLAS, and/or Open-
BLAS. In each set of graphs, the left graph reports the performance of the different dgemm implementations, the
middle graph the performance of BLIS for various level-3 BLAS operations, and the right graph speedup attained
by the BLIS implementation for the various level-3 BLAS operations, relative to the vendor implementation or, if
no vendor implementation was available, ATLAS or OpenBLAS. For the left and middle graphs, the top of the
graph represents the peak of the architecture, when using the indicated number of threads/cores. The left graph
reports how quickly the performance of dgemm ramps up when m = n = 2000 and the k dimension is varied (in
increments of 16). This matrix shape is important because a matrix-matrix multiply with relatively small k (known
as a rank-k update) is often at the heart of higher level operations that have been cast in terms of dgemm [2, 25].
Thus, the implementation should quickly ramp up to its asymptote as k is varied. The middle and right graphs
report performance for square matrices, again in increments of 16.

4.1 Conventional architectures

The AMD A10 processor implements the Trinity micro-architecture, an APU (Accelerated Processing Unit) that
combines a reduced number of CPU cores (between 2 and 4) and a large number of GPU cores. The chosen processor
(A10 5800K) incorporates 4 CPU cores and 384 GPU cores. Our implementation targets the 64-bit, x86 cores, which
support out-of-order execution, and ignores the GPU cores. The CPU cores are organized by pairs, where each pair
shares a single floating point unit (FPU). We investigate performance when one thread is used to drive the single,
shared FPU.

The micro-kernel developed for the AMD A10 processor was written using assembly code and the GNU toolchain.
Optimization techniques such as loop unrolling and cache prefetching were incorporated in the micro-kernel. The
Trinity micro-architecture supports two formats of fused multiply-accumulate instructions, the FMA3 instruction,
and the FMA4 instruction. We found the FMA3 instructions to be the faster of the two, hence we used the faster
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Figure 4: Performance on the AMD A10 processor (one core).
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Figure 5: Performance on the Sandy Bridge E3 processor (one core).

FMA3 instruction in our micro-kernel.
Initial performance is reported in Figure 4. We compare against ACML 5.3.0 with the FMA3 instructions

enabled and ATLAS. Although our dgemm implementation does not (yet) match the performance of the ACML
library, it is striking that the same micro-kernel facilitates highly competitive implementations of the other level-3
BLAS operations. Furthermore, it clearly outperforms ATLAS. The drop in performance for problem sizes that are
multiples of 128 can be fixed by adjusting the leading dimension of C. How to more generally fix this problem is the
focus of future improvements to the BLIS framework and/or the micro-kernel. While ACML’s dgemm outperforms
BLIS, for the other level-3 BLAS the BLIS implementation outperforms ACML.

The Sandy Bridge E3 processor is a 64-bit, x86 superscalar, out-of-order micro-architecture. It features three
different building blocks, namely the CPU cores, GPU cores and System Agent. Each Sandy Bridge E3 core presents
15 different execution units, including general-purpose, vector integer and vector floating point (FP) units. Vector
integer and floating point units support multiply, add, register shuffling and blending operations on up to 256-bit
registers.

The micro-kernel developed for the Sandy Bridge E3 processor was written exclusively using plain C plus AVX
intrinsics and the GNU toolchain. Common optimization techniques like loop unrolling, instruction reordering, and
cache prefetching were incorporated in the micro-kernel.

Performance results for Sandy Bridge E3 are reported in Figure 5. BLIS dgemm implementation clearly outper-
forms that of ATLAS for rectangular matrices, see left plot. OpenBLAS yields the best performance, improving BLIS
by roughly 10% for large problem sizes, and attaining similar performance for small values of k. Intel MKL dgemm
yields an intermediate performance and outperforms BLIS by a small margin. The performance for the remaining
Level-3 BLAS routines in BLIS is comparable with that of dgemm. On this architecture, the implementation of
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Figure 6: Performance on the IBM Power7 processor (one core).

dtrsm can clearly benefit from implementing the optional trsm micro-kernel supported by the BLIS framework.

The IBM Power7 processor is an 8-core server processor designed for both commercial and scientific applica-
tions [21]. Each Power7 core implements the full 64-bit Power architecture and supports up to four-way simultaneous
multithreading (SMT). Power7 includes support for Vector-Scalar Extension (VSX) instructions, which operate on
128-bit VSX registers that can each contain 2 double-precision floating point values. Each Power7 thread has 64
architected VSX registers, but to conserve resources these are aliased on top of the existing FP and VMX architected
registers. Other relevant details are catalogued in Figures 2 and 3.

The BLIS micro-kernel developed for Power7 was written almost entirely in plain C with ALTIVEC intrinsics for
vector operations [6]. We compiled BLIS with Version 6.0 of the Advance Toolchain GCC, which is an open source
GCC implementation that includes support for the latest features of IBM’s Power architecture. The micro-kernel
exploits the VSX feature of Power7 to perform all operations on vector data.

We conducted our experiments on an IBM Power 780 system with two 3.864 GHz Power7 processors running
Red Hat Enterprise Linux 6.3. We configured ATLAS to use the architectural defaults for Power7 and built with the
Advance Toolchain GCC. All executions are performed on one core with large (16MB) pages enabled.

Figure 6 presents BLIS performance on one core (executing one thread) of the IBM Power7 processor. BLIS
dgemm performance falls short of ESSL by about 10%, but with further optimization this gap could likely be
narrowed considerably. The Level-3 BLAS performance graph shows that all of the level-3 operations except dtrsm
achieve consistently high performance. Unlike other level-3 operations, a non-trivial portion of trsm’s computations
does not employ the micro-kernel. BLIS does allow developers to provide supplementary optimized trsm kernels,
but these were not yet implemented for Power7.

4.2 Low power architectures

The following architectures distinguish themselves by requiring low power relative to the performance they achieve.
It is well known that power consumption is now the issue to overcome and hence an evaluation of how well BLIS
ports to these architectures is merited.

The ARM Cortex-A9 processor is a low-power RISC processor that implements a dual-issue superscalar, out-
of-order pipeline. Its features depend on the specific implementation of the architecture; in our case, the Texas
Instruments OMAP4-4430 selected for evaluation incorporates two Cortex-A9 cores.

The micro-kernel developed for the ARM Cortex-A9 processor was written exclusively using plain C code and
the GNU toolchain. As no NEON extensions for DP arithmetic exist, no vector intrinsics were used in the micro-
kernel to get our DP performance results. Common optimization techniques like loop unrolling, a proper instruction
reordering to hide memory latency, and cache prefetching are incorporated in the micro-kernel.

Performance is reported in Figure 7. As the only tuned BLAS implementation for ARM is ATLAS [3] as of today,
we only compare with it. In general, for all tested routines and matrix dimensions, BLIS outperforms ATLAS; of
special interest is the gap in performance for small problem sizes of most level-3 operations (with the exception of
dgemm, see right plot).
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Figure 7: Performance on an ARM Cortex A-9 processor (one core).
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Figure 8: Performance on the Loongson 3A processor (one core).

The Loongson 3A CPU is a general-purpose 64-bit MIPS64 quad-core processor, developed by the Institute of
Computing Technology, Chinese Academy of Sciences [18]. Each core supports 4-issue superscalar and out-of-order
execution, and includes five pipelined execution units, two arithmetic logic units (ALU), two floating-point units
(FPU) and one address generation unit (AGU). Every FPU is capable of executing single and double precision fused
multiply-add instructions.

For this architecture, we optimized the BLIS dgemm micro-kernel by using exclusively assembly code. Similar
to our dgemm optimization for the OpenBLAS [28], we adopted loop unrolling and instruction reordering, software
prefetching, and the Loongson 3A specific 128-bit memory accessing extension instructions to optimize the BLIS
micro-kernel. We performed a limited search for the best blocksizes mc, kc, and nc.

Performance is reported in Figure 8. In this case, only open source libraries are available for the Loongson
processor. Focusing on dgemm, BLIS outperforms ATLAS by a wide margin, but this initial port of BLIS still does
not perform quite at the same level as the OpenBLAS. Interestingly, by choosing the parameters for BLIS slightly
different from those used for the OpenBLAS the performance of BLIS improved somewhat. This obviously calls for
further investigation and performance tuning.

The IBM Blue Gene/Q PowerPC A2 processor is composed of 16 application cores, one operating system core,
and a redundant (spare) core. All 18 of the 64-bit PowerPC A2 cores are identical and designed to be both reliable
and energy-efficient [14]. Mathematical acceleration for the kinds of kernels under study in this paper is achieved
through the use of the 4-way double-precision SIMD QPX instructions that allow each core to execute up to 8 floating
point operations in a single cycle [9]. Efficiency stems from the use of multiple (up to 4) symmetric hardware threads,
each with their own register file. Multiple thread use enables dual issue capabilities (a floating point and a load/store
operation in a single cycle), latency tolerance, and the reduction of bandwidth required. Other relevant details are
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Figure 9: Performance on the Intel Xeon Phi processor (one core executing four threads).

catalogued in Figures 2 and 3.
The micro-kernel used for BLIS on Blue Gene/Q was written in GNU extended inline assembly and consists

almost entirely of QPX instructions. Our experiments were carried out on a Blue Gene/Q node card wherein the
compute nodes run IBM’s CNK operating system. While a node card consists of 32 1.6 GHz processors (nodes), all
results required the use of a single node (with 16 cores since one core is for the operating system and another is a
“spare”).

We do not present single core results since these would not be meaningful unless four threads were used. Instead,
parallel performance with all sixteen cores is presented in the next section.

4.3 Special purpose architectures.

Finally, we examine a coprocessor and a processor initially intended for Digital Signal Processing (DSP).

The Intel Xeon Phi coprocessor (KNC) is the first production coprocessor in the Intel Xeon Phi product family.
It features many in-order cores on a single die; each core has 4-way hyper-threading support to help hide memory
and multi-cycle instruction latency. To maximize area and power efficiency, these cores are less aggressive, i.e., they
have lower single-threaded instruction throughput than CPU cores and run at a lower frequency. However, each core
has 32 vector registers, 512 bits wide, and its vector unit can sustatin a full 16-wide (8-wide) single (double) precision
vector instructions in a clock cycle, and load 512 bits of data from the L1 data cache per cycle. Note that vector
instructions can be paired with scalar instructions and data prefetches. Each core further has two levels of cache: a
single-cycle access 32 KB first level data cache (L1) and a larger 512 KB second level cache (L2), which is globally
coherent via directory-based MESI coherence protocol. The Intel Xeon Phi is physically mounted on a PCIe slot and
has 8GB of dedicated GDDR5 memory.

In our experimentation we used Xeon Phi SE10P co-processor which has 61 cores running at 1.1 GHz, offering
17.1 GFLOPS of peak double-precision performance per core. It runs MPSS version 2.1.4346-16.

Our micro-kernel incorporates many of the insights in the paper by Heineke et al. [12]. Both the mc by kc block
of Â and the kc by nr block of B̂ are streamed from the L2 cache. Because of this, and because prefetch instructions
can be co-issued with floating-point operations, we aggressivly prefetch Â, B̂, and Ĉ in the microkernel.

Each thread can only issue instructions every other clockcycle, thus it is necessary to use at least two threads per
core to achieve maximum performance. In our implementation, we use four. These four threads share the block of
A, so periodic thread synchronization is used to ensure data reuse of Â within their shared L1 cache.

Performance for dgemm is reported in Figure 9. We do not report performance for the rest of the level-3
operations, as we do not yet have implementations that utilize more than one thread per core. We see that our initial
port of BLIS is only within 15% from highly tuned Intel MKL performance.

The Texas Instruments C6678 DSP incorporates the C66x DSP core from Texas Instruments [23], a Very Long
Instruction Word (VLIW) architecture with eight different functional units in two independent sides, with connected
but separate register files per side. This core can issue eight instructions in parallel per cycle [22]. The C66x
instruction set includes SIMD instructions operating on 128-bit vector registers. Ideally, each core can perform up
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Figure 10: Performance on the Texas Instruments C66x DSP (one core).

Figure 11: Illustration of parallelism opportunities within the “Goto inner kernel”. The equivalent of that inner kernel
is implemented as two loops around the BLIS micro-kernel. This exposes two extra opportunities for introducing
loop parallelism.

to 8 single precision multiply-add (MADD) operations per cycle. In double precision, this number is reduced to 2
MADD operations per cycle. The C6678 DSP incorporates eight C66x cores, with a peak power consumption of
10W. Each level of the cache hierarchy can be configured either as software-managed RAM, cache, or part RAM/part
cache. DMA can be used to transfer data between off-chip and on-chip memory without CPU participation.

The C66x architecture poses a number of challenges for BLIS; it is a completely different architecture (VLIW),
and the software infrastructure for the TI DSP is dramatically different from the rest of our target architectures:
the TI DSP runs a native real-time OS (SYS/BIOS), and an independent compiler (cl6x) is used to generate code.
Despite that, the reference implementation of BLIS compiled and ran “out-of-the-box” with no further modifications.

Figure 10 reports BLIS performance compared with the only optimized BLAS implementation available as of
today: the native TI BLAS implementation [1], which makes intensive use of DMA to overlap data movement
between memory layers with computation and an explicit management of scratchpad memory buffers at the different
levels of the memory hierarchy [15]. While this support is on the BLIS roadmap, it is still not supported; hence, no
DMA support is implemented in our macro-kernel yet. Given the layered design of BLIS, this feature is likely to be
easily integrated into the framework, and may be applicable to other architectures supporting DMA as well. Given
the small gap in performance between BLIS and TI BLAS, we expect BLIS to be highly competitive when DMA
capabilities are integrated in the framework.

5 Targeting multicore architectures

We now discuss basic techniques for introducing multithreaded parallelism into the BLIS framework.
The GotoBLAS are implemented in terms of the inner kernel discussed in Section 3 and illustrated in Figure 1.

If that inner kernel is taken as a basic unit of computation, then parallelism is most easily extracted by paralleliz-
ing one or more of the loops around the inner kernel. By contrast, the BLIS framework makes the micro-kernel
the fundamental unit of computation and implements Goto’s inner kernels as two loops around the micro-kernel
(Figure 11).

A complete study of how parallelism can be introduced by parallelizing one or more of the loops is beyond the
scope of this paper. Instead, we simply parallelized the second loop around the micro-kernel using OpenMP [20]
pragma directives, as well as the routines that pack a row panel of B and the block of A. Thus, individual threads
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Figure 12: Parallel performance. Left: AMD A10. Middle: Intel Sandy Bridge (Xeon E3-1220). Right: IBM Power7.
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Figure 13: Parallel performance. Left: ARM Cortex A-9. Middle: Texas Instruments C6678 DSP. (Performance for
a single core drops from Figure 10 since TI’s OpenMP implementation reduces the available L2 cache size to 128
Kbytes.) Right: IBM Blue Gene/Q PowerPC A2.

work on multiplying the block Ã times a kc × nr panel of B̃ in a round-robin fashion. The benefit of this approach
is that the granularity of the computation is small.

We choose to report how fast performance ramps up when m = n = 4000 and k is varied. As discussed before,
being able to attain high performance for small k is important for algorithms that cast most computation in terms
of a rank-k update, as is the case for many algorithms incorporated in LAPACK [2] and libflame [24].

For architectures with a moderate number of cores, this approach turns out to be remarkably effective, as illus-
trated in Figures 12-13. In each of the graphs, we show the performance attained when using one thread per core, for
as many cores as are available on the target architecture, and we scale the graphs so that the top coincides with the
theoretical peak. Since we report GFLOPS/core, we expect performance (per core) to drop slightly as more cores
are utilized.

The IBM Blue Gene/Q PowerPC A2 architecture is designed to execute four hardware threads per core for a
total of 64 threads for the 16 cores. In our initial experiments, parallelism for this architecture was again attained by
parallelizing the second loop around the micro-kernel and the packing routines. Preliminary results with 64 threads
on 16 cores are reported in Figure 13 (right).

Our experiment of porting BLIS to the Intel Xeon Phi, which is designed to execute up to 240 threads on 60 cores,
allowed us to evaluate whether BLIS will have a role to play as multicore becomes many-core. For this architecture,
we parallelized the second loop around the micro-kernel in order to utilize four threads per core and the first loop
around the inner kernel (the third loop around the micro-kernel) in order to increase the granularity of computation
when utilizing the 60 cores.

Consirably more effort was dedicated to the port to the Intel Xeon Phi. Some relatively minor but important
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changes were made to BLIS in order to help hide the considerable latency to memory on this architecture. The effort
expended on the other architectures was minimal by comparison. Still, only OpenMP pragma directives were needed
to achieve the reported parallelism. The resulting performance is reported in Figure 14. We see our multi-threaded
BLIS implementation scales almost linearly to all 60 cores and is only within 10% from highly tuned Intel MKL
BLAS performance, which is also shown in the same figure.

We did not similarly introduce parallelism into the loops around the micro-kernel for the other level-3 operations.
However, we do not anticipate any technical difficulties in doing so.

What we learn from the experiments with multithreading is that the BLIS framework appears to naturally support
parallelization on such architectures via OpenMP.

6 Library footprint

A concern with BLAS implementations can be their footprint. For example, on embedded systems the size of the
executable can be a problem. BLIS is highly layered and hence very compact. This is in sharp contrast with, for
example, ATLAS, which is autogenerated. As an example, on one of the tested architectures, a simple driver routine
that only called dgemm compiled to an executable of size around 107 Kbytes when linked to OpenBLAS 0.1.1,
180 Kbytes when linked to BLIS, and 2.38 Mbytes when linked to ATLAS 3.9.74. (When the call to dgemm was
commented out, the executable was 82 Kbytes in size.)

Thus, BLIS may be a better choice than ATLAS when the footprint of the source code is an issue. This insight
should be tempered by the fact that all implementations require substantial work buffers.

7 Conclusion, contributions and future directions

The purpose of this paper was to evaluate the portability of the BLIS framework. Focusing on level-3 BLAS, one way
to view BLIS is that it pushes the observations that all level-3 BLAS can be implemented in terms of matrix-matrix
multiplication [16] to the limit. At the bottom of the food chain is now the micro-kernel, which implements a matrix-
matrix multiplication with what we believe are, from a practical viewpoint, the smallest submatrices. We believe
that the presented experiments allow us to be cautiously optimistic that BLIS will provide a highly maintainable
and competitive open source software solution.

The results are preliminary. The BLIS infrastructure seems to deliver as advertised for the studied architectures
for single threaded execution. For that case, implementing high-performance micro-kernels (one per floating-point
datatype) brings all level-3 BLAS functionality online, achieving performance consistent with that of gemm. We
pushed beyond this by examining how easily BLIS will support multithreaded parallelism. The performance experi-
ments show impressive speedup as the number of cores is increased, even for architectures with a very large number
of cores (by current standards).
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A valid question is, how much effort did we put forth to realize our results. On some architectures, only a
few hours were invested in the port. On other architectures, those same hours yielded decent performance, but
considerably more was invested in the micro-kernel to achieve performance more closely rivaling that of vendors
and/or the OpenBLAS. What we do know is that the experts involved (who were not part of our FLAME project
and who were asked to try BLIS) enthusiastically embraced the challenge, and we detected no reduction in that
enthusiasm as they became more familiar with BLIS.

The BLIS framework opens up a myriad of new research and development possibilities. Should automatic fine-
tuning of parameters be incorporated? Will the framework port to GPUs? (We believe it will.) How easily can
funtionality be added? Will it enable new research, such as how to add algorithmic fault-tolerance [10, 13] to
BLAS-like libraries? Will it be useful when DLA operations are used to evaluate future architectures with simulators
(where auto-tuning may be infeasible due to time constraints)? It is our hope to investigate these and other questions
in the future.

Availability

BLIS is available under the “new” (“3-clause”) BSD license at http://code.google.com/p/blis/. The version
used in this paper, including micro-kernels and test drivers, will be made available so that others can verify results
and examine performance for other matrix sizes.
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