
High-Performance Implementation of the Level-3
BLAS

KAZUSHIGE GOTO

The University of Texas at Austin

and

ROBERT VAN DE GEIJN

The University of Texas at Austin

A simple but highly effective approach for transforming high-performance implementations on
cache-based architectures of matrix-matrix multiplication into implementations of other commonly
used matrix-matrix computations (the level-3 BLAS) is presented. Exceptional performance is
demonstrated on various architectures.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Efficiency

General Terms: Algorithms;Performance

Additional Key Words and Phrases: linear algebra, libraries, basic linear algebra subprograms,
matrix-matrix operations

1. INTRODUCTION

Attaining high performance for matrix-matrix operations such as symmetric matrix-
matrix multiply (Symm), symmetric rank-k update (Syrk), symmetric rank-2k up-
date (Syr2k), triangular matrix-matrix multiply (Trmm), and triangular solve with
multiple right-hand sides (Trsm) by casting the bulk of computation in terms of
a general matrix-matrix multiply (Gemm) has become a generally accepted prac-
tice [K̊agström et al. 1998]. Variants on this theme include loop-based algorithms
and recursive algorithms, as well as hybrids that incorporate both of these [Elm-
roth et al. 2004]. In this paper we show that better performance can be attained
by specializing a high-performance Gemm kernel [Goto and van de Geijn] so that
it computes the desired operation. For the busy reader the results are previewed
in Fig. 1.

This paper is organized as follows: In Section 2 we review the basic techniques
behind a high-performance matrix-matrix multiplication implementation. More
traditional techniques for implementing level-3 BLAS are reviewed in Section 3.
These alternative techniques are then used to obtain highly optimized implemen-

Authors’ addresses: Kazushige Goto, Texas Advanced Computing Center, The University of Texas
at Austin, Austin, TX 78712, kgoto@tacc.utexas.edu. Robert A. van de Geijn, Department of
Computer Sciences, The University of Texas at Austin, Austin, TX 78712, rvdg@cs.utexas.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–18.

2 · Kazushige Goto and Robert van de Geijn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

m=n

G
F

LO
P

S
/s

ec

PPC440 FP2 (700 MHz)

dgemm
dsymm
dsyr2k
dsyrk
dtrmm
dtrsm

Fig. 1. Performance of all level-3 BLAS on the IBM PPC440 FP2 (700 MHz). (Curves in the
figure appear, from top to bottom, in the order indicated in the legend.)

+= +=

Fig. 2. Left: Partitioning of A and B. Right: Blocking for one individual panel-panel multiplica-
tion (Gepp) operation, C := AjBj + C.

Algorithm: C := Gepp(A, B, C)

Č0

Č1
.
.
.

+:=

Ǎ0

Ǎ1
.
.
.

B

Pack B into B̃
for i = 0, . . . , M − 1

Pack and Transpose Ǎi into Ã

Či := ÃB̃ + Či

endfor

Fig. 3. Outline of optimized implementation of Gepp.

tations of Symm, Syrk, Syr2k, Trmm, and Trsm, in Sections 4–7. Concluding
remarks are given in the final section.

2. HIGH-PERFORMANCE IMPLEMENTATION OF MATRIX-MATRIX MULTIPLI-
CATION

To understand how to convert a high-performance matrix-matrix multiplication
(Gemm) implementation into a fast implementation for one of the other matrix-
matrix operations that are part of the level-3 Basic Linear Algebra Subprograms
(BLAS) [Dongarra et al. 1990], one has to first review the state-of-the-art of high-
performance implementation of the Gemm operation. In this section we give a
minimal description, referring the interested reader to [Goto and van de Geijn].

Consider the computation C := AB + C, where C, A, and B are m× n, m× k,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 3

and k × n matrices, respectively. Assume for simplicity that m = bmM , n = bnN ,
and k = bkK, where M , N , K, bm, bn, and bk are all integers. Partition as in
Fig. 2(left):

A → (
A0 A1 · · · AK−1

)
and B →




B̌0

B̌1

...
B̌K−1


 ,

where Ap and B̌p contain bk columns and rows, respectively1. Then

C := A0B̌0 + A1B̌1 + · · ·+ AK−1B̌K−1 + C.

A typical high-performance implementation of Gemm will focus on making each
update C := ApB̌p + C, which we will call a panel-panel multiplication (Gepp), as
fast as possible. The overall performance of Gemm is essentially equal to that of
each individual Gepp with panel width equal to an optimal size bk.

Figure 3 gives a high-performance algorithm for the Gepp operation, C := AB +
C, where the “k” dimension is bk. The algorithm requires three highly optimized
components:

—Pack B: A routine for packing B into a contiguous buffer. On some architectures
this routine may also reorganize the data for specialized instructions used by the
Gebp kernel routine described below.

—Pack and transpose Ǎi: A routine for packing Ǎi into a contiguous buffer.
Often this routine also transposes the matrix to improve the order in which it is
accessed by the Gebp kernel routine.

—Gebp kernel routine: This routine computes Či := ÃB̃ + Či using the packed
buffers. Gebp stands for General block-times-panel multiply.

On current architectures the size of Ǎi is chosen to fill about half of the L2 cache
(or the memory addressable by the TLB), as explained in [Goto and van de Geijn
]. Considerable effort is required to tune each of these components, especially the
Gebp kernel routine. In subsequent sections we will show how other level-3 BLAS
can be implemented in such a way that this effort can be amortized.

In Fig. 4 the performance and overhead of the various kernels is reported for the
high-performance implementation of dgemm (double-precision Gemm) from [Goto
and van de Geijn]. It is this implementation upon which the remainder of this paper
is based. In Fig. 5 we compare the performance of this dgemm implementation with
those of the vendor implementations (MKL and ESSL) and ATLAS.

Throughout the paper performance is presented for double precision (64-bit)
computation of the target operation on a number of architectures:

1The ˇ is used to indicate a partitioning by rows in this paper.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · Kazushige Goto and Robert van de Geijn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

kernel
dgemm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

m=n

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

Pentium4 (3.6 GHz)

pack A
pack B

Fig. 4. Performance of Gemm on Pentium4 (3.6 GHz). Left: The performance of the Gebp
kernel routine and Gemm is given by the curves labeled “Kernel” and“dgemm”. Right: The
curves labeled “Pack A” and “Pack B” indicate the percent of total time spent in each of these
operations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dgemm (MKL)
dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dgemm (ESSL)
dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dgemm (MKL)
dgemm (ATLAS)

Fig. 5. Performance of various implementations of dgemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 5

Architecture Clock Peak blocking size Vendor library
(GHz) (GFLOPS/sec) bm bk

Pentium4 (R) 3.6 7.2 768 192 MKL 8.0.1
Itanium2 (R) 1.5 6 128 1024 MKL 8.0.1
Power 5 1.9 7.6 256 256 ESSL 4.2.0
PPC440 FP2 0.7 2.8 128 3072 not available to us

We also compare against ATLAS 3.7.11, a public-domain implementation of the
BLAS [Whaley and Dongarra 1998], except for the Itanium2 system, on which
ATLAS 3.7.8 attained better performance. In our graphs that report the rate of
execution (GFLOPS/sec) the top line always represents the theoretical peak of the
processor. The blocking sizes bm and bk are as indicated in the above table.

Remark 2.1. Key insights from [Goto and van de Geijn] are that (1) the
submatrix Âi is typically non-square, (2) the cost of packing Âi is significant,
which means that the column dimension of B should be large, and (3) the cost of
packing B is significant and should therefore be amortized over as many blocks of
A as possible and repacking should be avoided.

3. TRADITIONAL APPROACHES FOR IMPLEMENTING THE LEVEL-3 BLAS

We use the symmetric matrix-matrix multiplication (Symm), C := AB + C where
A is symmetric, as an example of how traditional approaches to implementing the
Level-3 BLAS proceed. We will assume that only the lower triangular part of A is
stored (in the lower triangular part of the array that stores A).

3.1 Loop-based approach

In Fig. 6(left) we show a typical computation Symm as a loop that traverses the
matrices a block of rows and/or columns at a time. We believe the notation used
in that figure, which has been developed as part of the FLAME project, to be
sufficiently intuitive not to require further explanation [Bientinesi and van de Geijn
2006; Gunnels et al. 2001]. Notice that the bulk of the computation is cast in
terms of Gepp. So far the size of A11 in each iteration is chosen to equal the
optimal bk discussed in Section 2 so that the Gepp updates AT

01B0 and A21B2

attain near-optimal performance. Since typically bk is small relative to m (the
dimension of A) the update C1 := A11B1 + C1, which we will call a symmetric
block-matrix multiplication (Sybm) requires relatively few operations. Letting n
equal the column dimension of C, the total operation count of a Symm operation
is 2m2n floating point operations (flops). A total of 2(m/bk)b2

kn = 2mbkn flops
are in the Sybm computations and 2(m − bk)mn in the Gepp operations. Even
if the performance attained by the Sybm operations is less than that of a Gepp,
the overall performance degrades only moderately if m >> bk. In our case, Sybm
is implemented by copying A11 into a temporary matrix, making it “general” by
copying the lower triangular part to the upper triangular part, and calling Gemm.

There are two sources of complications and/or inefficiencies in this approach:

—The three operations (C0 := AT
10B1 +C0, C1 := A11B1 +C1, and C2 := A21B1 +

C2) are typically treated as three totally separate operations, meaning that B1

must be packed redundantly for each of the three operations. In Fig. 4 it is shown
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · Kazushige Goto and Robert van de Geijn

Algorithm: [C] := Symm blk(A, B, C)

Partition A→
Ã

ATL ATR

ABL ABR

!
,

B →
Ã

BT

BB

!
, C →

Ã
CT

CB

!

where ATL is 0× 0,
BT has 0 rows, CT has 0 rows

while m(ATL) < m(A) do
Determine b = min(bk, m(ABR))
RepartitionÃ

ATL ATR

ABL ABR

!
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

Ã
BT

BB

!
→

0
@

B0

B1

B2

1
A ,

Ã
CT

CB

!
→

0
@

C0

C1

C2

1
A

where A11 is b × b , B1 has b rows,
C1 has b rows

C0 := AT
10B1 + C0 Gepp

C1 := A11B1 + C1 Sybp
C2 := A21B1 + C2 Gepp

Continue withÃ
ATL ATR

ABL ABR

!
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

Ã
BT

BB

!
←

0
@

B0

B1

B2

1
A ,

Ã
CT

CB

!
←

0
@

C0

C1

C2

1
A

endwhile

Algorithm: [C] := Symm blk(A, B, C)

Partition A→
Ã

ATL ATR

ABL ABR

!
,

B →
Ã

BT

BB

!

where ATL is 0× 0,
BT has 0 rows

while m(ATL) < m(A) do
Determine b = min(bk, m(ABR))
RepartitionÃ

ATL ATR

ABL ABR

!
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

Ã
BT

BB

!
→

0
@

B0

B1

B2

1
A

where A11 is b× b , B1 has b rows

C :=

0
@

AT
10

A11

A21

1
A B1 + C

Continue withÃ
ATL ATR

ABL ABR

!
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

Ã
BT

BB

!
←

0
@

B0

B1

B2

1
A

endwhile

C0

C1

C2

+=

@
@

@
@

@@

A10 A11

A21

B1
+=

@@

AT
10

A11

A21

B1

Fig. 6. Algorithms for computing Symm. Left: Typical loop-based algorithm. Right: Casting in
terms of a single Gepp.

that the packing of B1 is a source of overhead for an individual Gepp operation
that cannot be neglected.

—Since the shape and size of of C1 and the bk × bk block of A11 in the Sybm
operation do not match those of the corresponding submatrices in the Gepp
operation, optimization of the Sybm operation is not a matter of making minor
modifications to the kernel Gebp operation. A high-performance implementation
would require a redesign of this kernel.

These problems are most noticeable when A is relatively small.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dsymm (GOTO)
dsymm (loop−based)
dsymm (recursive)

Fig. 7. Performance of different implementations of Symm: The algorithm put forth later in this
paper, a loop-based algorithm, and a recursive algorithm.

3.2 Recursive algorithms

Partition

C →
(

CT

CB

)
, A →

(
ATL ?

ABL ABR

)
, and B →

(
BT

BB

)
,

where ATL is a k× k matrix and BT and CT are k× n. Then C := AB + C yields
(

CT

CB

)
=

(
ATL AT

BL

ABL ABR

)(
BT

BB

)
+

(
CT

CB

)

=
(

ATLBT + AT
BLBB + CT

ABLBT + ABRBB + CB

)
.

The terms ATLBT + CT and ABRBB + CB can be achieved by recursive calls to
Symm. This time the bulk of the computation is cast in terms of Gemm: AT

BLBB

and ABLBT . Typically the recursion stops when matrix A is relatively small, at
which point A may be copied into a general matrix, after which Gemm can be
employed for this small problem.

There are two sources of complications and/or inefficiencies in this recursive
approach:

—The same panels of B will be packed multiple times as part of the individual calls
to Gemm, which itself is cast in terms of Gepp operations.

—Unless care is taken the recursion will not create subproblems of sizes that are
integer multiples of bk, which causes the Gemm operations to attain less than
optimal performance.

3.3 Performance

The performance of the two traditional approaches described in this section are
reported in Fig. 7. In that graph we also report the performance attained by
the approach delineated later in this paper. The block size for the loop-based

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · Kazushige Goto and Robert van de Geijn

algorithm was taken to equal 192 while the recursion terminated when the size of
the subproblem was less then or equal to 192.

4. SYMM

The alternative approach to implementing Symm professed by this paper is ridicu-
lously simple to describe: Execute exactly the same algorithm as was employed for
Gepp by modifying the routine that copies submatrices of matrix A into packed
form to accommodate the symmetric nature of matrix A.

To understand this fully, first consider the algorithm in Fig. 6(right). Notice that
if AT

10, A11, and A21 are copied into a single panel of columns of width bk, then the
Gepp algorithm in Fig. 3 can be executed. This approach is inefficient in the sense
that these submatrices are first copied and then subsequently packed as part the
Gepp algorithm. This suggests that instead of first copying the three parts into a
single column panel, the Gepp algorithm should be modified so that the copying
is done as needed, a block of bm × bk at a time, as illustrated by

+=
@@

While simple, the method has a number of immediate benefits:

—The packing of the block of rows of B is amortized over all computation with
A10, A11, and A21.

—The routine for packing submatrices of A needs only be modified slightly.
—The exact same kernel Gebp routine as for implementing Gepp can be used.

Interestingly enough, the approach yields performance that often exceeds that of
Gemm, as shown in Fig. 8.

5. SYRK AND SYR2K

Next we discuss the symmetric rank-k (Syrk) and symmetric rank-2k (Syr2k)
updates: C := AAT + C and C := ABT + BAT + C, where C is an m × m
symmetric matrix and A and B are m × k. We will assume that only the lower
triangular part of C is stored.

Let us focus on Syrk first. As for the Gemm and Symm operations it is important
to understand how one panel-panel multiply is optimized: the case where A contains
bk columns (k = bk) Mimicking the Gepp implementation yields

@
@

@
@

@@

+=

The idea now is that the computation of each row panel of C is modified to take
advantage of the fact that only the part that lies at or below the diagonal needs to
be updated. One straightforward way to accomplish this is to break each such row
panel into three parts:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (MKL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (MKL)
dsymm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (ESSL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (ESSL)
dsymm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (MKL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (MKL)
dsymm/dgemm (ATLAS)

Fig. 8. Performance of Symm relative to Gemm. (For the Power5 architecture the line for dsymm

and dgemm are almost coincident. The dsymm line lies ever so slightly above that of dgemm.)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · Kazushige Goto and Robert van de Geijn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (MKL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 d

ge
m

m
 (

pe
rc

en
t)

Pentium4 (3.6 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (MKL)
dsyrk/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (ESSL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (ESSL)
dsyrk/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (MKL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (MKL)
dsyrk/dgemm (ATLAS)

Fig. 9. Performance of Syrk relative to Gemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 11

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (MKL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 d

ge
m

m
 (

pe
rc

en
t)

Pentium4 (3.6 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (MKL)
dsyr2k/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (ESSL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (ESSL)
dsyr2k/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (MKL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (MKL)
dsyr2k/dgemm (ATLAS)

Fig. 10. Performance of Syr2k relative to Gemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · Kazushige Goto and Robert van de Geijn

+=

The kernel Gebp routine can be used to update the left part. A special kernel
updates the lower triangular block on the diagonal, and the right part is not updated
at all.

The implementation of Syr2k is a simple extension of this, where a slight opti-
mization is that each row panel of C is updated with the appropriate part of both
ABT and BAT since this keeps the panel of C in the L3 cache, if present. Again,
the performance is impressive, as illustrated in Figs. 9 and 10.

6. TRMM

We will examine the specific case of the triangular matrix-matrix multiply (Trmm)
B := LB, where L is a lower triangular m×m matrix and B is m× n.

Again, this operation can be cast in terms of a sequence of panel-panel multiplies:

=

@
@

@
@

@@

0
0

0
0

An examination of how the Gepp algorithm can be modified for the special needs
of Trmm yields

+=
@@

One notices that again most of the computation can be cast in terms of the kernel
Gebp routine, except for the computation with the blocks that contain part of the
diagonal. There are a number of ways of dealing with those special blocks:

—As the block is packed and transposed the elements in from the upper triangular
part can be set to zero after which the kernel Gebp routine can be used without
modification. The advantage is that only the packing routine needs to be modified
slightly. The disadvantage is that considerable computation is performed with
elements that equal zero.

—Modify the kernel Gebp routine so that it does not compute with elements that
lie above the diagonal. Conceptually this means changing a few loop-bounds. In
practice there is loop-unrolling that is incorporated in the kernel Gebp routine
that makes this somewhat more complex. One possibility for overcoming this
while making only slight changes to the kernel routine is to set those elements that
lie in a region covered by the loop-unrolling to zero and to compute with those but
not other elements that lie above the diagonal. This can then be accomplished by
only modifying loop-bounds in the kernel routine without disturbing code related
to loop-unrolling.

We favor the second solution in our implementations. The performance of the
Trmm routine is demonstrated in Fig. 11.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 13

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (MKL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 d

ge
m

m
 (

pe
rc

en
t)

Pentium4 (3.6 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (MKL)
dtrmm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (ESSL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (ESSL)
dtrmm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (MKL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (MKL)
dtrmm/dgemm (ATLAS)

Fig. 11. Performance of Trmm relative to Gemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · Kazushige Goto and Robert van de Geijn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dtrsm (GOTO)
dtrsm (MKL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 d

ge
m

m
 (

pe
rc

en
t)

Pentium4 (3.6 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (MKL)
dtrsm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dtrsm (GOTO)
dgemm (GOTO)
dtrsm (ESSL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (ESSL)
dtrsm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dtrsm (GOTO)
dtrsm (MKL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (MKL)
dtrsm/dgemm (ATLAS)

Fig. 12. Performance of Trsm relative to Gemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 15

Algorithm: [C] := Symm blk(A, B, C)

Partition L→
Ã

LTL 0

LBL LBR

!
, B →

Ã
BT

BB

!

where LTL is 0× 0 and BT has 0 rows

while m(LTL) < m(L) do
Determine b = min(bk, m(LBR))
RepartitionÃ

LTL 0

LBL LBR

!
→

0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A,

Ã
BT

BB

!
→

0
@

B0

B1

B2

1
A

where L11 is b× b and B1 has b rows

B1 := L−1
11 B1 Trsm

B2 := B2 − L21B1 Gepp

Continue withÃ
LTL 0

LBL LBR

!
←

0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A,

Ã
BT

BB

!
←

0
@

B0

B1

B2

1
A

endwhile

Fig. 13. Algorithm for computing Trsm that casts most computation in terms of Gepp.

7. TRSM

We will examine the specific case of the triangular solve with multiple right-hand
sides (Trsm) B := L−1B, where L is a lower triangular m ×m matrix and B is
m × n. An algorithm that casts most computation in terms of Gepp is given in
Fig. 13.

Let us examine the combined updates B1 := L−1
11 B1 and B2 := B2 − L21B1:

+=
@@

It is in how to deal with the blocks that contain the diagonal that complications
occur. For these blocks

—B1 will have been copied into a packed array B̃.

—The current row panel will have bm rows. Let us denote this row panel by the
matrix C.

—A typical block of L11, A, that contains the diagonal will have the shape

A =
@
@

.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · Kazushige Goto and Robert van de Geijn

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

LU with partial pivoting Pentium4 (3.6 GHz)

Fully optimized
Fused dtrsm/dgemm
MKL
LAPACK

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

LU with partial pivoting Power 5 (1.9 GHz)

Fully optimized
ESSL
Fused dtrsm/dgemm
LAPACK

Fig. 14. Performance of LU factorization with partial pivoting for different levels of optimization.
For the graph on the right, the “Fused dtrsm/dgemm” curve is almost indistinguishable from the
“Reference” curve.

—Partitioning C, A, and B̃ as

C →
CT

CB
,

A →
@
@

ABL

AT L

ABR

AT R

, and

B̃ →
B̃T

B̃B

the operation to be performed can then given by
—CT := A−1

TR(CB −ATLCT).
The data in CT coincides with the part of B that was copied into B̃. Thus the
result in CT needs also be updated in the corresponding part of B̃.

—CB := CB −ABLB̃T −ABRB̃B .
Again, the data in CB coincides with the part of B that was copied into B̃.
Thus the result in CB needs also be updated in the corresponding part of B̃.

Clearly, the kernel that implements this requires considerable care and cannot be
simply derived from the kernel Gebp routine. Performance of our implementation
is reported in Fig. 12.

8. CONCLUSION

In this paper, we have presented a simple yet highly effective approach to imple-
menting level-3 BLAS routines by modifying the currently most effective technique
for implementing matrix-matrix multiplication. The methodology inherently avoids
unnecessary recopying of data into packed format. It suggests that routines like
those that pack and kernel routines be exposed as building blocks for libraries.

The performance comparison with the MKL library on the Itanium2 architecture
may appear to present a counterexample to the techniques advocated by this paper,
since for some operations the MKL implementation outperforms our implementa-
tions. We note that their implementations require substantially more effort than
those supported by our work.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

High-Performance Implementation of the Level-3 BLAS · 17

There are a number of other situations in which exposing these building blocks
will become advantageous if not necessary.

—A typical LU factorization (with or without pivoting) performs a Trsm operation
with a matrix that subsequently becomes an operand in a Gepp. This could
allow a new packing of that data to be avoided if the packed array used in the
implementation of the Trsm is saved. The benefits are illustrated in Fig. 14.
The curve labeled “LAPACK” corresponds to the LAPACK implementation of
LU with partial pivoting [Anderson et al. 1999], with an optimized blocking size
of 64 on both the Pentium4 and the Power 5 architectures. This implementation
makes separate calls to dtrsm and dgemm, requiring the “B” matrix to be
repacked. The curve labeled “Fused dtrsm/dgemm” fuses the dtrsm and dgemm
calls so that the packed “B” matrix can be reused, while keeping the blocking
size the same. Notice that the improvement is worthwhile on the Pentium4 but
not on the Power 5.
A fully optimized implementation of LU with partial pivoting, which optimizes
the swapping of multiple rows (dlaswp), adds recursion to the “factorization of
the current panel”, and increases the blocking size to 192 and 256 on the Pentium4
and Power 5 architectures, respectively, is labeled by “Fully optimized”.

—Implementation of level-3 BLAS on SMP or multi-core platforms could easily in-
cur redundant packing operations by the different threads. Exposing the building
blocks could avoid this, improving performance considerably.

We believe this suggests that the standardization of interfaces to such building
blocks is in order.

Additional information

Implementations of the described techniques are available for essentially all current
architectures. Libraries can be obtained from

http://www.tacc.utexas.edu/resources/software/ .

Acknowledgments

This research was sponsored in part by NSF Grant CCF-0540926. Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation. The Itanium2 server used in this research was donation by Hewlett-
Packard. Access to the IBM PPC440 FP2 was arranged by Lawrence Livermore
National Laboratory. The Texas Advanced Computer Center provided access to
the other architectures. We would like to thank Dr. John Gunnels and members
of the FLAME team for their comments on an earlier draft of this paper.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J., Croz,
J. D., Hammarling, S., Greenbaum, A., McKenney, A., and Sorensen, D. 1999. LAPACK
Users’ guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA.

Bientinesi, P. and van de Geijn, R. 2006. Representing dense linear algebra algorithms: A
farewell to indices. FLAPACK Working Note #17 TR-2006-10, The University of Texas at
Austin, Department of Computer Sciences.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · Kazushige Goto and Robert van de Geijn

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Elmroth, E., Gustavson, F., Jonsson, I., and Kågström, B. 2004. Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM Review 46, 1,
3–45.

Goto, K. and van de Geijn, R. Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Soft.. in review.

Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2001. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft. 27, 4 (December), 422–
455.

Kågström, B., Ling, P., and Loan, C. V. 1998. GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Soft. 24, 3,
268–302.

Whaley, R. C. and Dongarra, J. J. 1998. Automatically tuned linear algebra software. In
Proceedings of SC’98.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

