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Abstract—We have built a body of evidence which shows
that, given a mathematical specification of a dense linear alge-
bra operation to be implemented, it is possible to mechanically
derive families of algorithms and subsequently to mechanically
translate these algorithms into high-performing code. In this
paper, we add to this evidence by showing that the algorithms
can be statically analyzed and translated into directed acyclic
graphs (DAGs) of coarse-grained operations that are to be
performed. DAGs naturally express parallelism, which we
illustrate by representing the DAGs with the G graphical
programming language used by LabVIEW. The LabVIEW
compiler and runtime execution system then exploit parallelism
from the resulting code. Respectable speedup on a sixteen core
architecture is reported.

I. INTRODUCTION

The advent of multi-core and many-core architectures has
brought the concern that these new architectures have to
be programmed. How are we going to evolve our existing
code base to these emerging environments? Programmers
are considered to be ill-equipped to meet this challenge.

We believe that, for the domain of dense linear algebra,
part of the answer is to take the programmer out of the
picture. Instead, we are focusing on making the entire
process mechanical by starting with a specification of the
operation to be implemented and then mapping algorithms
to a specific architecture. Over the last decade, we have
systematically built a body of work that together provide
evidence that this goal is achievable [3]], [4], [15], [16], [32].

The current paper brings the following new contributions
to the forefront:

« It shows that, from a high-level specification, a directed
acyclic graph (DAG) of coarse-grained operations on
coarse-grained data can be statically generated.

o It demonstrates that the methodology can target non-
traditional languages such as LabVIEW’s graphical
programming language [20], yet this methodology can
also be applied to imperative languages such as C.

o The approach works whether the matrix is originally
stored as a “flat” matrix (e.g., in column-major format)
or by blocks to improve locality.

o It illustrates how the LabVIEW compiler and runtime
execution system exploit parallelism from a DAG.

« It reports speedup when a DAG is executed on a sixteen
core architecture.
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Together these contributions move us ever closer to making
the entire process of programming high-quality linear alge-
bra libraries entirely mechanical for a broad range of target
architectures and languages.

The rest of the paper is organized as follows. We build
the paper around a motivating example, inversion of a
triangular matrix, in Section This operation allows us
to discuss the essential information necessary to describe
the algorithm at a language-independent level of abstraction
in Section In Section we describe the process that
analyzes the algorithm and statically generates a DAG. Sec-
tion [V] provides performance results, and we discuss related
work in Section In Section [VII we give concluding
remarks on how our work fits into the bigger picture of
generating libraries entirely mechanically and then point out
the tantalizing possibility that the methodology might also
be able to eliminate the software stack altogether, generating
hardware instead.

II. INVERSION OF A TRIANGULAR MATRIX

We use inversion of a triangular matrix (TRINV) R :=
U~! where U is upper triangular as a motivating example
in this paper[] It is a dense linear algebra operation that
is highly representative of the most commonly used level-
3 Basic Linear Algebra Subprograms (BLAS) [11] and
operations supported by, for example, LAPACK [2] and
libFLAME [31]8]

It is well understood that in order to attain high perfor-
mance, matrix algorithms of this kind must be cast in terms
of blocked computations so that the bulk of the computation
resides in matrix-matrix multiplication [14]]. In Figure [I}
we present a blocked algorithm for computing TRINV using
the Formal Linear Algebra Method Environment (FLAME)
notation for expressing linear algebra algorithms [16]. The
thick and thin partition lines have semantic meaning and
capture how algorithms move through the matrices, exposing
submatrices on which computation occurs. Here, the algo-
rithm overwrites the upper triangular part of the original
matrix A.

In many of the operations, it is implicitly assumed that a
matrix is upper triangular and/or only the upper triangular

!Similarly, we can compute R := L' where L is lower triangular.
2We have also applied this methodology to the Cholesky factorization.



Algorithm: A := A~ T
Arp | ATr
where App is 0 X
while m(Arr) < m(A) do
Determine block size b

Partition A —

Repartition
Ago | Ao1 | Aoz
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where A1 isb X b

Arz = —A7 Ara
Ag2 := Aoz + Ao1A12
Ap1 := Aot AL}

Aqp = ALY

Continue with

Aoo | Ao1 | Aoz
BR 0 | 0 |A22

endwhile

Figure 1. A blocked algorithm for computing the inverse of an upper
triangular matrix where m(B) stands for the number of rows of B.

Do J =1, N, NB

1
2 JB = MIN( NB, N-J+1 )
3 CALL DTRSM( ’'Left’, ’Upper’, ’No transpose’, ’‘Non-unit’,
4 $ JB, N-J-JB+1, -ONE, A( J, J ), LDA,
5 S A( J, J+JB ), LDA )
6 CALL DGEMM( ’'No transpose’, ’No transpose’,
7 $ J-1, N-J-JB+1, JB, ONE, A( 1, J ), LDA,
8 $ A( J, J+JB ), LDA, ONE, A( 1, J+JB ), LDA )
9 CALL DTRSM( ‘Right’, ’Upper’, ’No transpose’, ’Non-unit’,
10 $ J-1, JB, ONE, A( J, J ), LDA,
11 $ A(1, J), LDA)
12 CALL DTRTI2( ‘Upper’, ’Non-unit’,
13 $ JB, A( J, J ), LDA, INFO )
14 ENDDO
Figure 2. LAPACK-style implementation of the blocked algorithm in

Figure

part of a matrix is updated. For any operation of the form
Y := B7'Y, it is implicitly assumed that B is upper
triangular and that Y is updated by the solution of BX =Y,
also known as a triangular solve with multiple right-hand
sides (TRSM). A similar comment holds for Y := Y B~

Four blocked algorithms exist for computing TRINV, one
of which is numerically unstable. We present the third vari-
ant since the bulk of its computation lies with general matrix-
matrix multiplication (GEMM), Ags := Ago + Ag1A12. For
a more thorough discussion, we refer to [5] where the
inversion of a symmetric positive definite matrix (SPD-INV)
is used to illustrate that the ideal choice of algorithm for a
given operation is greatly affected by the characteristics of
the target platform.

Traditional programming languages force users to express
an algorithm within the syntax of the language, which often
obscures the algorithm altogether. In Figure we show
a LAPACK-style implementation of the blocked algorithm
of TRINV. It is apparent that nearly all of the semantic
information found in the algorithm shown in Figure [I] has
been lost in translation to this Fortran implementation.

The key abstraction for expressing linear algebra algo-

FLA_Part_2x2( A, &ATL, &ATR,

1

2 &ABL, &ABR, 0, 0, FLA_TL );
3

4  while( FLA_Obj_length( ATL ) < FLA Obj_length( A ) )
5 (

6 FLA_Repart_2x2_to_3x3(

7 ATL, /*+/ ATR, &R00, /#+/ &A01, &A02,

8 I Y
9 &A10, /#%/ &Rll, &Al2,
10 ABL, /**/ RBR, &R20, /#+/ &A21, &A22,

11 1, 1, FLA_BR );

12 / */
13 FLASH_Trsm( FLA_LEFT, FLA_UPPER_TRIANGULAR,

14 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
15 FLA_MINUS_ONE, All, Al2 );

16 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
17 FLA_ONE, AOl, Al2, FLA_ONE, A02 );

18 FLASH_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR,

19 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
20 FLA_ONE, All, A0l );

21 FLASH_Trinv( FLA_UPPER_TRIANGULAR,

22 FLA_NONUNIT_DIAG, All );

23 / */
24 FLA_Cont_with_3x3_to_2x2(

25 &ATL, /+%/ &ATR, A00, A01l, /#%/ A02,
26 A10, All, /++/ Al2,
27 T
28 &ABL, /++/ &ABR, 220, A21, /+*/ R22,
29 FLA_TL );

30 }

Figure 3. FLASH implementation of the corresponding blocked algorithm
in Figure [T]

rithms as DAGs lies in viewing a submatrix block as the
fundamental unit of data and operations on those blocks
(tasks) as the fundamental unit of computation. By storing
matrices hierarchically [10], [13], [19] with one level of
indirection, each submatrix block can be easily demarcated
in order to determine data dependencies between each task
in the resulting algorithms-by-blocks. As such, the nodes
of the DAG represent tasks, and the edges represent data
dependencies. See [28]] for more details on interfacing to
hierarchical matrices and formulating algorithms-by-blocks
from traditional blocked linear algebra algorithms.

In Figure [3] we present an algorithm-by-blocks for TRINV
implemented with the FLASH extension to the FLAME/C
API [22]]. All the implementation details about the matrix
hierarchy are encapsulated in the object-oriented matrix
data structure. This API was formulated to closely mimic
FLAME notation, which allows for the simple translation
from a language-independent representation to FLASH im-
plementation, and back again if desired.

III. REQUISITE SEMANTIC INFORMATION FOR STATIC
DEPENDENCE ANALYSIS

We build upon the work in [32] where the authors
developed a source-to-source translator that converts lin-
ear algebra algorithms implemented using the FLAME/C
API [6] into code with explicit indexing and direct calls
to BLAS routines [21]. This effort reduces the overhead
associated with dereferencing object-oriented matrix ob-
jects where the greatest performance gains lie with level-
2 BLAS [12] and unblocked LAPACK routines [2]. This
feat was accomplished by translating high-level FLAME/C
implementations into descriptions of the linear algebra al-
gorithms with FLAME/XML, a programming language-
independent representation using the Extensible Markup



<?xml version="1.0" encoding="I1S0-8859-1"72>

1

2 <Function name="FLA_Trinv" type="blk" variant="3">

3 <Option type="uplo">FLA_UPPER_TRIANGULAR</Option>

4 <Declaration>

5 <Operand type="matrix" direction="TL->BR" inout="both">
6 A

7 </Operand>

8 </Declaration>

9 <Loop>

10 <Guard>A</Guard>

11 <Update>

12 <Statement name="FLA_Trsm">

13 <Option type="side">FLA_LEFT</Option>

14 <Option type="uplo">FLA_UPPER_TRIANGULAR</Option>
15 <Option type="trans">FLA_NO_TRANSPOSE</Option>
16 <Option type="diag">FLA_NONUNIT_DIAG</Option>
17 <Parameter>FLA_MINUS_ONE</Parameter>

18 <Parameter partition="11">A</Parameter>

19 <Parameter partition="12">A</Parameter>

20 </Statement>

21 <Statement name="FLA_Gemm">

22 <Option type="trans">FLA_NO_TRANSPOSE</Option>
23 <Option type="trans">FLA_NO_TRANSPOSE</Option>
24 <Parameter>FLA_ONE</Parameter>

25 <Parameter partition="01">A</Parameter>

26 <Parameter partition="12">A</Parameter>

27 <Parameter>FLA_ONE</Parameter>

28 <Parameter partition="02">A</Parameter>

29 </Statement>

30 <Statement name="FLA_Trsm">

31 <Option type="side">FLA_RIGHT</Option>

32 <Option type="uplo">FLA_UPPER_TRIANGULAR</Option>
33 <Option type="trans">FLA_NO_TRANSPOSE</Option>
34 <Option type="diag">FLA_NONUNIT_DIAG</Option>
35 <Parameter>FLA_ONE</Parameter>

36 <Parameter partition="11">A</Parameter>

37 <Parameter partition="01">A</Parameter>

38 </Statement>

39 <Statement name="FLA_Trinv">

40 <Option type="uplo">FLA_UPPER_TRIANGULAR</Option>
41 <Option type="diag">FLA_NONUNIT_DIAG</Option>
42 <Parameter partition="11">A</Parameter>

43 </Statement>

44 </Update>

45 </Loop>

46 </Function>

Figure 4. FLAME/XML representation of the blocked algorithm in

Figure [T}

Language (XML). The FLAME/XML description of the
algorithm is then translated into code with explicit indexing.
Using XML frees us from burying the algorithm under-
neath layers of syntactic clutter and allows us to represent
the algorithm by storing only language-independent fea-
turesﬂ FLAME/XML was also designed to closely resemble
FLAME notation so as to preserve the natural readability of
FLAME algorithms. We present the FLAME/XML repre-
sentation of the blocked algorithm of TRINV in Figure [}
In [32], the authors identified five properties common
to all typical linear algebra algorithms: (1) the name of
the operation; (2) how the algorithm proceeds through the
operands; (3) whether it is a blocked or unblocked algorithm;
(4) the condition for remaining in the loop (loop-guard); and
(5) the updates within the loop body. In Figure [4] each of
these five semantic properties can be clearly identified.

A. Additional Semantic Properties

Even though those five semantic properties are sufficient
to perform source-to-source translation of FLAME/C im-
plementations, statically generating a DAG requires two
additional properties: (1) the problem size; and (2) input
and output parameters of each operation.

3By representing a wide range of dense linear algebra operations in XML,
we can view the collection of algorithms as a repository of knowledge. As a
result, we can potentially mine data from this repository to understand and
exploit the nature of computation expressed in linear algebra algorithms.

<?xml version=''1.0’’ encoding='’1S0-8859-1"'72>

1
2 <Function name=’’FLA_Trsm’’>
3 <Declaration>
4 <Operand type='’scalar’’ inout='’in’’>alpha</Operand>
5 <Operand type='’matrix’’ inout=’’in’’>A</Operand>
6 <Operand type='’matrix’’ inout=’’both’’>B</Operand>
7 </Declaration>
8 </Function>
9  <Function name='’'FLA_Gemm’’>
10 <Declaration>
11 <Operand type='’scalar’’ ’7in’’>alpha</Operand>
12 <Operand type='’matrix’’ in’’>A</Operand>
13 <Operand type='’matrix’’ in’’>B</Operand>
14 <Operand type='’scalar’’ in’’>beta</Operand>
15 <Operand type='’matrix’’ both’’>C</Operand>
16 </Declaration>
17 </Function>
Figure 5. Input and output parameters for TRSM and GEMM using the

FLAME/XML representation.

Even though the problem size is not explicitly expressed
within a linear algebra algorithm, it induces the number of
iterations executed by each loop.

In order to identify data dependencies, we need the input
and output parameters of each operation, which is shown on
Line 5 in Figure [ for TRINV and Figure [5 for TRSM and
GEMM. When dealing with algorithms encoded in typical
programming languages, this information involving input
and output parameters is all but lost. For more details on how
to systematically identify flow (read-after-write), anti (write-
after-read), and output (write-after-write) data dependencies
in linear algebra algorithms, see [9].

IV. STATIC GENERATION OF A DIRECTED ACYCLIC
GRAPH

Our methodology consists of two phases: source code
translation and DAG generation. We first start from a sim-
plified algorithmic description expressed in FLAME/XML
and then translate that representation into an intermediate
FLASH implementation. The main difference between this
intermediary and the implementation shown in Figure [3]
is that the translated source code generates a separate set
of source code that builds a directed acyclic graph. This
intermediate FLASH implementation steps through execu-
tion of the algorithm and detects data dependencies through
annotations that specify input and output information for
each operation.

The DAG generation phase, which is described further in
Figure [6l can be viewed as unrolling loops within a linear
algebra algorithm where multiple loops can be nested. For
example, in the blocked algorithm for computing TRINV, the
operations TRSM and GEMM are called, both of which are
computed using similar loop-based algorithms, so unrolling
these nested loops involves elements of interprocedural
analysis.

Also notice that the blocked algorithm for TRINV also
consists of a recursive subproblem. Here, the TRINV sub-
problem is implemented via an unblocked algorithm. This
issue opens the question as to whether we should completely
unroll all loops for both blocked and unblocked algorithms,
which reflects the need to specify data granularity. Since we



Data: Linear algebra algorithm S, block size b
Result: Directed acyclic graph (V, E)
V=0, E:=10
foreach A € R™*" accessed by S do
for i 0 7+ do

for j to % do

| Ay =0

end
end
end
while Execute S do
Store Task: V := V U {t};
foreach A; ; accessed by t do
.
if Aiﬁ 7é (Z) and Ai,j 7& t then

Store Dependency: E := E U {(A;J, t)};

end
if A;; is overwritten by t then
‘ A;JA = t;
end
end

end

Figure 6. The process that statically generates a DAG from a linear algebra
algorithm and block size.

have formulated these operations as algorithms-by-blocks,
we restrict ourselves to only unroll blocked subproblems,
which is specified on Line 2 in Figure fi] As a result, each
task mainly consists of level-3 BLAS operations.

As stated in Section the problem size is required to
generate the DAG, but actually another piece of information
is assumed: the algorithmic block size. The problem size
and block size together determine the number of iterations
that are executed and thus the loop unrolling factor.

By using hierarchical matrix storage, we have abstracted
away the need to specify a block size within the algorithm
since it manifests as the size of each contiguously stored
submatrix block. When striding over hierarchical matrices,
we use a unit block size because the top-level data structure
refers to a matrix whose elements are pointers to contigu-
ously stored submatrix blocks, which is highlighted on Line
11 in Figure 3

A. Determining Block Size and/or Loop Unrolling Factor

Though we cannot statically determine the problem size
due to the dynamic allocation of matrices, we can adjust two
related variables: block size and loop unrolling factor.

If we keep the block size constant, the loop unrolling
factor will grow as a function of the problem size. With
more code being unrolled, the instruction footprint increases,
and thus we expect performance to suffer from instruction
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Figure 7. G code for the summation of three matrices.

cache missesE] On the other hand, BLAS implementations
are tuned for specific block sizes which depend on the size
of the data cache, so the execution of individual tasks would
attain higher performance with a constant block size.

If we keep the loop unrolling factor constant, fewer
instruction cache misses would result, but the block size
would have to vary. For large problem sizes, individual
blocks would exceed the size of the data cache, resulting
in data cache misses.

In order to attain load balance between processors, tasks
must roughly have the same weight, which can be defined
via computational runtimes. To achieve this goal, a simple
solution is to divide the matrices into uniform submatrix
blocks. Poor data alignment might render this strategy in-
effective despite the gains in load balancing if the problem
size and loop unrolling factor are not perfectly divisible by
the data alignment length.

Different architectural features, such as data and in-
struction cache sizes, will affect the strategy for statically
generating DAGs. A rudimentary heuristic is to perform
DAG generation for a fixed range of loop unrolling factors
and vary the block size dynamically to adjust for different
problem sizes.

V. PERFORMANCE

In this section, we apply our methodology to a graphical
programming language and show performance improve-
ments from expressing computation as a DAG.

A. LabVIEW

We use LabVIEW [20] and its graphical programming
language (G) as the testing environment for our DAG
generation methodology. G is data flow language where
virtual instruments (VI), which encapsulate functions, are
connected via wires to represent the explicit data flow of
variables. In Figure [7]] we show G code that summates three

“4Functional and data flow programming languages can store the DAG as
code, but imperative languages may require the DAG to be stored separately
within internal data structures.
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Figure 8. G code for triangular inversion on a 3 X 3 matrix of blocks.

input matrices. The input and output operands for each VI
are easily recognizable in Figure [7] where the summation VI
has two matrices as inputs and one resulting output.

G allows us to easily encode a DAG of tasks where
each VI represents a task and the wires represent flow
dependencies between tasks. Due to the data flow nature of
this programming language, anti-dependencies cannot exist
because variables are never overwritten. In Figure [8] we
show the automatically generated G code for TRINV given
a 3 x 3 matrix of blocks. As you can see, handcoding this
diagram for operations with larger problem sizes would be
a daunting task.

The runtime execution system of LabVIEW attempts to
exploit opportunities for parallelism within G diagrams,
but as with imperative programming languages, complex
data dependencies, interprocedural analysis, and varying
control flow prevent LabVIEW from fully parallelizing many
computations.

LabVIEW has an inability to link with multithreaded
BLAS libraries because it cannot explicitly control the
threads spawned by those external libraries. This problem
became the primary motivation to develop this static DAG
generation methodology in order to leverage the LabVIEW
compiler and runtime execution system to exploit paral-
lelism. As a result, a LabVIEW application that controls
a large-scale telescope, which in part computes a Cholesky
factorization, can greatly benefit from our approach.

B. Target Architecture

All experiments were performed on a 16-core AMD
machine consisting of four 1.9 GHz quad-core Opteron
processors, each with 4 GB of general-purpose physical
memory. We used LabVIEW 8.6 running on Windows XP,
which links to single-threaded Intel MKL 7.2 for BLAS and
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Figure 9.  Performance results of single-threaded MKL versus DAG
implementations of TRINV.

LAPACK functionality.

C. Implementations

We report the performance in GFLOPS (10° floating
point operations per second) of two TRINV implementations:
DAG representations in G and the single-threaded dtrtri
routine present in MKLE| We performed static loop unrolling
for 5 x 5 through 10 x 10 matrix of blocks, allowing the
block size to vary proportionally as a function of the overall
problem size. The DAG results also included the time to
copy a matrix from flat row-major storage to a hierarchical
matrix and also back to flat storage.

D. Results

Performance results are reported in Figure [0] Several
comments are in order:

o Due to LabVIEW’s ability to exploit the opportuni-
ties for parallelism exposed by a DAG, larger loop
unrolling factors provided incremental improvements
in performance. Larger loop unrolling factors create
DAGs with a larger number of tasks, which leads to
more opportunities for parallelism among the tasks.
For this range of problem sizes, 1000 x 1000 through
3000 x 3000 in increments of 200 x 200, performance
gains reach an upper limit with a 10 x 10 matrix of
blocks.

« LabVIEW is able to provide significant speedup versus
the single-threaded MKL implementation. However, the
LabVIEW implementations exhibited poor efficiency;
despite having access to sixteen cores, the speedup
observed is roughly five.

SMKL does not provide a multithreaded implementation of dt rt ri even
within MKL 10.2.



The compiler and runtime execution system that exist
within LabVIEW are designed as a general purpose G
code execution mechanism and therefore must be flex-
ible enough to handle complex control flow constructs.
On the other hand, domain-specific runtime systems
might only handle computation expressed as a DAG
without any control flow variations, so more complex
scheduling heuristics can be employed to attain better
efficiency on different parallel architectures.

o The use of hierarchical matrix storage allows for better

spatial locality of submatrix blocks. LabVIEW forces
internal copies when a wire is split, creating an inherent
bottleneck in performance. Even though this overhead
is amortized across all computation within the DAG,
temporal locality is lost through the allocation of new
submatrix blocks despite the inherent reuse of data.
Additional memory management is required, which
also adversely affects performance.
Anti-dependencies do not exist in G because of the
implicit copies. Despite this extra overhead, the lack
of these dependencies potentially creates additional
opportunities for parallelism that are not present when
variables are explicitly read and overwritten.

e On top of the hidden copy of submatrices at forked

wires, an explicit memory copy is required to convert
flat matrices to hierarchical ones. Storing submatrices
contiguously creates overhead up-front, but this storage
scheme preserves spatial locality.
Even though we used TRINV as a motivating example,
the DAG generation methodology can be applied to
multiple linear algebra operations in sequence. In [9]],
parallelism is extracted from the inversion of a symmet-
ric positive definite matrix, which may be implemented
by computing the Cholesky factorization A — UTU,
followed by triangular inversion R := U~!, and then
triangular matrix multiplication by its transpose A~ :=
RRT. Since each of these constituent operations of
SPD-INV are computed via loop-based algorithms, we
can apply this methodology to generate a DAG for all
three operations together. Since the computational com-
plexity O(n?3) grows faster than the data storage O(n?),
the overhead of copying the matrix to a hierarchical
matrix becomes a smaller fraction of the overall amount
of computation.

As a result of using our DAG generation methodology, we
have attained modest performance gains using the existing
tools provided by LabVIEW without incorporating complex
scheduling heuristics into the general purpose runtime exe-
cution system.

VI. RELATED WORK

Modern superscalar computer architectures have long
used out-of-order execution techniques, akin to Tomasulo’s
algorithm [30], to exploit instruction-level parallelism [18]].

Data dependencies exist between the register and memory
locations of different scalar instructions. Once all data de-
pendencies are fulfilled for each operand, instructions are
dispatched and scheduled out-of-order to execute in parallel
on separate functional units.

The data dependencies between scalar instructions also
form a DAG where the nodes now represent individual scalar
instructions as opposed to coarse-grained tasks. As such, we
can view out-of-order superscalar execution as an analog to
scheduling DAGs in parallel. Recent research projects, such
as PLASMA [7], SMPSs [24], and SuperMatrix [8], [9],
[28], have leveraged the idea of DAG scheduling in order
to exploit parallelism from matrix computations, such as the
Cholesky factorization [1]], [17].

With the recent work on scheduling matrix computations
in parallel, building a DAG from an algorithm-by-blocks is
done sequentially at runtime [7]], [24], [28]. This process
invokes Amdahl’s law where the sequential component of
DAG construction limits the potential speedup of the paral-
lelized matrix computation. The focus of this paper is how
to statically generate a DAG and thus decouple the parallel
scheduling of tasks in a DAG from the static dependence
analysis. We can potentially adapt this methodology to in-
terface with domain-specific schedulers such as SuperMatrix
in order to eliminate this sequential overhead and provide
more dramatic speedups in performance.

The traditional approach for performing static dependence
analysis entails trying to recover semantic information from
an implementation of an algorithm, usually instantiated in
programming languages such as C or Fortran [25]. The
difficulty of this approach is that semantic information is
obfuscated behind many of the implementation details such
as explicit indexing of matrices [23]. Relatively simple
information such as the input and output parameters of each
operation become almost impossible to recover because of
the complexities incurred from pointer aliasing and varying
interprocedural control flow.

Earlier work on DAG scheduling of matrix computa-
tions [34] also dealt with the static generation of a DAG but
also performed the static scheduling of tasks for distributed-
memory architectures whereas recent work is geared towards
dynamic scheduling for shared-memory architectures [7]],
[24], [28]. C-based programming language extensions are
presented in [24], [34] to construct a DAG whereas we
present a methodology for encapsulating linear algebra algo-
rithms in a simple, programming language-independent rep-
resentation. As a result, we address the issue of progamma-
bility.

SPIRAL is a project that automatically generates and
optimizes code starting from a mathematical specification of
linear transforms [26]. Their problem domain only presents
itself with a limited set of tunable parameters, so the
generated code produced by SPIRAL is quite efficient. On
the other hand, matrix computations provide a vastly larger



search space of such parameters and hence our using a
simple heuristic for determining the block size and loop
unrolling factor. Thus far, the auto-tuning of BLAS libraries
has only dealt with optimizing sequential kernels [29]], [33].

VII. CONCLUSION

The results in this paper, in and by themselves, represent
an interesting case study of how “knowledge” stored as in-
formation in an XML description can be statically analyzed,
yielding a DAG that can then be used to exploit parallelism.
It also provides additional evidence that it is possible to
change programming from an art that requires expert human
understanding into a system that mechanically exploits the
knowledge of an expert human in this problem domain.

In previous work, we showed that for a broad class
of dense linear algebra operations it is possible to take a
description of an operation and systematically transform this
description into a family of algorithms that computes the
operation [4]]. The process often yields new algorithms even
when no algorithms were previously known for the given
operation [27]. Next, we showed that this process could be
made mechanical [3]. The output of this process can be a
high-level description and knowledge about those algorithms
(e.g., a cost function or numerical properties).

What we have shown in [32] and this paper is that this
knowledge can, for example, be represented with XML.
From this intermediate representation, a number of differ-
ent implementations can be obtained via relatively simple
rewrite rules. The analysis that yields a DAG discussed in
this paper is just one of several possibilities. For example,
we can transform algorithms into our FLAME/C API for
sequential routines or generate code at a level similar to
that used by traditional libraries like LAPACK, as described
in [32] which also has a more thorough discussion about the
different outputs we have explored for that system.

We finish with a final possible output, which we find
particularly interesting. It should be possible to map al-
gorithms directly to hardware. After all, the G code in
Figure [8| resembles a circuit. In other words, we may be
able to mechanically generate special-purpose hardware for
commonly used linear algebra operations, circumventing the
software stack entirely.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.
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