
IEEE TRANSACTIONS ON COMPUTERS 1

Algorithm, Architecture, and Floating-Point Unit
Codesign of a Matrix Factorization Accelerator

Ardavan Pedram, Andreas Gerstlauer, and Robert A. van de Geijn

Abstract—This paper examines the mapping of algorithms encountered when solving dense linear systems and linear least-squares
problems to a custom Linear Algebra Processor. Specifically, the focus is on Cholesky, LU (with partial pivoting), and QR factorizations
and their blocked algorithms. As part of the study, we expose the benefits of redesigning floating point units and their surrounding
data-paths to support these complicated operations. We show how adding moderate complexity to the architecture greatly alleviates
complexities in the algorithm. We study design trade-offs and the effectiveness of architectural modifications to demonstrate that we can
improve power and performance efficiency to a level that can otherwise only be expected of full-custom ASIC designs. A feasibility study
of inner kernels is extended to blocked level and shows that, at block level, the Linear Algebra Core (LAC) can achieve high efficiencies
with up to 45 GFLOPS/W for both Cholesky and LU factorization, and over 35 GFLOPS/W for QR factorization. While maintaining such
efficiencies, our extensions to the MAC units can achieve up to 10%, 12%, and 20% speedup for the blocked algorithms of Cholesky,
LU, and QR factorization, respectively.
Index Terms—Low-power design, Energy-aware systems, Performance analysis and design aids, Floating-point arithmetic, Matrix
decomposition, Special-purpose hardware, LU factorization, Partial pivoting, QR factorization, Cholesky factorization

F

1 INTRODUCTION

Matrix factorizations are typically the first (and most
compute intensive) step towards the solution of dense
linear systems of equations or linear least-squares prob-
lems [1], which are fundamental to scientific computa-
tions. Within the dense linear algebra domain, a typi-
cal computation can be blocked into sub-computations
like GEneral Matrix-matrix Multiplication (GEMM) that
contain most of the computational load, are highly par-
allelizable, and can be mapped very efficiently to accel-
erators. Typical accelerator designs remove unnecessary
overheads in general purpose architectures and use more
fine-grain compute engines instead. As such, accelerator
architectures are less flexible, but very efficient, both in
terms of area and power consumption [2].

For more complicated algorithms, such as matrix fac-
torizations, many current approaches use heterogeneous
solutions [3], [4]. Often, in cases where the problem size
is large enough, only the simplest sub-computations of
these algorithms, e.g. GEMM and other matrix-matrix
operations are performed on the accelerator. Other, more
irregular computations, which are added to the algo-
rithm to overcome floating point limitations or which
would require complex hardware logic to exploit fine
grain parallelism, are performed by a general purpose
host processor.

• Ardavan Pedram, and Andreas Gerstlauer are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin,
Austin, Texas.
E-mail: ardavan@utexas.edu, gerstl@ece.utexas.edu

• Robert van de Geijn is with the Department of Computer Science, The
University of Texas at Austin, Austin, Texas
E-mail:rvdg@cs.utexas.edu

This research was partially sponsored by NSF grant CCF-1218483.

The problem with heterogeneous solutions is the over-
head for communicating back and forth between the
accelerator and the host processor. Even when integrated
on the chip, data often has to be moved all the way to
off-chip memory in order to perform transfers between
(typically) incoherent address spaces. While the CPU
could be used to perform other tasks efficiently, it is
wasting cycles synchronizing with the accelerator and
copying data. Often, the accelerator remains idle waiting
for the data that is on the critical path to be processed by
the CPU. This is particularly noticeable for computations
with small pieces of data. Therefore, the compute kernel
has to be large enough to amortize the cost of data
movements. Otherwise, it is more efficient to perform
it on the host processor alone.

We propose that, instead of only focusing on the
most repeated kernels like GEMM, accelerators can be
designed to natively and efficiently support the irregular
parts of an application. We study such an approach for
three matrix factorization algorithms: Cholesky, LU (with
partial pivoting), and QR factorizations. Our solution is
to allow architectural changes to the accelerator design
in order to reduce complexity directly in the algorithm
whenever possible. Thus, the solution is to exploit algo-
rithm/architecture co-design.

In previous work [5], we started from a base design
of a Linear Algebra Core (LAC) that is highly optimized
for GEMM and level-3 BLAS [6], [7]. We showed that
focusing on complex kernels and providing logic exten-
sions for the Floating-Point Units (FPUs) of the LAC can
significantly improve the performance and reduce the
complexity and power consumption of the inner ker-
nels of matrix factorizations. The resulting architecture
avoids the need for running complex computations on a
general-purpose host processor.

IEEE TRANSACTIONS ON COMPUTERS 2

Our previous work focused on improvements for the
inner kernels of Cholesky factorization, LU factorization
(with partial pivoting), and the vector-norm in QR factor-
ization. In this paper, we extend our studies to show how
much improvements the algorithm/architecture code-
sign brings to the low-level inner kernel of QR factoriza-
tion and whole, overall blocked algorithms of all three
matrix factorizations. Results show that improvements
of intricate low-level kernels have noticeable effects on
the overall blocked solution. The main outcomes are as
follows: first, smaller-sized complicated problems can
be performed natively on the accelerator, with much
higher efficiency, instead of being run completely on
the host. Second, no data movement and corresponding
overheads are incurred when offloading complicated
kernels that are parts of a larger problem to the host
processor. Instead, they can be completely performed by
the accelerator.

The rest of the paper is organized as follows: in
Section 2, we present related work on the implemen-
tations of the same algorithms on different platforms. In
Section 3, a brief description of the baseline accelerator is
given. Section 4 then describes the algorithms as well as
the limitations and mapping challenges for the proposed
accelerator. Section 5 details necessary modifications to
the conventional designs such that all computation can
be performed on the accelerator itself. The evaluation
of the proposed architecture with sensitivity studies of
energy efficiency, area overheads, and utilization gains
are followed in Section 6. Finally, we conclude with a
summary of contributions and future work in Section 7.

2 RELATED WORK

Implementation of matrix factorizations on both conven-
tional high performance platforms and accelerators has
been widely studied. Many existing solutions perform
more complex kernels on a more general purpose (host)
processor while the high-performance engine only com-
putes paralellizable blocks of the problem [3], [4]. The
mapping of matrix factorizations have also been studied
on accelerators like the Cell processor [8], [9], [10], and
the Clearspeed CSX architecture [11]. Both of these ar-
chitectures are heterogenous and the complex operations
are run on the general purpose processor.

A typical solution for LU factorization on GPUs is
presented in [4]. The details of multi-core, multi-GPU QR
factorization scheduling are discussed in [3]. A solution
for QR factorization that can be entirely executed on
the GPU is presented in [12]. For LU factorization on
GPUs, a technique to reduce matrix decomposition and
row operations to a series of rasterization problems is
used [13]. There, pointer swapping is used instead of
data swapping for pivoting operations.

On FPGAs, [14] discusses LU factorization without
pivoting. However, when pivoting is needed, the al-
gorithm mapping becomes more challenging and less
efficient due to complexities of the pivoting process

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

`

MEM B

Address Regs

Row Bus
Write

Column Bus
Write

A B

µ programmed
Controller

Column
Bus Read

Row Bus
Read

MAC
Accumulator

Cin

Memory Interface

RF
MEM A

`

MEM B

Address Regs

Column Bus
Write

A B

µ programmed
Controller

MAC
Accumulator

Cin

RF
MEM A

Fig. 1. LAC architecture is optimized for rank-1 updates
to perform matrix multiplication [6].

and resulting wasted cycles. LAPACKrc [15] is a FPGA
library with functionality that includes Cholesky, LU and
QR factorizations. The architecture has similarities to
the LAP. However, due to limitations of FPGAs, it does
not have enough local memory. Similar concepts as in
this paper for FPGA implementation and design of a
unified, area-efficient unit that can perform the necessary
computations (division, square root and inverse square
root operations that will be discussed later) for calculat-
ing Householder QR factorization is presented in [16].
Finally, a tiled matrix decomposition based on blocking
principles is presented in [17].

3 BASE ARCHITECTURE

We study opportunities for floating-point extensions to
an already highly-optimized accelerator. The microarchi-
tecture of the Linear Algebra Core (LAC) is illustrated
in Figure 1. A LAC achieves orders of magnitude better
efficiency in power and area consumption compared
to conventional general purpose architectures [6]. It is
specifically optimized to perform rank-1 updates that
form the inner kernels of parallel matrix multiplication.
The LAC architecture consists of a 2D array of nr × nr
Processing Elements (PEs), with nr = 4 in Figure 1. Each
PE has a Multiply-ACcumulate (MAC) unit with a local
accumulator, and local Static Random-Access Memory
(SRAM) storage divided into a bigger single-ported and
a smaller dual-ported memory. PEs are connected by
simple, low-overhead horizontal and vertical broadcast
buses that each can move a double word per cycle. This
is sufficient bandwidth to support all operations with
GEMM and Symmetric Rank-k Update (SYRK) having
the highest requirements [6], [7].

MAC units perform the inner dot-product computa-
tions central to almost all level-3 BLAS operations. Apart
from preloading accumulators with initial values, all
accesses to elements of a nr × nr matrix being updated
are performed directly inside the MAC units, avoiding
the need for any register file or memory accesses. To
achieve high performance and register level locality, the
LAC utilizes pipelined MAC units that can achieve a
throughput of one MAC operation per cycle [18]. Note
that this is not the case in current general-purpose archi-
tectures, which require extra data handling to alternate
computation of multiple sub-blocks of the matrix being
updated [19].

IEEE TRANSACTIONS ON COMPUTERS 3

4 FACTORIZATION ALGORITHMS

In this section, we show the challenges and limitations
in current architectures related to performing efficient
matrix factorizations, and how to overcome these limi-
tations through appropriate architecture extensions. We
examine the three most commonly-used operations re-
lated to the solution of linear systems: Cholesky, LU
(with partial pivoting), and QR factorization. Here, we
first focus on small problems that fit into the LAC
registers. Then we describe the blocked algorithm for
problems that fit in the aggregate SRAM memories of the
LAC. Bigger problem sizes can be blocked into smaller
problems that are mainly composed of level-3 BLAS op-
erations (discussed in [3]). We briefly review the relevant
algorithms and their microarchitecture mappings. The
purpose is to expose specialized operations, utilized by
these algorithms, that can be supported in hardware.

4.1 Cholesky Factorization
Cholesky factorization is the most straightforward fac-
torization operation. It is representative of a broad
class of linear algebra operations and their complexities.
Given a symmetric positive definite matrix1, A ∈ Rn×n,
the Cholesky factorization produces a lower triangular
matrix, L ∈ Rn×n such that A = LLT . The basic
algorithm [5] we will utilize can be motivated as follows:
partition

A =
(
α11 aT12
a21 A22

)
and L =

(
λ11 0
l21 L22

)
,

where α11 and λ11 are scalars. We can compute L from
A via the operations

α11 :=λ11=
√
α11 ?

a21 := l21=(1/λ11)a21 A22 :=L22=Chol(A22 − l21lT12)
,

overwriting A with L. For high performance, it is ben-
eficial to also derive a blocked algorithm that casts
most computations in terms of matrix-matrix operations,
which we will describe later in this section. The obser-
vation is that the “square-root-and-reciprocal” operation
α11 :=

√
α11; t = 1/α11 is important, and that it should

therefore be beneficial to augment the microarchitecture
with a unit that computes f(x) = 1/

√
x when mapping

the Cholesky factorization onto the LAC.

4.1.1 Basic Cholesky Factorization nr × nr
We now focus on how to factor a nr×nr submatrix when
stored in the registers of the LAC (with nr × nr PEs). In
Figure 2, we show the second iteration of the algorithm.
For this subproblem, the matrix has also been copied to
the upper triangular part, which simplifies the design.

In each iteration i = 0, . . . , nr − 1, the algorithm
performs three steps S1 through S3. In S1, the invert-
square-root is computed. In S2, the element in PE(i,i)
is updated with its inverse square root. The result is

1. A condition required to ensure that the square root and inversion
of a non-positive number is never encountered.

Sub

LAPACK

Sub

BLAS
Packing

Host OS

LAPHost Processor

BLAS

LAPACK

LA Library

Host Application

Assembly Code Device Driver

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/x

(S1)

Broadcast

Mult
Feed 1/x

Broadcast

Inverse

Broadcast

TRSM Coef

(S2) (S3) (S3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)(1)

(2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Broadcast a1 !
Broadcast a1

Broadcast a0
T

Rank-1 update C+=a0a0
T

(S1)

(S1)

(S1)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/!

(b)

c

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/!x

(S1)

Broadcast

Mult
Feed 1/!x

Broadcast

Inverse Sqrt

(S2) (S3)

Fig. 2. 4 × 4 Cholesky decomposition mapping on the
LAC, 2nd iteration.

nrxnr

Cholesky

Update

Source 1

GEMM

Update

TRSM

Update

Computed

Not Yet

Computed

A22

A00

A11

A20

A02

A12A10

A01

A21

(1) A11:=A11-A10A10
T

(2) A21:=A21-A20A10
T

(3) A11:=Colesky(A11)

A11

(4) A21:=A21TRIL(A11)
-T

A11

A21

A11

Update

Source 2

A10

A20 A21

Fig. 3. Blocked Cholesky Factorization fifth Iteration.

broadcast within the ith PE row and ith PE column. It
is then multiplied into all elements of the column and
row which are below and to the right of PE(i,i). In S3,
the results of these computations are broadcast within
the columns and rows to be multiplied by each other as
part of a rank-1 update of the remaining part of matrix
A. This completes one iteration, which is repeated for
i = 0, . . . , nr − 1. Given a MAC unit with p pipeline
stages and an inverse square root unit with q stages, this
nr × nr Cholesky factorization takes 2p(nr − 1) + q(nr)
cycles. Due to the data dependencies between different
PEs within and between iterations, each element has to
go through p stages of MAC units while other stages are
idle. The last iteration only replaces the PE(nr−1,nr−1)
value by its square root, which only requires q additional
cycles.

4.1.2 Blocked Cholesky Factorization knr × knr
Let us now assume that a larger matrix, knr × knr is
distributed among the local stores of PEs in a 2D round-
robin fashion. We will describe how a single iteration
of the blocked left-looking algorithm is performed by
the LAC. In Figure 3 we show the case where k = 8
and a block in that figure fits in the registers of the PEs.
Highlighted is the data involved in the fifth iteration.

We describe the different operations to be performed:
(1) A11 := A11−A10A

T
10: Diagonal block A11 is moved

to the accumulators of the PEs. A11 − A10A
T
10 is

a matrix multiplication, which is orchestrated as
series of rank-1 updates that perform GEMM [6].

IEEE TRANSACTIONS ON COMPUTERS 4

(2) A21 := A21−A20A
T
10: Blocks of A21 are moved to the

accumulators of the PEs. A block is updated much
like A11 − A10A

T
10 was, except that the first A10 is

replaced by the row block of A21 that corresponds
to the current block of A21 being updated.

(3) A11 := Chol(A11): For this operation, the described
nr × nr Cholesky factorization is employed.

(4) A21 := A21A
−T
11 : A11 is brought into the LAC

registers, much like it was for the nr×nr Cholesky
factorization. Blocks of A21 are streamed through.
This operation is known as Triangular Solve with
Multiple Right-hand Side (TRSM), details of which
could be found in [7].

We chose a blocked left-looking algorithm primarily
because a block is repeatedly updated by data that can be
streamed, enhancing both temporal and spatial locality.
The important insight is that by designing the algo-
rithm and architecture hand-in-hand, the appropriate
algorithm can guide the hardware design and vice versa.

The key complexity when performing Cholesky fac-
torization is the inverse square-root and square-root
operations. If we add this special function to the core,
the LAC can perform the inner kernel of the Cholesky
factorization natively. The nr×nr Cholesky factorization
is purely sequential with minimal parallelism in rank-1
updates. However, as we observed, it is a small part of a
bigger, blocked Cholesky factorization. The goal here is
to avoid sending data back and forth to a general pur-
pose processor or performing this operation in emulation
on the existing MAC units, which would keep the rest
of the core largely idle.

4.2 LU Factorization with Partial Pivoting

LU factorization with partial pivoting is a more general
solution for decomposing matrices. The LU factorization
of a square matrix A is the first and most computation-
ally intensive step towards solving Ax = b. It decom-
poses a matrix A into a unit lower-triangular matrix L
and an upper-triangular matrix U such that A = LU . We
again briefly motivate the algorithm that we utilize [5]:
partition

A =
(
α11 aT12
a21 A22

)
, L =

(
1 0
l21 L22

)
, U =

(
υ11 uT12
0 U22

)
,

where α11, and υ11 are scalars. We can compute L and
U in place for matrix A. The diagonal elements of L are
not stored (all of them are equal to one). The strictly
lower triangular part of A is replaced by L. The upper
triangular part of A, including its diagonal elements, is
replaced by U as follows:

α11 := υ11 (no-op) aT12 := uT12 (no-op)
a21 := l21 = a21/υ11 A22 := LU(A22 − l21uT12)

.

The LU factorization described so far is only com-
putable if no zero-valued α11 is encountered. In practice,
even if this condition is satisfied, the use of finite preci-
sion arithmetic can cause failure in the naive algorithm.

The update to matrix A in the first iteration is given by
α11 α12 · · · α1,n

0 α22 − λ21α12 · · · α2,n − λ21α1,n

0 α32 − λ31α12 · · · α3,n − λ31α1,n

...
...

. . .
...

0 αn,2 − λn,1α12 · · · αn,n − λn,1α1,n

 ,

where λi,1 = αi,1/α11, 2 ≤ i ≤ n. The algorithm clearly
fails if α11 = 0. If α11 6= 0 and |αi,1| � |α11|, then
λi,1 will be large in magnitude, and it can happen that
for some i and j the value |αi,j − λi,1αi,j | � |αi,j |,
2 ≤ j ≤ n; that is, the update greatly increases the
magnitude of αi,j . This is a phenomenon known as large
element growth and leads to numerical instability. The
problem of element growth can be solved by rearranging
(pivoting) the rows of the matrix (as the computation
unfolds). Specifically, the first column of matrix A is
searched for the largest element in magnitude. The row
that contains that element, the pivot row, is swapped with
the first row, after which the current step of the LU
factorization proceeds. The net effect is that |λi,1| ≤ 1
so that |αi,j − λi,1α1,j | is of a magnitude comparable
to the largest of |αi,j | and |α1,j |, thus keeping element
growth bounded. This is known as the LU factorization
with partial pivoting. The observation is that finding the
(index of the) largest value in magnitude in a vector is
important for this operation.

4.2.1 Basic LU Factorization knr × nr
To study opportunities for corresponding architecture
extensions, we focus on how to factor a knr×nr subma-
trix (see Figures 4, 5) stored in a 2D round-robin fashion
in the local store and registers of the LAC (with nr × nr
PEs). In Figure 4 we show the second iteration of the
right-looking unblocked algorithm (i = 1).

In each iteration i = 0, . . . , nr − 1, the algorithm
performs four steps, S1 through S4. In S1, the elements
in the ith column below the diagonal are searched for
the maximum element in magnitude. This element can
be in any of the ith column’s PEs. Here, we just assume
that it is in the row with j = 2. After the row with
maximum value (the pivot row) is found, in S2, the
pivot value is sent to the reciprocal (1/X) unit and
the pivot row is swapped with the diagonal (ith) row
concurrently. In S3, the reciprocal (1/X) is broadcast
within the ith column and multiplied into the elements
below PE(i,i). In S4, the results of the division (in the ith
column) are broadcast within the rows. Simultaneously,
the values in the ith (pivot) row to the right of the
ith column are broadcast within the columns. These
values are multiplied as part of a rank-1 update of the
remaining part of matrix A. This completes the current
iteration, which is repeated for i = 0, . . . , nr − 1.

According to the above mapping, most of the opera-
tions are cast as rank-1 updates and multiplications that
are already provided in the existing LAC architecture.
In addition to these operations, two other essential com-
putations are required: first, a series of floating-point

IEEE TRANSACTIONS ON COMPUTERS 5

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find the Pivot Feed 1/x Broadcast Interchange Rows

(1) (4)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find maximum
produced value in ith

column

Rank-1 update

(2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Interchange
the pivot row
with ith row

(3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Scale the ith column
with pivot

1/x
1/x

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

(S1) (S4)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find maximum in ith column Rank-1 update (S2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Interchange the pivot row with ith row (S3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Scale the ith column with pivot

1/x 1/x

(S1) (S2) (S2) (S3,S4)

Fig. 4. Second iteration of a knr × nr LU factorization with partial pivoting on the LAC.

(S1) (S2) (S2) (S3) (S4)
Fig. 5. Operations and data manipulation in the second
iteration of a knr × nr LU factorization inner kernel.

comparisons to find the maximal value in a vector (col-
umn); and second, a reciprocal (1/X) operation needed
to scale the values in the ith column by the pivot (S2 in
Section 4). Due to these extra complexities, solutions for
most existing accelerators send the whole knr×nr block
to a host processor to avoid performing the factorization
themselves [3], [4].

4.2.2 Blocked LU Factorization knr × knr
Let us now assume that a larger matrix, knr × knr is
distributed among the local stores much like the matrix
was for Cholesky (wrapped). We will describe how a
single iteration of the blocked left-looking algorithm is
performed by the LAC.

To formally include row swapping in the blocked LU
factorization, we introduce permutation matrices, which
have the effect of rearranging the elements of vectors and
entire rows or columns of matrices. A matrix P ∈ Rn×n is
said to be a permutation matrix (or permutation) if, when
applied to the vector x = (χ0, χ0, . . . , χn−1)

T , it merely
rearranges the order of the elements in that vector.
Such a permutation can be represented by the vector of
integers p = (π0, π0, . . . , πn−1)

T , where {π0, π1, . . . , πn−1}
is a permutation of {0, 1, . . . , n− 1}, and the scalars πis
indicate that the permuted vector is given by Px =(
χπ0 , χπ1 , . . . , χπn−1

)T .
The blocked LU factorization with partial pivoting can

then be performed by computing L, U , and a permuta-
tion p of {0, 1, . . . , n−1} to satisfy P (p)A = LU . Note that
in the blocked LU factorization with pivoting, the search
space for the pivot is all the elements below the diagonal.
Therefore, a whole column panel of A, which includes
the diagonal block, must be processed and factorized.

In Figure 6, we show the case where k = 8 and
therefore, A11 in that figure fits in the registers of the PEs.

LU Factorization

Update
Source 1

GEMM
Update

TRSM
Update

Computed L

Not Yet
Computed

A22

A00

A11

A20

A02

A12A10

A01

A21

(1) A11:=A11-A10A01 (2) A21:=A21-A20A01

(3a)

(5) A12:=A12TRIL(A11)-1

A11

Update
Source 2

A10

A20 A21

A01

A11

A12

A11

A12
:=LU, p1

A22

A00

A20

A02

A12A10

A01

A21 A22

A00

A20

A02

A12A10

A01

A21

L11

(4) A12:=A12-A10A02

A11

A12

A11

A12
:=P(p1)

A11

A12

A11

A12
(3b)

A00 A02

Computed U

A22

A12

A10

A20

A00 A02

A22

A12

A11

p

p0

p1

p2

L11

U11

A21

Interchange
Rows

Fig. 6. Left-looking Blocked LU factorization, fifth itera-
tion, for a matrix stored in the LAC local memory.

Highlighted is the data involved in the fifth iteration. We
describe the different operations to be performed:

(1) A11 := A11−A10A01: Diagonal block A11 is moved
to the accumulators of the PEs. A11 − A10A01 is
a matrix multiplication, which is orchestrated as
series of rank-1 updates that perform GEMM [6].

(2) A21 := A21−A20A01: Blocks of A21 are moved to the
accumulators of the PEs. A block is updated much
like A11 − A10A01 was, except that the first A10 is
replaced by the row block of A21 that corresponds
to the current block of A21 being updated.

(3a)
[(

A11

A21

)
, p1

]
:= LU piv

(
A11

A21

)
: For this opera-

tion, the described inner kernel for kinr × nr LU
factorization is employed.

IEEE TRANSACTIONS ON COMPUTERS 6

(3b)
(
A10 A12

A20 A22

)
:= P (p1)

(
A10 A12

A20 A22

)
: This

operation applies the pivoting on the other rows
of the matrix and switches them. The PEs that own
the elements of the pivot row switch them with the
diagonal block rows. This operation can be merged
with the inner kernel for LU factorization.

(4) A12 := A12 − A10A02: Blocks of A12 are moved to
the accumulators of the PEs. A block is updated
much like A11 −A10A01 was.

(5) A12 := TRILU(A11)−1A12: L11 = TRILU(A11) (unit
lower triangular part of A11) is brought into the
LAC registers, much like it was for the nr × nr
Cholesky factorization. Blocks of A21 are streamed
through and the TRSM operation is performed.

In LU factorization with partial pivoting, PEs in the
LAC must be able to compare floating-point numbers
to find the pivot (S1 in Section 4). In the blocked LU
factorization, we have used the left-looking algorithm,
which is the most efficient variant with regards to data
locality [20]. In the left-looking LU factorization, the PEs
themselves are computing the temporary values that
they will compare in the next iteration of the algorithm.
Knowing this fact, the compare operation could be done
implicitly without any extra latency and delay penalty.
The other operation that is needed for LU factorization
is the reciprocal (1/X) to avoid multiple division opera-
tions and simply scale all the values by the reciprocal of
the pivot.

4.3 QR Factorization

Householder QR factorization is often used when solv-
ing a linear least-squares problem. QR factorization de-
composes a matrix A ∈ Rm×n(m ≥ n) into an orthonor-
mal matrix matrix Q ∈ Rm×n and an upper-triangular
matrix R ∈ Rn×n such that A = QR. The key to
practical QR factorization algorithms is the Householder
transformation [21]. Given u 6= 0 ∈ Rn, the matrix H =
I−uuT /τ is a reflector or Householder transformation if
τ = uTu/2. In practice, u is scaled so that its first element
is “1”. We will now show how to compute A→ QR, the
QR factorization, of m × n matrix A as a sequence of
Householder transformations applied to A.

In the first iteration, we partition A →
(
α11 aT12
a21 A22

)
.

Let
(

1
u21

)
and τ1 define the Householder transforma-

tion that zeroes a21 when applied to the first column.
Then, applying this Householder transform to A yields:(

α11 aT12
a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)T
/τ1

)(
α11 aT12
a21 A22

)
=

(
ρ11 aT12 − wT

12

0 A22 − u21wT
12

)
,

where wT12 = (aT12 + uT21A22)/τ1. Computation of a full
QR factorization of A will now proceed with A22.

QR factorization with Householder reflectors is a more
complicated operation compared to all of the previous

Algorithm:
[(

ρ11
u21

)
, τ1

]
= HOUSEV

(
α11

a21

)
χ2 := ‖a21‖2
β :=

∥∥∥∥(α11

χ2

)∥∥∥∥
2

(= ‖x‖2)

ρ11 = −sign(α11)‖x‖2 ρ11 := −sign(α11)β
ν = α11 + sign(α11)‖x‖2 ν := α11 − ρ1
u21 = a21/ν u21 := a21/ν

χ2 = χ2/|ν|(= ‖u21‖2)
τ1 = (1 + uT21u21)/2 τ1 = (1 + χ2

2)/2

Fig. 7. Computing the Householder transformation. Left:
simple formulation. Right: efficient computation.

(1)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Distribute a21
and start computing:

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Reduce to diagonal PE and
perform the following

(3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Update a21 (4-1)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Vector-Matrix multiply

1/x

1/Ʈ1

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Rank-1 update

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Matrix Vector Multiply

(2)

(4-2) (5)

√x

α11
a21

=Sqrt(a21a21
T+α11

2)a21
Ta21 , α11

2

Ʈ1=1/Ɣ *(1+a21
Ta21)/2

a21=1/Ɣ* (a21)
w12

T=(1/Ʈ1)*(a12
T+a21

TA22)

t01=a10+A20
Ta21 A22=A22-a21w12

T

a12
T=a12

T-w12
T

Ɣ=α11+sign(α11) α11
a21

α11=-sign(α11)
α11
a211/Ɣ

1/x

Fig. 8. Mapping the QR inner kernel onto the LAC.

cases we have presented so far. The new complexity
introduced in this algorithm is in the computation of
u21, τ1, and ρ11 from α11 and a21, captured in Figure 7,
which require a vector norm computation and scaling
(division). This is referred to as the computation of the
Householder vector.

The 2-norm of a vector x with elements
χ0, · · · , χn−1 is given by ‖x‖ := (

∑n−1
i=0 |χi|

2
)1/2 =√

χ2
0 + χ2

2 + . . .+ χ2
n−1. The problem is that intermediate

values can overflow or underflow. This is avoided by

IEEE TRANSACTIONS ON COMPUTERS 7

a21=1/Ɣ* (a21) w12
T=(1/Ʈ11)(a12

T+a21
TA22) A22=A22-a21w12

T
a12

T=a12
T-w12

T

t01=a10+A20
Ta21

S(3) S(4-1) S(4-2) S(5)

Fig. 9. Operations and data manipulation in the second
iteration of a knr × nr QR factorization S3 through S5.

normalizing x and performing the following operations
instead: t = maxn−1

i=0 |χi| ; y = x/t; ‖x‖2 := t× ‖y‖2. If
not for overflow and underflow, the operation would
be no more complex than an inner product followed by
a square root. To avoid overflow and underflow, two
passes over the data should be performed: a first pass to
search and find the largest value in magnitude followed
by a second pass to scale the vector elements and
accumulate the inner-product. A one-pass algorithm
has been presented in [22] that uses three accumulators
for different value sizes. More details about how this is
computed in software are discussed in [23], [24].

The extra operations that are needed to perform vector
norm in a conventional fashion are the following: a
floating-point comparator to find the maximum value
in the vector just , a reciprocal function to scale the
vector by the maximum value, and a square-root unit
to compute the length of the scaled vector . However,
we can observe that all these extra operations are only
necessary due to limitations in hardware representations
of real numbers [5].

Consider a floating number f that, according to the
IEEE floating-point standard, is represented as 1.m1×2e1 ,
where 1 ≤ 1.m1 < 2. Let us investigate the case of
an overflow for p = f2, and as a result p = (1.m2) ×
2e2 = (1.m1)

2 × 22e1 , where 1 ≤ (1.m1)
2 < 4. If

(1.m1)
2 ≤ 2, then e2 = 2e1. But, if 2 ≤ (1.m1)

2, then
2 ≤ (1.m1)

2 = 2 × 1.m2 ≤ 2 and therefore e2 = 2e1 + 1.
In both cases, a single extra exponent bit suffices for
avoiding overflow and underflow in computations of
the square of a floating-point number. Still, there might
be the possibility of overflow/underflow due to accu-
mulation of big/small numbers that could be avoided
by adding a second exponent bit. However, the square-
root of such inner product is still out of the bounds
of a standard floating-point number. Therefore, only a
single additional bit suffices. Hence, what is needed is
a floating-point unit that has the ability to add one
exponent bit for computing the vector norm to avoid
overflows and corresponding algorithm complexities.

4.3.1 Basic QR Factorization knr × nr
We focus on how to factor a knr × nr submatrix (see
Figure 9) stored in a 2D round-robin fashion in the local

store and registers of the LAC (with nr × nr PEs). The
first step is to perform a vector norm of a scaled knr× 1
vector (see Figure 9). Recall that such a column vector
is only stored in one column of the PEs. In Figure 8, we
show the second iteration of the right-looking unblocked
algorithm (i = 1). In each iteration i = 0, . . . , nr − 1, the
algorithm performs five steps S1 through S5.

In S1, the partial inner products of aT21a21, and α2
11

should be produced. Also, the elements of a21 are dis-
tributed to the other columns of PEs using the row
broadcast buses. Here, a21 contains the elements below
the diagonal of matrix that are located in the ith column
of PEs. At the end of this stage, the ith column is left
with nr partial results.

In S2, a reduction across all the PEs of the ith column
and a square-root operation is performed to compute
α :=

∥∥∥(α1

χ2

)∥∥∥
2
(= ‖x‖2), which is the desired vector

norm operation . The result is used to produce γ and
update α11 in PE(i,i) with the help of a square-root unit.
The LAC needs to save the result of aT21a21 to avoid extra
computations in S3. The reciprocal unit gets γ to produce
1/τ1.

In S3, the result of the reciprocal operation 1/γ up-
dates a21 and τ1. All the PEs in the LAC each receive
1/γ via broadcast buses and update those parts of a21
that they received in the initial distribution of a21 in S1.

Note that elements of A22 are stored in columns to
the right of column i, elements of A20 are also stored in
columns to the right of column i, and a21 is distributed
as mentioned earlier. In S4, two separate operations that
utilize different PEs in the core are performed concur-
rently: In S4-1, the reciprocal unit receives τ1 from PE(i,i)
to produces 1/τ1. The LAC also starts computing w12 by
first performing a vector-matrix multiply aT21A22 + aT12,
which uses row buses to distribute aT21 and performs
aT21A22 in parallel. Then, a reduction across the column
buses to the right of the ith column is performed to
compute aT21A22 + aT12. The result of the vector-matrix
multiplication is then scaled by broadcasting 1/τ1 in the
ith row and multiplying it into the PEs to the right of the
diagonal PE in the that row. In S4 − 2, another matrix-
vector multiplication is performed following the same
principles, but this time to the left of the ith column in
order to compute t01.

In S5, row and column buses are used to broadcast ele-
ments of a21 and aT12 to the PEs to the right of the ith row
and below, including the ith column. A rank-1 update
is performed to update

(
aT12
A22

)
. Here, we merged two

operations into one to exploit the similar access pattern
behavior and utilize the PEs. This completes the current
iteration, which is repeated for i = 0, . . . , nr − 1.

4.3.2 Blocked QR Factorization knr × knr
Let us now assume that a larger matrix, knr × knr
is distributed among the local stores of the LAC. We
will describe how a single iteration of the blocked QR
algorithm is performed by the LAC. In Figure 10, we

IEEE TRANSACTIONS ON COMPUTERS 8

QR
Factorization

Update
Source 1

GEMM
Update

TRSM
Update

Computed

Not Yet
Computed

(1)

Q11

Update
Source 2

A11
A12

:=QR

R11

A00

t

t0

t1

t2

A01 A02

A21 A22

,T11, t1
A11
A12

,T11, t1

0

T02

T120

T01

0 T22

T11

A10

A20 A22

A00

A20

A02

A12A10

A01

A21

A11

0

T02

T120

T01

0 T22

(4) T01:=A10
TA11+A20

TA21

A10
A20

A11
A21

(4) T01:=

T

A22

A00

A20

A02

A12A10

A01

A21

A11

W12

0

T02

T120

T01

0 T22

T11

A22

A00

A20

A02

A12A10

A01

A21

A11

W12

0
T00

0
T00

0
T00

0

T02

T120

T01

0 T22

T11

0
T01 T01

A11
A21

A12
A22

(2) W12:=

T

(2) W12:=TRILU(A11
T)A12+A21

TA22

(3) W12:=(T11
-T)W12

A11
A21

A12
A22

(5) W12
A12
A22

 := -

(5a) A12:=A12-TRILU(A11)W12

(5b) A22:=A22-A21W12

W12

T11

T00

Fig. 10. Blocked QR factorization, fifth iteration, for a matrix stored in the LAC local memory.

show the case where k = 8 and therefore, A11 in that
figure fits in the registers of the PEs. Highlighted is the
data involved in the fifth iteration.

We describe the different operations to be performed:

(1)
[(

A11

A21

)
, T11, t1

]
:= QR UNB

[(
A11

A21

)
, T11, t1

]
: For

this operation, the described inner kernel of a
knr × nr QR factorization is employed.

(2) W12 := TRILU(A11)TA12 +AT
21A22 =

(
A11

A21

)T (
A12

A22

)
:

Blocks of W12 are moved to the accumulators of
the PEs. This update is a matrix multiplication.

(3) W12 := T−T
11 W12: For this operation, an inner TRSM

kernel is employed to update W12.

(4) T01 := UT
10 TRILU(A11) +AT

20A21 =

(
A10

A20

)T (
A11

A21

)
:

Blocks of T01 are moved to the accumulators of the
PEs. This update is also a matrix multiplication.

(5)
(
A12

A22

)
:=
(
A12

A22

)
−
(
A11

A21

)
W12:

This operation is a rank-nr update of the
(
A12

A22

)
block of A with W12. The LAC needs to bring each
element of this block into the accumulators and
update each in nr cycles.

Most of the matrix multiplications that compute pan-
els of W , and T (steps (2) and (3)) are in the form that
performs optimal in the LAC. We chose the right looking
variant because it exhibits a lower computation load.
This variant avoids TRSM operations with big triangular
blocks if not necessary. Other variants perform the TRSM
operations with T00, which is a big triangular block and
yields into very low utilization on the LAC. Although
this variant performs step (5) suboptimally, the LAC
will not loose utilization but will perform normalization
much more frequently, and the corresponding step will
use around 10% ∼ 15% more power compared to the
optimal GEMM on the LAC [2]. In step (5), the blocks
to the right (A22) are updates, meaning that they need
to be read and written.

The main requirement for the blocked QR factorization
is the reciprocal unit to perform TRSM operations. Note
that the blocked algorithm remains the same regardless
of how the inner kernel of the QR is computed. The
inner kernel that we described previously assumes that
there is no normalization overhead for computing the
vector norm. If there is no exponent bit added, the
inner unblocked kernel will require additional steps and
functions, such as the square-root.

5 ARCHITECTURE

In this section, briefly review the extensions made to the
LAC and our FPUs for matrix factorization applications.
Figure 11 highlights our modifications to a baseline
reconfigurable floating-point MAC unit with single-cycle
accumulation taken from [25], [18]. This design does
not support operations on denormalized numbers [25].
Details of our FPU extensions can be found in [5].

The first extension is for LU factorization with partial
pivoting, where the LAC has to find the pivot by com-
paring all the elements in a single column. We noted
that PEs in the same column have produced temporary
results by performing rank-1 updates. To find the pivot,
we add a comparator after the normalization stage in
the floating-point unit of each PE. There is also a register
that keeps the maximum value produced by the corre-
sponding PE. If the new normalized result is greater than
the maximum, it replaces the maximum and its index is
saved by the external controller. An extra comparator is
a simple logic in terms of area/power overhead [26]. It is
also not on the critical path of the MAC unit and does not
add any delay to the original design. With this extension,
finding the pivot is simplified to a search among only nr
elements that are the maximum values produced by each
PE in the same column.

The second extension is for vector norm operations in
the Householder QR factorization. Previously, we have

IEEE TRANSACTIONS ON COMPUTERS 9

Look-Up
Tables

1/Sqrt(X)

Look-Up
Tables

1/X

Squaring

CS2D

Fused
Accumulation Tree

CS2DCPA

MAC

Mac
Input
Select
Logic

X1 X2

Ct0
Ct1

Y X

Ct0

Multiplier

Alignment
Shift

Exp
comparison

Exp
Adder

Accumulator

NormalizationCorrection

Max Exp Max Mantissa

Comparator
Logic

EA

Exp
Control Shift

Sign
Inversion

EB MA MBEC MC

(b)(a)

Fig. 11. Floating-point unit extensions: (a) extended
reconfigurable single-cycle accumulation MAC unit [18]
with addition of a comparator and extended exponent
bit-width, where shaded blocks show which logic should
change for exponent bit extension; (b) a single MAC unit
design to support special functions. The overheads on
top of an existing MAC unit are encapsulated in the big
rounded rectangle. PEs in the LAC with that overhead can
perform special functions.

shown how adding an extra exponent bit can overcome
overflow/underflow problems in computing the vector
norm. In Figure 11(a), the shaded blocks show where
the architecture has to change. These changes are min-
imal and their cost is negligible. Specifically, with the
architecture in [25], the same shifting logic for a base-32
shifter can be used. The only difference here is that the
logic decides between four exponent input bits instead of
three. Note that the result with extra exponent is directly
fed to the square-root unit and is not visible to the user.

The third extension is the addition of division, re-
ciprocal, square-root, and inverse square-root functions,
which are required to perform Cholesky, LU and QR fac-
torizations (as well as TRSM [7]). Several floating-point
divide and square-root units have been introduced and
studied in the literature [27], [28], [29]. There are mainly
two categories of implementations [30]: multiplicative
(iterative) and subtractive methods. Given the nature of
linear algebra operations and the mapping of algorithms
on the LAC, a multiplicative method is chosen. In our
class of applications, a divide and square-root operation
is often performed when other PEs are waiting in idle
mode for its result and exploiting one of them for
divide or square-root will not harm performance. As
the iterations of Cholesky, LU, and QR factorization go
forward, only a part of the LAC is utilized, and the top
left parts are idle. Therefore, a diagonal PE is the best
candidate for such extensions on top of its MAC unit.

We base our special function extensions on the ar-
chitecture presented in [29]. It uses a 29-30 bit second-

degree minimax polynomial approximation by using
table look-ups [31]. Then, a single iteration of a modified
Goldschmidt method is applied. This architecture guar-
antees the computation of exactly rounded IEEE double-
precision results [29]. It can perform all four operations:
divide Y/X, reciprocal 1/X, square-root

√
X , and inverse

square-root 1/
√
X . We can integrate such a design into

single reconfigurable MAC unit, which performs all the
computations itself (Figure 11(b)). This strategy reduces
the design area and overhead, does not increase latency,
but reduces the throughput. However, as indicated be-
fore, for our class of linear algebra operations, there is
no need for a high-throughput division/square root unit.
The extra overhead on top of an unmodified MAC unit
includes the approximation logic and its look-up tables.
A simple control logic performs the signal selection for
the MAC inputs.

In summary, for our study, we assumed two types of
extensions for the MAC units in the LAC, which include
the maximum finder comparator and the extra exponent
bit for LU with partial pivoting and QR factorization
operations, respectively (Figure 11(a)). We also assumed
three different LAC architectures with three options
for divide/square-root extensions: first, a software-like
implementation that uses a micro-programmed state ma-
chine to perform Goldschmidt’s operation on the exist-
ing MAC units; second, an isolated divide/square-root
unit that performs the operation with the architecture
in [29]; and third, an extension to the PEs that adds extra
logic and uses the available MAC units in the diagonal
PEs (Figure 11(b)).

6 EXPERIMENTAL RESULTS

In this section, we present area, power and performance
estimates for the LAC with the modifications introduced
in previous sections. We pursue two goals. First: to show
how effective our proposed extensions are in achieving
high performance for the inner kernels of matrix fac-
torizations compared to the baseline architecture with
a micro-coded software solution. Second: to study the
impact of our extensions on problem sizes that fit in the
aggregate LAC memory and are blocked. Such problem
sizes are not large enough to amortize the cost of sending
data for partial subproblems back and forth to an accel-
erator and, as such, are typically performed only by a
host processor in a heterogenous system. We examine
whether the augmented LAC with the new extensions
maintains its high efficiency and high performance when
performing complete matrix factorizations as well as
level-3 BLAS. We perform an area, power, bandwidth,
efficiency, and energy delay study to evaluate the bene-
fits of these architectural extensions. We see the overall
performance improvements for the different options and
compare the computation load on the LAC in each
iteration of the blocked algorithms.

IEEE TRANSACTIONS ON COMPUTERS 10

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

2.4	

SW	
 Isolate	
 Diag	
 PEs	

Ar
ea
	
 [m

m
^2
]	

Architecture	
 OpAons	

Logic	
 special	

Look-­‐up	

Mac	
 Extension	

BC	
 Buses	

FPUs	

Local	
 Store	

Fig. 12. LAC area break-down with different
divide/square-root extensions.

6.1 Area and Power Estimation

Details of the basic PE and core-level implementation
of a LAC in 45nm bulk CMOS technology are reported
in [6]. For floating-point units, we use the power, area,
and latency data from [32]. We combine it with complex-
ity and delay reports from [29]. CACTI [33] is used to
estimate the power and area consumption of memories,
register files, look-up tables and buses.

The comparator is not on the critical path of the MAC
pipeline and the overhead for the extra exponent bit is
negligible. Therefore, we assume that there is no extra
latency added to the existing MAC units with these
extensions. The divide and square-root unit’s timing,
area, and power estimations are calculated using the
results in [29]. For a software solution with multiple
Godlschmidt iterations, we assume no extra power or
area overhead for the micro-programmed state machine.

The area overhead on top of the LAC is shown in Fig-
ure 12. The area overhead for diagonal PEs includes the
selection logic and the minimax function computation.
In case of a 4 × 4 LAC, we observe that the overhead
for these extensions is around 10% if an isolated unit
is added to the LAC. If the extensions are added to
all the diagonal PEs, more area is used. However, with
an isolated unit more multipliers and multiply-add unit
logic is required. The benefit of using the diagonal PEs
is in avoiding the extra control logic and in less bus
overhead for sending and receiving data.

6.2 Inner Kernel Performance and Efficiency

In this part, we analyze the unblocked inner kernels of
the three factorization algorithms. We study the perfor-
mance and efficiency behavior of our extensions for these
algorithms and different inner kernel problem sizes as
compared to the baseline architecture. We assume a LAC
design in 45nm bulk CMOS technology running at 1GHz
with 8 cycles pipeline latency for the MAC units.

As described in Section 4.1, Cholesky factorization can
be blocked in a 2D fashion by breaking the problem
down to a few level-3 BLAS operations and a Cholesky
inner kernel. For our experiment, we evaluated a 4 × 4
unblocked Cholesky. We study the effects of different
divide/square-root schemes on the performance of this
inner kernel. The kernel performance and utilization is
low because of the dependencies and the latency of the

Problem Total Cycles Dynamic Energy
Size SW Isolated Diagonal SW Isolated Diagonal

Cholesky
4 496 192 176 4 nJ 1 nJ 1 nJ

LU Factorization
64 652 468 468 62 nJ 60 nJ 60 nJ

128 828 772 772 121 nJ 119 nJ 119 nJ
256 1380 1380 1380 239 nJ 236 nJ 236 nJ

LU Factorization with comparator
64 500 316 316 53 nJ 51 nJ 51 nJ

128 612 556 556 103 nJ 101 nJ 101 nJ
256 1036 1036 1036 202 nJ 200 nJ 200 nJ

QR
64 2256 1360 1296 94 nJ 89 nJ 89nJ

128 2336 1440 1376 178 nJ 173 nJ 173 nJ
256 2540 1644 1580 347 nJ 342 nJ 342 nJ

QR with comparator
64 2040 1144 1080 84 nJ 79 nJ 79 nJ

128 2136 1240 1176 160 nJ 154 nJ 155 nJ
256 2328 1432 1368 310 nJ 305 nJ 305 nJ

QR with exponent bit extension
64 1552 856 808 73 nJ 69 nJ 69 nJ

128 1584 888 840 139 nJ 135 nJ 135 nJ
256 1648 952 904 271 nJ 267 nJ 268 nJ

Fig. 13. Total cycle counts and dynamic energy con-
sumption for different architecture options (columns for
divide/square-root options, and row sets for MAC unit
extension options), algorithms and problem sizes.

inverse square-root operation. We observe (Figure 13)
that the number of cycles drops to a third by switching
from a software solution to hardware extensions.

LU factorization with partial pivoting is not a 2D-
scalable algorithm (see Section 4.2). The pivoting opera-
tion and scaling needs to be done for all rows of a given
problem size. Hence, for a problem size of knr × knr,
the inner kernel that should be implemented on the
LAC is a LU factorization of a knr × nr block of the
original problem. For our studies, we use problems with
different knr = 64, 128, 256, which are typical problem
sizes that fit on the LAC. We compare the performance
of a LAC with different divide/square-root unit exten-
sions in different columns and with/without the built-
in comparator to find the pivot. As we have shown in
Section 4, the reciprocal operation and pivoting (switch-
ing the rows) can be performed concurrently in the LAC
owing to the column broadcast buses. The pivoting delay
is the dominating term. Hence, bigger problem sizes
are not sensitive to the latency of the reciprocal unit
architecture. However, there is a 30% speed and 18%
energy improvement with the comparator added to the
MAC units (see Figure 13).

The QR factorization inner kernel algorithm differs
depending on the exponent bit extension and whether
there is a comparator or not. We compare the optimized
algorithm for all three cases to have a fair compari-
son. In case of no comparator, a21 can get distributed
concurrently while the comparison operation is being
performed. In this way the inner product and scaling (for
normalization) can be performed utilizing all of the PEs
in the LAC. With only comparators included or when
there is exponent bit extension, a21 does not initially
get distributed. Therefore, the scaling (in case with only
comparators) and inner-product operations only utilize

IEEE TRANSACTIONS ON COMPUTERS 11

0	

5	

10	

15	

20	

25	

30	

35	

SW
	

Iso
lat
e	

Dia
g	

SW
	

Iso
lat
e	

Dia
g	

SW
	

Iso
lat
e	

Dia
g	

Po
w
er
	
 E
ff.
	
 [G

O
PS
/W

]	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

SW
	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	

In
ve
rs
e	

ED

	
 [G
FL
O
PS
^2
/W

]	

0	

0.5	

1	

1.5	

2	

2.5	

3	

SW
	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	

Ar
ea
	
 E
ff.
	
 [G

O
PS
/m

m
^2
]	

No	
 Ext	

Comparator	

Fig. 14. Effect of hardware extensions on the inner kernels of LU factorization with three types of sqrt/division units
and kernel heights of 64, 128, 256; power efficiency (left), inverse energy delay (middle) and area efficiency (right).

0	

5	

10	

15	

20	

25	

30	

SW
	

Iso
lat
e	

Dia
g	

SW
	

Iso
lat
e	

Dia
g	

SW
	

Iso
lat
e	

Dia
g	
 	
 	
 P

ow
er
	
 E
ff.
	
 [G

FL
O
PS
/W

]	

0	

50	

100	

150	

200	

250	

300	

SW
	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 In

ve
rs
e	

ED

	
 [G
FL
O
PS
^2
/W

]	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

SW
	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 SW

	

Iso
lat
e	

Dia
g	
 Ar

ea
	
 E
ff.
	
 [G

FL
O
PS
/m

m
^2
]	

No	
 Ext	

Comparator	

Exp	
 Ext	

Fig. 15. Effect of hardware extensions on the inner kernels of QR factorization with three types of sqrt/division units
and kernel heights of 64, 128, 256; power efficiency (left), inverse energy delay (middle) and area efficiency (right).

one column of the PEs. The rest of the operations are
same for all of three cases, where there are again three
options for divide/square-root operations. The problem
sizes are knr = 64, 128, 256. Figure 13 demonstrates that
exponent extensions save over 45% of the total cycles,
and the divide/square-root unit saves up to 40% cycles
compared to the baseline. When combined, these exten-
sions save 65% of the cycles compared to the baseline.
Energy savings reach up to 22% with the exponent bit
extension. By contrast, different divide/square-root units
do not differ in terms of dynamic energy consumption.

Utilization and efficiency can be calculated from the
number of total cycles the hardware needs to perform an
operation and the number of operations in each factor-
ization. Another metric that we use is the inverse energy-
delay. It shows how extensions reduce both latency and
energy consumption.

The efficiency metrics and inverse energy-delay for
LU factorization are presented in the Figure 14. Note
that the pivoting operation is also taken into account.
Therefore, we used GOPS instead of GFLOPS as per-
formance metric. For LU factorization problems with
knr = 64, 128, 256, we estimated the corresponding total
number of operations to be 1560, 3096 and 6168, respec-
tively. Results for LU factorization confirm that there is
no improvement in efficiency with different reciprocal
architectures when solving big problem sizes.

Figure 15 report the efficiency metrics and inverse
energy-delay of the QR factorization inner kernels. For
the QR factorization, we use problem sizes of knr =
64, 128, 256 as the baseline. Our implementation with the
option of extended exponent bits results in an effective
reduction in the number of actually required computa-
tions. QR benefits from all types of extensions, but the
exponent bit is what brings significant improvements.

Since there are not many options for Cholesky, we only
summarize the numbers here in the text. The number

of operations in a 4 × 4 Cholesky kernel is 30. For
different divide/square unit architectures (software, iso-
lated, and on diagonal PEs), the achieved results are as
follows: 1.95, 4.67 and 5.75 GFLOPS/W; 0.52, 4.95, and
5.15 GFLOPS2/W; and 0.03, 0.06, 0.07 GFLOPS/mm2.
The reason for the very poor efficiency (less than 5
GFLOPS/W) is the small size of the kernel and limited
available parallelism. Still, adding the special function
unit improves efficiency around ten times, while reduc-
ing dynamic energy consumption by 75%.

6.3 Blocked Level Analyses
As discussed earlier, a typical linear algebra problem is
blocked to get high performance. In Section 4, we saw
how most of the computations in the matrix factoriza-
tions are cast in terms of GEMM and other level-3 BLAS
operations. In the previous section, we showed the effect
of extensions on the LAC performance and efficiency for
the inner kernels of matrix factorizations. In this section,
we take the most effective extensions and study their
impact on the bigger blocked problems.

Figures 16, 17, and 18 show the computation cycles
spent and the load on the broadcast buses in each of
the 32 iterations of a typical 128 × 128 problem size for
all three matrix factorizations on the LAC. Bus loads are
shown for each operation, as averages per iteration and
as total averages across the whole kernel for internal
computations and external column bus transfers.

Figure 16 (left) plots the computation cycles for
Cholesky factorization on the LAC. We observe that most
of the cycles are used for GEMM operations. For the
Cholesky inner kernel, we chose two options, one with
the micro-coded software solution and one with the ad-
dition of the divide/square-root extensions on diagonal
PEs. The extended architecture reduces the cycle counts
by 10%, but does not save significant amounts of energy
compared to the base design. Figure 16 (right) shows

IEEE TRANSACTIONS ON COMPUTERS 12

Fig. 16. 128 × 128 blocked Cholesky factorization with and without special function unit extensions on a 4 × 4 LAC:
Cycles consumed (left) and bus load (right).

Fig. 17. 128×128 blocked LU factorization with partial pivoting with and without comparator extension on a 4×4 LAC:
Cycles consumed (left) and bus load (right).

Fig. 18. 128 × 128 blocked Householder QR factorization with no extensions, only divide/square-root extension,
comparator extension, and exponent bit extension on a 4× 4 LAC: Cycles consumed (left) and bus load (right).

that the row broadcast buses are fully loaded when
performing GEMM operation. The column buses are
mostly idle and only loaded in the GEMM operations of
the final iterations. The other operations do not occupy
the broadcast buses as much. The row buses are occupied
around 70% of the cycles. The column buses, counting
off-core transfers, are only occupied 20% of the cycles.

As discussed previously for LU factorization with par-
tial pivoting, the inner kernels do not save cycles when
the divide/square-root extension is added. Therefore,
we only discuss the effects of the comparator extension.
Figure 17 (left) shows the cycles spent for LU factor-
ization on the LAC. Adding a comparator is beneficial

specifically in the initial iterations. The reason is that
the search space for the pivot shrinks as the algorithm
progresses. Adding a comparator saves up to half of the
cycles for the LU inner kernel and 12% of the total cycles.
Figure 17 (right) depicts the broadcast bus loads for each
part of the blocked LU. GEMM 1 refers to steps (1) and
(2), and GEMM 2 refers to step (4). While GEMM 1
occupies the row buses and puts only a negligible load
on column buses, GEMM 2 behaves exact opposite way.
On average, in each iteration, both row and column
buses are 50% busy. The load for external transfer is
around 25% of the bandwidth of the column buses.

QR factorization benefits from all divide/square-

IEEE TRANSACTIONS ON COMPUTERS 13

Fig. 19. The achievable energy delay and efficiency for different problem/PE local store sizes for Cholesky (left), LU
(middle), and QR factorizations (right).

0	

1	

2	

3	

4	

5	

6	

64	
 128	
 192	
 256	

BW
	
 [B

yt
es
/C
yc
le
]	

Problem	
 Dimension	
 (kn_r)	

Cholesky	

LU	

QR	

Fig. 20. Required off-core bandwidth for different problem
sizes and different factorization algorithms.

root, comparator, and exponent bit extensions signifi-
cantly. We study the effect of combinations of diagonal
divide/square-root with either comparator or exponent
bit extensions in the blocked algorithm. Figure 18 (left)
shows cycles spent on the LAC. The extra exponent bit
in combination with diagonal divide/square-root exten-
sions is the most effective modification that can save up
to 20% of the cycles. As in the cases of the Cholesky and
LU factorizations, most of the computations are cast as
matrix-matrix multiplications. Figure 18 (right) indicates
the bus loads for the QR operation. Rank refers to rank-
nr updates (step (5)) and GEMM refers to all other steps
that contain matrix multiplication. Rank-nr updates fully
occupy the column buses, and we can observe that the
row buses are mostly busy in the initial iterations of the
blocked QR. Here, the column buses are more busy than
row buses. However, there are still many idle cycles left
to perform off-core transfers.

Figure 20 summarizes the required off-core band-
widths to satisfy full overlap of communication with
computation. Overall, the off-core bandwidth require-
ments are very low (around half a word per cycle). We
observe that with smaller problem sizes, the required
bandwidth is almost twice as much as for the larger
problem sizes. QR factorization is the most complicated
algorithm. It performs more computations per problem
and therefore the required bandwidth is the least. LU
and Cholesky behave similar for larger problem sizes.

Finally, Figure 19 shows the efficiency and energy
delay of all three factorizations with respect to the
required PE local store size for problem sizes of 64 ×

64, 128 × 128, 192 × 192, and 256 × 2562. Figure 19 (left)
shows how the energy efficiency is affected by the
extensions for Cholesky factorization, especially in small
problem sizes. As the problem size grows and the ratio
of inner kernel computations drops, the two curves get
closer. The energy delay is affected by both efficiency
and cycle savings. Hence, we see a larger difference
between the two options even for larger problem sizes.
The LAC with 20 KBytes/PE can reach over 80% uti-
lization for Cholesky factorization. We can observe in
Figure 19 (middle) that LU factorization sees even less
improvement in energy efficiency because most of the
computation load and energy consumption is due to
the level-3 BLAS operations. The energy delay savings
are noticeable for smaller problem sizes. Although the
search space for the pivot grows linearly with respect to
the increase in problem size, the ratio of level-3 BLAS
computations to the LU kernel grows cubically, and that
overshadows the LU kernel savings. As a result, the
extended LAC with 20 KBytes/PE can reach over 84%
utilization for LU factorization with partial pivoting.
Figure 19 (right) indicates that the QR factorization gains
both efficiency and energy delay improvements espe-
cially in small problem sizes. The efficiency improve-
ment is caused by leakage energy savings and reduction
in extra computations due to avoided normalizations.
The exponent bit extension affects the energy delay for
all different problem sizes due to significant cycle and
energy savings. The LAC with 20 KBytes/PE with both
exponent and diagonal divide/square-root extensions
can reach over 75% utilization for QR factorization.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented the mapping of both inner
kernels and blocked matrix factorization problems onto
a highly efficient linear algebra accelerator. We propose
two modifications to the MAC unit designs to decrease
the complexity of the algorithms. We also showed how
existing processing elements can be enhanced to perform
special functions such as divide and square-root opera-
tions. To demonstrate the effectiveness of our proposed

2. Due to less local store requirement of Cholesky, problem sizes up
to 384× 384 are presented.

IEEE TRANSACTIONS ON COMPUTERS 14

extensions, we applied them to the mapping of Cholesky,
LU and QR factorizations on such an improved archi-
tecture. We studied both inner kernels and blocked-level
algorithms and presented the resulting performance and
efficiency benefits. Results show that our extensions
significantly increase efficiency and performance of inner
kernels and are effective for bigger problem sizes that
fit on the LAC. Future work includes the integration of
the LAC into a heterogeneous system architecture next
to general purpose CPUs and a heterogeneous shared
memory systems, which will allow comparisons between
the trade-offs of complexity and flexibility.

REFERENCES
[1] G. H. Golub et al., “An analysis of the total least squares problem,”

Ithaca, NY, USA, Tech. Rep., 1980.
[2] A. Pedram et al., “Codesign tradeoffs for high-performance, low-

power linear algebra architectures,” IEEE Transactions on Comput-
ers, Special Issue on Power efficient computing, vol. 61, no. 12, pp.
1724–1736, 2012.

[3] E. Agullo et al., “QR factorization on a multicore node enhanced
with multiple GPU accelerators,” in IPDPS2011, 2011.

[4] V. Volkov et al., “Benchmarking GPUs to tune dense linear alge-
bra,” SC 2008, 2008.

[5] A. Pedram et al., “Floating point architecture extensions for
optimized matrix factorization,” in ARITH. IEEE, 2013.

[6] ——, “A high-performance, low-power linear algebra core,” in
ASAP. IEEE, 2011.

[7] ——, “A linear algebra core design for efficient Level-3 BLAS,”
in ASAP. IEEE, 2012.

[8] J. Kurzak et al., “Solving systems of linear equations on the
cell processor using cholesky factorization,” IEEE Trans. Parallel
Distrib. Syst., vol. 19, pp. 1175–1186, September 2008.

[9] ——, “Qr factorization for the cell broadband engine,” Sci. Pro-
gram., vol. 17, pp. 31–42, January 2009.

[10] T. Chen et al., “Cell broadband engine architecture and its first
implementation: a performance view,” IBM J. Res. Dev., vol. 51,
pp. 559–572, September 2007.

[11] Y. Yamamoto et al., “Accelerating the singular value decomposi-
tion of rectangular matrices with the CSX600 and the integrable
SVD,” in PaCT, ser. Lecture Notes in Computer Science, V. E.
Malyshkin, Ed., vol. 4671. Springer, 2007, pp. 340–345.

[12] A. Kerr et al., “QR decomposition on GPUs,” in Proceedings of
2nd Workshop on General Purpose Processing on Graphics Processing
Units, ser. GPGPU-2, 2009.

[13] N. Galoppo et al., “LU-GPU: Efficient algorithms for solving dense
linear systems on graphics hardware,” ser. SC ’05, 2005.

[14] G. Wu et al., “A high performance and memory efficient LU
decomposer on FPGAs,” IEEE Trans on Computers, 2012.

[15] J. Gonzalez et al., “LAPACKrc: fast linear algebra kernels/solvers
for FPGA accelerators,” SciDAC 2009, no. 180, 2009.

[16] S. Aslan et al., “Realization of area efficient QR factorization using
unified division, square root, and inverse square root hardware,”
in EIT ’09, 2009.

[17] Y.-G. Tai et al., “Synthesizing tiled matrix decomposition on
fpgas,” in FPL2011, 2011.

[18] S. Jain et al., “A 90mW/GFlop 3.4GHz reconfigurable
fused/continuous multiply-accumulator for floating-point
and integer operands in 65nm,” VLSID ’10., 2010.

[19] A. Pedram et al., “On the efficiency of register file versus broad-
cast interconnect for collective communications in data-parallel
hardware accelerators,” SBAC-PAD, 2012.

[20] P. Bientinesi et al., “Representing dense linear algebra algorithms:
A farewell to indices,” The University of Texas at Austin, Tech.
Rep. TR-2006-10, 2006.

[21] T. Joffrain et al., “Accumulating Householder transformations,
revisited,” ACM Trans. Math. Softw., vol. 32, no. 2, pp. 169–179,
June 2006.

[22] J. L. Blue, “A portable Fortran program to find the euclidean norm
of a vector,” ACM Trans. Math. Softw., vol. 4, no. 1, 1978.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
2nd ed. Philadelphia, PA, USA: SIAM, 2002.

[24] C. L. Lawson et al., “Basic linear algebra subprograms for Fortran
usage,” ACM Trans. Math. Soft., vol. 5, no. 3, pp. 308–323, Sept.
1979.

[25] S. Vangal et al., “A 6.2-GFlops floating-point multiply-
accumulator with conditional normalization,” IEEE J. of Solid-State
Circuits, vol. 41, no. 10, 2006.

[26] J. Stine et al., “A combined two’s complement and floating-point
comparator,” in ISCAS 2005, 2005.

[27] M. D. Ercegovac et al., “Reciprocation, square root, inverse square
root, and some elementary functions using small multipliers,”
IEEE Trans. Comput., vol. 49, no. 7, July 2000.

[28] S. Oberman, “Floating point division and square root algo-
rithms and implementation in the AMD-K7TM microprocessor,”
in Arith14th, 1999.

[29] J. A. Piñeiro et al., “High-speed double-precision computation of
reciprocal, division, square root and inverse square root,” IEEE
Trans. Comput., 2002.

[30] P. Soderquist et al., “Area and performance tradeoffs in floating-
point divide and square-root implementations,” ACM Comput.
Surv., vol. 28, no. 3, 1996.

[31] J. A. Piñeiro et al., “High-speed function approximation using a
minimax quadratic interpolator,” IEEE Trans. Comput., 2005.

[32] S. Galal et al, “Energy-efficient floating point unit design,” IEEE
Trans. on Computers, vol. PP, no. 99, 2010.

[33] N. Muralimanohar et al., “Architecting efficient interconnects for
large caches with CACTI 6.0,” IEEE Micro, vol. 28, 2008.

Ardavan Pedram received the masters degree
in computer engineering from the University of
Tehran in 2006 and the PhD from the University
of Texas at Austin in 2013. He currently is a
Postdoctoral fellow in the University of Texas
at Austin. His research interests include high
performance computing and computer architec-
ture. He specifically works on hardware-software
co-design (algorithm for architecture) of spe-
cial purposed accelerators for high-performance
energy-efficient linear algebra and signal pro-

cessing applications.

Andreas Gerstlauer received the Dipl-Ing de-
gree in electrical engineering from the University
of Stuttgart, Germany, in 1997, and the MS
and PhD degrees in information and computer
science from the University of California, Irvine
(UCI), in 1998 and 2004, respectively. Since
2008, he has been with the University of Texas
at Austin, where he is currently an assistant pro-
fessor in electrical and computer engineering.
Prior to joining UT Austin, he was an assistant
researcher with the Center for Embedded Com-

puter Systems, UCI. His research interests include system-level design
automation, system modeling, design languages and methodologies,
and embedded hardware and software synthesis. He is a senior member
of the IEEE.

Robert A. van de Geijn is a Professor of Com-
puter Science and member of the Institute for
Computational Engineering and Sciences at the
University of Texas at Austin. He received his
PhD in Applied Mathematics from the University
of Maryland College Park, in 1987. He heads
the FLAME project, which pursues foundational
research in the field of linear algebra libraries
and has led to the development of the libflame
library. One of the benefits of this library lies
with its impact on the teaching of numerical

linear algebra, for which Prof. van de Geijn received the UT Presidents
Associates Teaching Excellence Award. He has published several books
and more than a hundred refereed publications.

