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This thesis demonstrates an efficient parallel method of solving the

generalized eigenvalue problem, KΦ = MΦΛ, where K is symmetric and M

is symmetric positive-definite, by first converting it to a standard eigenvalue

problem, solving the standard eigenvalue problem, and back-transforming the

results. An abstraction for parallel dense linear algebra is introduced along

with a new algorithm for forming A := U−TKU−1, where U is the Cholesky

factor of M , that is up to twice as fast as the ScaLAPACK implementation.

Additionally, large improvements over the PBLAS implementations of general

matrix-matrix multiplication and triangular solves with many right-hand sides

are shown. Significant performance gains are also demonstrated for Cholesky

factorizations, and a case is made for using 2D-cyclic distributions with a

distribution blocksize of one.
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Chapter 1

Introduction

The generalized eigenvalue problem (EVP) is the search for nontrivial

solutions to

Ax = λBx, (1.1)

where we are given (A,B) ∈ Rn×n × Rn×n and are looking for the eigenpair

(λ, x) ∈ R × Rn. λ is called an eigenvalue of the system, and x is referred to

as an eigenvector[20]. If one wishes to find multiple eigenpairs, the problem is

often written as

AX = BXΛ, (1.2)

where X is the matrix containing the set of eigenvectors as its columns, and

Λ is a diagonal matrix containing the corresponding set of eigenvalues. In

the special case where B = I, the generalized EVP reduces to the standard

eigenvalue problem,

AX = XΛ. (1.3)

The motivation of this thesis is to devise a method for efficiently solving

Eq. (1.2) on distributed memory architectures. In particular, we will be looking

at the case where both A and B are symmetric, and B is positive-definite. This

is true when the matrices are obtained from finite element discretizations of
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stiffness and mass operators, when a consistent mass formulation is used. Thus

we will instead express Eq. (1.2) as

KΦ = MΦΛ, (1.4)

where K and M are respectively our stiffness and mass matrices. As men-

tioned, K is assumed to be symmetric, and M is assumed symmetric positive-

definite (SPD).

1.1 Background

The current de facto standard for parallel dense linear algebra, ScaLA-

PACK (Scalable LAPACK)[2, 5], makes use of block 2D-cyclic matrix distri-

butions and a custom communication library called the Basic Linear Algebra

Communication Subprograms (BLACS). A different approach to parallel lin-

ear algebra was taken by PLAPACK (Parallel Linear Algebra Package)[1, 24],

which focused on programmability and derived its communication insights

from Physically-Based Matrix Distributions (PBMDs)[11] in terms of the Mes-

sage Passing Interface (MPI)[14]. However, PLAPACK was implemented un-

der a constraint that prevents its algorithms from being scalable. Generaliz-

ing its approach to alleviate this issue complicates matters and is the focus of

Chapter Two.

In order to solve the standard form eigenvalue problem in parallel,

Hendrickson, Jessup, and Smith[16] suggest a parallelization of the standard

three-step process:
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1. Tridiagonalize A with Householder reflectors[12] such that T = QTAQ.

2. Solve the tridiagonal EVP, TS = SΛ, with the O(n2) Algorithm MR3[8–

10].

3. Back-transform the eigenvectors using WY transforms[12, 19].

Hendrickson et al. chose to use a torus-wrap distribution[17] rather than the

block torus wrapping used by ScaLAPACK and PLAPACK. They discuss

strengths and weaknesses of the elemental distribution and give a full descrip-

tion of parallel algorithms for Householder tridiagonalization and eigenvector

back-transformation. While they do mention that Algorithm MR3 should be

trivially parallelizable, this issue is discussed in detail by Bientinesi, Dhillon,

and van de Geijn, who refer to their parallel method as PMR3[3]. Though the

HJS method of tridiagonalization was designed solely for perfect-square num-

bers of processes, our framework will allow it to be readily modified to work

for arbitrary numbers of processes. The details of these modifications will be

discussed further in Jeremiah Palmer’s dissertation. Also, we choose to refer

to the torus-wrap mapping as an elemental distribution from now on.

The reader will also benefit from becoming familiar with the FLAME

project[4, 25]. Van de Geijn et al. have presented a stylistic and systematic

methodology for deriving and expressing algorithms that is used heavily in this

thesis. In particular, the concept of a loop invariant is crucial for understand-

ing the derivation of the new algorithm for the reduction of the generalized

eigenvalue problem to standard form.
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1.2 Overview

As mentioned by Hendrickson, the majority of the time in an efficient

eigensolver is spent in dense linear algebra operations. Because of this fact,

and the existence of an efficient parallel method for solving the symmetric

EVP, the majority of this thesis focuses on achieving high performance in

the necessary auxiliary routines for transforming between the generalized and

standard symmetric EVPs. These transformations can easily be derived be-

cause we have required that M be SPD, and therefore we can solve for its

Cholesky factor, U , such that

M = UTU.

Substituting this factorization into Eq. (1.4),

KΦ = UTUΦΛ,

and if we define

ΦA = UΦ, (1.5)

then

U−TKU−1ΦA = ΦAΛ. (1.6)

Since K is symmetric, if we form

A = U−TKU−1, (1.7)

an operation referred to as sygst in LAPACK[2], then we can recast the

generalized EVP in symmetric standard form as

AΦA = ΦAΛ. (1.8)
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Defining a flop as a floating-point operation, our parallel method for

solving the generalized EVP can then be summarized as follows:

1. Form the Cholesky factor of M , U = Γ(M) (1
3
n3 flops[12]).

2. Form A := U−TKU−1 (n3 flops[12]).

3. Tridiagonalize A with Householder transforms, such that T = QTAQ

(4
3
n3 flops[12]).

4. Solve the tridiagonal EVP with Algorithm PMR3 (O(n2) flops[8]).

5. Back-transform the tridiagonal eigenvectors into those of the symmetric

standard form using WY transforms (2n3 flops[16]).

6. Back-transform the standard form eigenvectors into those of the gener-

alized EVP using a triangular solve with multiple right-hand sides (n3

flops[12]).

It is generally considered good practice for serial algorithms to cast

as many operations as possible in terms of routines from the Level 3 Basic

Linear Algebra Subprograms (BLAS)[2]. Though it is tempting to simply

design parallel algorithms in terms of parallel BLAS, which ScaLAPACK calls

PBLAS, it will be shown that many intermediate data distributions can be

reused in order to lower the overall communication volume. However, it is

still necessary to first fully develop strategies for key operations in the parallel

Level 3 BLAS in order to understand how to successfully merge them for

5



our parallel Cholesky factorization and sygst. Detailed analysis of parallel

algorithms for matrix-matrix multiplication and triangular solves with multiple

right-hand sides are presented in Chapters Three and Four. Afterwards, these

techniques are used in the development of a parallel Cholesky factorization

algorithm in Chapter Five, and the most complicated parallel routine is tackled

in Chapter Six, the reduction of the generalized EVP to symmetric standard

form. Again, all of the mentioned operations are shown to attain significantly

higher performance than ScaLAPACK.
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Chapter 2

Elemental Data Distributions

The goal of this chapter is to introduce a notational scheme that allows

one to incorporate matrix distributions into algebraic equations. However,

there is a significant amount of machinery that must first be put in place, and

so we first informally motivate the approach without the use of parallelism.

We denote a submatrix of a matrix A by appending two sets to its

label, e.g., AX ,Y , where X represents a subset of row indices from A and

Y represents a subset of column indices. Note that AX ,Y is in general not

a contiguous submatrix of A. A superscript ‘N’ is used to select all of the

columns or rows of the matrix, and thus AX ,N denotes a selection of rows from

a matrix A, and AN,N = A. Using this convention, if C = AB, then

CX ,Y = [AB]X ,Y .

Because the matrix equation C = AB can be partitioned by rows as
ĉT0

ĉT1
...

ĉTm−1

 =


âT

0

âT
1

...

âT
m−1

B,

it also holds that

ĉTi = âT
i B, i = 0, 1, ...,m−1.
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Thus for an arbitrary selection of rows from both C and A, which we will

denote by CX ,N and AX ,N,

CX ,N = AX ,NB = AX ,NBN,N.

Similarly, if we partition C and B into columns such that cj and bj are respec-

tively the jth columns of C and B, then C = AB implies

cj = Abj, j = 0, 1, ..., n−1.

Thus, for arbitrary Y ⊂ [0, n),

CN,Y = ABN,Y = AN,NBN,Y .

It follows that C = AB implies

CX ,Y = [AB]X ,Y = AX ,NBN,Y .

An obvious benefit of this notation is that when two submatrices are multiplied

together, the form of their product is specified by the first superscript of the

first matrix and the second superscript of the second matrix.

2.1 The Submatrix Operator

We now begin to formalize the approach so that we may expand it to

a parallel setting in a well-defined manner. First, we partition an arbitrary

matrix, A ∈ Rm×n, into two forms,

A→


âT

0

âT
1

· · ·
âT

m−1

 , and A→
(
a0 a1 · · · an−1

)
,

8



where âT
i and aj are, respectively, the ith row and jth column of A. Given

X ,Y ⊆ N ≡ N0, and using | · | to denote the cardinality of a set, the submatrix

operator is described by

[ · ]X ,Y : Rm×n → R|X∩[0,m)| × |Y∩[0,n)|. (2.1)

In particular, given an input matrix, A, the operator returns the submatrix

of A that has had each row, âT
i , removed when i /∈ X , and each column, aj,

removed when j /∈ Y . Thus the members of each column of A are filtered by

X , and the members of each row are filtered by Y . For this reason, X and Y

will respectively be referred to as the column filter and row filter. Three

trivial but extensively used identities follow:[
AX ,Y]T =

[
AT
]Y,X

, (2.2)[
AX ,N]N,Y

= AX ,Y , (2.3)

and from our previous discussion

AX ,NBN,Y = [AB]X ,Y . (2.4)

Another useful relation stems from a partitioned matrix-matrix multiplication.

If we begin with the equation

AB = C,

where (A,B) ∈ Rm×k × Rk×n, and partition

A→
(
a0 a1 · · · ak−1

)
, B →


b̂T0

b̂T1
...

b̂Tk−1

 ,
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where ai represents the ith column of A and b̂Ti represents the ith row of B,

then
k−1∑
i=0

aib̂
T
i = C.

Due to the associativity of addition, if we define an arbitrary partitioning of

[0, k) ⊂ N into p sets, such that

Zq ∩ Zs = ∅, q 6= s, and⋃
q=0...p−1

Zq = [0, k) ,

then
p−1∑
q=0

AN,Zq

BZ
q ,N = C,

and it follows that [
p−1∑
q=0

AN,Zq

BZ
q ,N

]X ,Y

= [C]X ,Y ,

and therefore
p−1∑
q=0

AX ,Zq

BZ
q ,Y = CX ,Y . (2.5)

Because the submatrix operator makes use of intersections of the column and

row filters with the original sets of column and row numbers, the requirements

for Eq. (2.5) can be loosened to

Zq ∩ Zs = ∅, q 6= s, and⋃
q=0...p−1

Zq = L ⊇ [0, k) .

Eqs. (2.2)-(2.5) are the primary tools used in later parallelizations, where we

standardize on L = N.
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2.2 Data Distributions

It has been theoretically shown[22] that a two-dimensional data distri-

bution is necessary for high performance across a wide range of linear algebra

operations. The key concept for 2D distributions is the process grid. Given

a set of p processes, which are not necessarily tied to specific processors or

cores, the process grid is defined as a logical r × c mesh where (r, c) ∈ N× N

and p = rc. We choose to standardize on coordinating all equations in a

column-major ordering of the process grid. For example, a 2× 3 process grid

is labeled
0 2 4

1 3 5 ,

or equivalently in two-dimensional coordinates as

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2) .

Three sets that repeatedly appear are the column set, row set, and world

set,

TC = [0, r) ⊂ N, (2.6)

TR = [0, c) ⊂ N, and (2.7)

TW = [0, p) ⊂ N. (2.8)

TC provides the collection of row indices for the process grid, TR similarly

provides the collection of column indices, and TW is simply the set of all

process indices.
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Perhaps the most important sets to understand are the process rows

and process columns, which are respectively the rows and columns of the

process grid. The motivating idea is for each process to limit its collective

communications to within its own process row and process column whenever

possible. Using a column-major ordering of the process grid, we define the

process row and process column teams of a process whose grid coordinates are

(s, t) ∈ TC × TR as

T̂ s
R = {s, s+ r, ..., s+ (c− 1)r} ⊆ TW , and (2.9)

T̂ t
C = {rt, rt+ 1, ..., rt+ (r − 1)} ⊆ TW . (2.10)

Thus T̂ s
R is the sth row of the process grid and T̂ t

C is the tth column of the

process grid.

While the chosen naming conventions may seem unnatural – for in-

stance, naming the set of row-indices the column set, TC – it is done in an-

ticipation of the algorithms in subsequent chapters. MPI collective commu-

nication routines make use of teams of processes, and thus using the chosen

naming convention reinforces the connection to communicators comprised of

process rows and process columns. For instance, TC provides the set of local

ranks in a process column communicator, and T̂C provides the set of global

ranks.

2.2.1 Matrix Distributions

Using slightly modified PLAPACK terminology, whenever the rows or

columns of matrix data are distributed within columns of the process grid, we
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say that the matrix is column projected. Thus, using our model 2×3 process

grid, a column projection distributes either the rows or columns of a matrix

between T̂ 0
R and T̂ 1

R . In order to define this distribution for arbitrary numbers

of rows and columns, we define a partitioning of N where each member of

the partitioning is referred to as a column projection filter. The column

projection filter for every member of process row q is given by

Cq = {n ∈ N : n mod r = σq
C} , (2.11)

where σq
C ∈ TC is an alignment parameter for the column projection that

is particular to process row q. To ensure that the filters are a partitioning

of N over the column set, every process row must have a unique alignment

parameter in TC . For simplicity, we choose to order the unique parameters

cyclically over TC , such that they satisfy the recurrence

σ
(q+1) mod r
C = (σq

C + 1) mod r. (2.12)

Similarly, we define a row projection using a collection of row projection

filters,

Rq = {n ∈ N : n mod c = σq
R} , (2.13)

where q ∈ TR represents a particular process column number, and σq
R ∈ TR

is an alignment parameter for the row projections specific to process column

q. To again ensure that the sets constitute a partitioning of N over TR, each

process column must have a unique alignment parameter in TR. Choosing the

alignment parameters to increase cyclically within each process row, then

σ
(q+1) mod c
R = (σq

R + 1) mod c. (2.14)
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Then by construction,

⋃
q∈TC

Cq = N, and (2.15)⋃
q∈TR

Rq = N, (2.16)

and therefore each process can perform an Allgather within its process column

to collect an entire matrix row or column that was in a column distribution,

or an Allgather within its process row gathers an entire matrix row or column

in a row distribution. Illustrations of the relevant collective communications

are given in Fig. 2.1.

The motivation for establishing the presented notation is to simplify

the derivation of parallel algorithms. In order to do so, we restrict ourselves

to synchronous parallel algorithms so that the actions of each process can

be described equivalently up to translations of alignment parameters for the

distribution superscripts. Our restriction to synchronous algorithms is jus-

tified by our use of elemental distributions, as they result in very evenly

distributed matrices, which means that load balance is typically not an is-

sue. From now on, when any filter appears in an equation with-

out the superscript that specifies which process or processes it ap-

plies to, the equation applies to every permissible choice of the su-

perscript for the entire equation. For instance, stating

[AB]C,R = CC,R

14



Operation Before After

Send-recv
ring

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Allgather

Node 0 Node 1 Node 2 Node 3
x0

x1

x2

x3

Node 0 Node 1 Node 2 Node 3
x0 x0 x0 x0

x1 x1 x1 x1

x2 x2 x2 x2

x3 x3 x3 x3

Reduce-
scatter

Node 0 Node 1 Node 2 Node 3
x

(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3∑
j x

(j)
0 ∑

j x
(j)
1 ∑

j x
(j)
2 ∑

j x
(j)
3

All-to-all

Node 0 Node 1 Node 2 Node 3
x

(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3
x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(1)
0 x

(1)
1 x

(1)
2 x

(1)
3

x
(2)
0 x

(2)
1 x

(2)
2 x

(2)
3

x
(3)
0 x

(3)
1 x

(3)
2 x

(3)
3

Figure 2.1: Overview of relevant collective communication patterns. For the
demonstration of a Send-recv ring, each node is sending to the node to its right
and receiving from the node to its left. This technique is used to transition
between multivector distributions and is discussed at the end of the chapter.
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becomes equivalent to writing

[AB]C
s,Rt

= CC
s,Rt

, ∀ (s, t) ∈ TC × TR.

Using this abstraction, we have effectively homogenized the description of each

process’s work and can concisely describe the work of the entire set of processes

using a single equation.

We now define the matrix distribution operator,

[ · ]C,R : Rm×n → R|C∩[0,m)| × |R∩[0,n)|, (2.17)

as the specific case of the submatrix operator where the column and row filters

are chosen to be the column and row projection filters. Similarly, we define

the transposed matrix distribution operator,

[ · ]R,C : Rm×n → R|R∩[0,m)| × |C∩[0,n)|, (2.18)

as the case where the column and row filters are respectively row and column

projection filters. In other words, columns of the matrix are distributed over

rows of the process grid, and vice versa. Using the 2 × 3 process grid, the

resulting matrix and transposed matrix distributions of a 7× 7 matrix for two

different choices of alignment parameters are shown in Table 2.1. In a matrix

distribution, (σs
C, σ

t
R) provides the global indices of the upper left element of

the local matrix on process (s, t). In a transposed matrix distribution, (σt
R, σ

s
C)

serves the same purpose. These distributions are respectively described by

tiling the process grid and transposed process grid over the matrix. Given

(σs
C, σ

t
R) for any (s, t), the tiling is fully specified.
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matrix dist. transposed matrix dist.

(σ0
C, σ

0
R) = (0, 0)



0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0





0 1 0 1 0 1 0
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0 1 0 1 0 1 0
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0 1 0 1 0 1 0



(σ0
C, σ

0
R) = (1, 1)



5 1 3 5 1 3 5
4 0 2 4 0 2 4
5 1 3 5 1 3 5
4 0 2 4 0 2 4
5 1 3 5 1 3 5
4 0 2 4 0 2 4
5 1 3 5 1 3 5





5 4 5 4 5 4 5
1 0 1 0 1 0 1
3 2 3 2 3 2 3
5 4 5 4 5 4 5
1 0 1 0 1 0 1
3 2 3 2 3 2 3
5 4 5 4 5 4 5


Table 2.1: Overlays of the owning process of each element of a seven-by-seven
matrix in four different matrix distributions.

We also define partial matrix distributions (PMDs) to be cases in

which only one of the filters of the submatrix operator is chosen from {C,R},

and the other is N. The name partial matrix distribution was chosen because

any matrix distribution can be described using a combination of two partial

matrix distribution operators. For instance, we can express a standard ma-

trix distribution operator as a combination of a column-projected column-wise

PMD and a row-projected row-wise PMD:

[ · ]C,R =
[
[ · ]C,N

]N,R
,

where the operator [ · ]C,N is described as column-projected because the set

C represents a distribution among process columns. It is called column-wise

17



[ · ]C,N Column-projected column-wise

[ · ]N,C Column-projected row-wise

[ · ]R,N Row-projected column-wise

[ · ]N,R Row-projected row-wise

Table 2.2: The four partial matrix distribution (PMD) operator categories.

because it applies the column filter to each column of the matrix. Similarly,

[ · ]N,R is a row-projected row-wise PMD operator. It is row-projected because

R represents a distribution among process rows, and it is row-wise because R

is applied to the rows of the matrix.

PMDs are used heavily in the later algorithms for parallel matrix-

matrix multiplication, and the four categories are listed in Table 2.2. Though

PLAPACK refers to partial matrix distributions as duplicated projected

multivectors, their use in algorithms is best described by their connection

to matrix distributions. Several examples of partial matrix distributions are

shown in Table 2.3.

2.2.2 Multiscalars and Multivectors

We refer to a one-dimensional distribution among all processes as a

multivector distribution (MVD), which corresponds to only distributing

either the columns or rows of a matrix, but doing so over the entire process

grid. A PMD also distributes either columns or rows of a matrix, but only over

the process rows or process columns instead of the global set of processes. The
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column-wise row-wise

column-projected



T̂ 0
R T̂ 0

R T̂ 0
R T̂ 0

R T̂ 0
R

T̂ 1
R T̂ 1

R T̂ 1
R T̂ 1

R T̂ 1
R

T̂ 0
R T̂ 0

R T̂ 0
R T̂ 0

R T̂ 0
R

T̂ 1
R T̂ 1

R T̂ 1
R T̂ 1

R T̂ 1
R

T̂ 0
R T̂ 0

R T̂ 0
R T̂ 0

R T̂ 0
R





T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R



row-projected



T̂ 0
C T̂ 0

C T̂ 0
C T̂ 0

C T̂ 0
C

T̂ 1
C T̂ 1

C T̂ 1
C T̂ 1

C T̂ 1
C

T̂ 2
C T̂ 2

C T̂ 2
C T̂ 2

C T̂ 2
C

T̂ 0
C T̂ 0

C T̂ 0
C T̂ 0

C T̂ 0
C

T̂ 1
C T̂ 1

C T̂ 1
C T̂ 1

C T̂ 1
C





T̂ 0
C T̂ 1

C T̂ 2
C T̂ 0

C T̂ 1
C

T̂ 0
C T̂ 1

C T̂ 2
C T̂ 0

C T̂ 1
C

T̂ 0
C T̂ 1

C T̂ 2
C T̂ 0

C T̂ 1
C

T̂ 0
C T̂ 1

C T̂ 2
C T̂ 0

C T̂ 1
C

T̂ 0
C T̂ 1

C T̂ 2
C T̂ 0

C T̂ 1
C


Table 2.3: Overlays of the process rows or columns associated with individual
elements of a five-by-five matrix in four different partial matrix distributions,
with σ0

C = σ0
R = 0.
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concept of multivectors originates from Physically Based Matrix Distributions,

and we motivate their use through the system of equations

UX = B =
(
b0 b1 · · · bn−1

)
,

where U ∈ Rm×m is upper-triangular, X ∈ Rm×n is the desired solution, and

bi is the ith column of the right-hand side. We define a multiscalar to be

a matrix that is fully owned by every process, which corresponds to the case

where the submatrix filters are both chosen to be N. If U is chosen to be a

multiscalar, and B is stored in a row-wise multivector, meaning that each col-

umn of B is stored on a single process, then trivial parallelism can be achieved

in solving for X. Each process can simply perform a local triangle solve with

multiple right-hand sides (trsm) using U and the local set of columns of B,

and high performance can be expected as long as n� p.

Because the cost of moving between multivector and matrix distribu-

tions cannot simply be ignored, we define two special cases of multivectors

with the goal of reducing the cost of transitions. The first is a column-major

multivector, whose distribution is specified by applying to each process q, a

set

Mq
C =

{
m ∈ N : m mod p = σq

MC

}
(2.19)

as one of the filters in the submatrix operator, and setting the other filter

as N. The distinguishing characteristic for each multivector is the recurrence

used to constrain the alignment parameters. For column-major multivectors,
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we require that

σ
(q+1) mod p
MC

=
(
σq
MC

+ 1
)

mod p. (2.20)

The purpose of this constraint is to require that the alignment parameters

increase (mod p) as one wraps around the process grid in a column-major

fashion. Because we have used a column-major ordering to label the process

grid, the above constraint simply requires that the alignment parameters cycli-

cally increase as the process indices increase. If we had chosen to standardize

on a row-major labeling of the process grid, the expression for the constraint

would become more complicated.

A row-major multivector can be thought of as the dual to the

column-major multivector, as it has each process, q ∈ TW , use the set

Mq
R =

{
m ∈ N : m mod p = σq

MR

}
, (2.21)

where σq
MR
∈ TW is required to increase (mod p) as one wraps around the

process grid in a row-major fashion. If we were to use a row-major labeling

for our process grid, the constraints on
{
σq
MR

}
would become identical to

those on
{
σq
MC

}
expressed in a column-major labeling. In order to be able

to standardize on a single labeling of the process grid, it is helpful to define

mappings that will transform a process’s column-major label into its row-major

label.

Given a process whose coordinates are (s, t), its column-major rank, q,

is

q = s+ rt,
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and its row-major rank, q̂, is

q̂ = t+ cs.

Then given q ∈ TW in column-major ordering we have

s = q mod r, and

t =
⌊q
r

⌋
,

and given q̂ ∈ TW in row-major ordering, its process row and column indices

are respectively

s =

⌊
q̂

c

⌋
, and

t = q̂ mod c.

We can then construct our mapping from a column-major label to row-major

label, f , and its inverse, f−1, as

f(q) =
⌊q
r

⌋
+ c (q mod r) , and (2.22)

f−1(q̂) =

⌊
q̂

c

⌋
+ r (q̂ mod c) . (2.23)

Given q ∈ TW , where q is a column-major label, one can map it to row-major

ordering, cyclically increase it, then transform back to column-major ordering

by the operation f−1 ((f(q) + 1) mod p). Thus the row-major constraint in

column-major labeling can be expressed as

σ
f−1((f(q)+1) mod p)
MR

=
(
σq
MR

+ 1
)

mod p.
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Alternatively, from any diagram of a process grid we can recognize that incre-

menting a process’s column-major label by one is equivalent to increasing its

row-major label by c (mod p). Thus we may alter Eq. (2.20) such that

σ
(q+1) mod p
MR

=
(
σq
MR

+ c
)

mod p. (2.24)

Our task is now to define a relation between the defined multivector

distributions and the row and column projections. We start by looking at the

connection between column-major multivectors and column projections. For

each s ∈ TC , there exists a unique x ∈ TC such that

σx
C = σq

MC
mod r, ∀q ∈ T̂ s

R , (2.25)

because the alignment parameters for column-major multivectors increase cycli-

cally, mod p, down the process columns of length r. Thus σq
MC

mod r does

not change within process rows. Keeping the same pair (s, x), it follows that⋃
q∈cT s

R

Mq
C = Cx, (2.26)

which shows that an Allgather within each process row can redistribute a

column-major multivector distribution, [ · ]M
q
C ,N or [ · ]N,Mq

C , into a column-

projected PMD, respectively [ · ]C
x,N or [ · ]N,Cx

.

Similarly, for each t ∈ TR, there exists a unique y ∈ TR such that

σy
R = f

(
σq
MR

)
mod c, ∀q ∈ T̂ t

C , (2.27)

because the alignment parameters for row-major multivectors increase cycli-

cally, mod p, within the process rows of length c. Therefore f
(
σq
MR

)
mod c
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is invariant within process columns. Using the same pair (t, y), it follows that⋃
q∈cT t

C

Mq
R = Ry, (2.28)

which indicates that an Allgather within each process column can transform a

row-major multivector distribution, [ · ]M
q
R,N or [ · ]N,Mq

R into a row-projected

PMD, respectively [ · ]R
y ,N or [ · ]N,Ry

.

Wrapping around a diagonal of a tiling of the process grid can be

thought of as simultaneously wrapping around the rows and columns of the

process grid, and ideally we could define a single multivector that could re-

place both column-major and row-major multivectors. Because a multivector

is required to span the entire set of processes, a simultaneous wrapping can

only be achieved when the least common multiple (lcm) of (r, c) is p = rc,

since the period of a diagonal wrapping will be the lcm of r and c. It is well

known that

lcm(a, b) =
ab

gcd(a, b)
,

where we are also using the greatest common divisor (gcd) of (a, b). Two

integers are called coprime if their gcd is 1. Thus lcm(r, c) = rc = p if

and only if r and c are coprime, and we can only define a diagonal wrapping

when gcd(r, c) = 1. We refer to the resulting distribution as a diagonal

multivector, which is partly described by each process q using the filter

Mq
D =

{
m ∈ N : m mod p = σq

MD

}
. (2.29)

In order to describe the constraints on
{
σq
MD

}
, we will introduce a slight

modification to the current notation. Since a process’s label may be specified
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by its process grid coordinates, (s, t) ∈ TC×TR, we may write a column-major

label q as

q = q(s, t) = s+ tr.

Then

Mq(s,t)
D = Ms+tr

D , and

σ
q(s,t)
MD

= σs+tr
MD

give a potentially more expressive means of describing the relation between

alignment parameters in a diagonal multivector distribution. The requirement

that σq
MD

increases cyclically down a diagonal of the process grid tiling can be

expressed as

σ
q((s+1) mod r, (t+1) mod c)
MD

=
(
σ

q(s,t)
MD

+ 1
)

mod p. (2.30)

Analogously to Eqs. (2.25) and (2.27), when r and c are coprime, for each

s ∈ TC , there exists a unique x ∈ TC such that

σx
C = σq

MD
mod r, ∀q ∈ T̂ s

R , (2.31)

and for each t ∈ TR, there exists a unique y ∈ TR such that

σy
R = f

(
σq
MD

)
mod c, ∀q ∈ T̂ t

C . (2.32)

Then, for each q(s, t) ∈ TW there exists a unique (x, y) ∈ TC × TR such that⋃
q∈cT s

R

Mq
D = Cx, (2.33)

⋃
q∈cT t

C

Mq
D = Ry, and (2.34)

Mq
D = Cx ∩Ry. (2.35)
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[ · ]MC ,N Column-major column-wise

[ · ]N,MC Column-major row-wise

[ · ]MR,N Row-major column-wise

[ · ]N,MR Row-major row-wise

[ · ]MD,N Diagonal column-wise

[ · ]N,MD Diagonal row-wise

Table 2.4: The six multivector distribution (MVD) categories.

Eqs. (2.33) and (2.34) demonstrate that a diagonal multivector can be redis-

tributed as a column-projected PMD using an Allgather within process rows,

and redistributed as a row-projected PMD using an Allgather within process

columns. The six categories of multivectors that arise from column-major,

row-major, and diagonal multivector sets are shown in Table 2.4, and overlays

of their distributions are shown in Table 2.5.

2.3 Transposing Distributions

In the previous section, it was shown how to perform several straight-

forward redistributions that require only a call to the MPI collective Allgather.

However, it is often the case that an algorithm requires either a complete trans-

position of a distribution or something similar, such as redistributing a matrix

A from the form AC,R to AR,C or AR,N. In general, these redistributions cannot

be efficiently performed using a single MPI routine. We provide a brief expla-

nation of the modeled costs of several MPI routines and then give an overview
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column-wise row-wise

column-major


0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5




0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5



row-major


0 0 0 0 0 0
2 2 2 2 2 2
4 4 4 4 4 4
1 1 1 1 1 1
3 3 3 3 3 3
5 5 5 5 5 5




0 2 4 1 3 5
0 2 4 1 3 5
0 2 4 1 3 5
0 2 4 1 3 5
0 2 4 1 3 5
0 2 4 1 3 5



diagonal


0 0 0 0 0 0
3 3 3 3 3 3
4 4 4 4 4 4
1 1 1 1 1 1
2 2 2 2 2 2
5 5 5 5 5 5




0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5


Table 2.5: Overlays of the owning process of each element of a six-by-six matrix
in six different multivector distributions, where σ0

MC
= σ0

MR
= σ0

MD
= 0.
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of the steps involved in distribution transposition. Understanding the process

is crucial as it highlights many of the redistribution issues that arise in the

algorithms in later chapters.

2.3.1 Communication Costs

There are several commonly used models for collective communication

costs, such as LogP/LogGP and PLogP, but we choose to focus on a modified

version of the Hockney model[21]. It assumes that the time to send a single

message is tm = α+ βn, where α is the latency of sending a message, β is the

inverse of the network bandwidth, and n is the message size. Computational

cost is separately considered using tc = γd, where γ represents the cost in time

of performing a single operation, typically addition, and d is the number of

operations performed.

MPI implementations typically minimize latency for “small” messages

and minimize communication volume for “large” messages[23], so it is reason-

able to assume that a good algorithm will have a cost similar to the latency

lower bound for small messages, and similar to the bandwidth lower bound for

large messages. The line between “small” and “large” messages is typically

a function of the number of MPI processes and is decided by the implemen-

tation. A list of lower bounds, from Chan et al.[6], of several common MPI

operations is given in Table 2.6. Each lower bound was computed using the

Hockney model under the assumption that each process can simultaneously

send a message to a process and receive a message from a (possibly different)
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Communication Latency Bandwidth Computation

Send-recv α nβ –

Allgather dlog2(p)eα p−1
p
nβ –

Reduce-scatter dlog2(p)eα p−1
p
nβ p−1

p
nγ

All-to-all dlog2(p)eα p−1
p
nβ –

Table 2.6: Lower bounds for costs of select MPI routines. n is the characteristic
message size for each routine.

process. It is also assumed that there is no message interference or network

congestion. All-to-all lower bounds were not given by Chan et al. and were an-

alyzed by the author using the same communication model. The lower bound

on the All-to-all latency should be paid particular attention, as it requires a

large increase in communication volume. A typical All-to-all algorithm in-

volves all processes directly communicating with all other processes[23] and

therefore has a latency component of (p− 1)α.

2.3.2 The General Approach

The PLAPACK strategy of transposing a distribution is to use a multi-

vector distribution as an intermediate step. Our approach is analogous, though

we are in general required to use two different multivector distributions in the

process rather than just one. The concept of distribution blocks is helpful

for understanding why. If one is to determine a matrix distribution through a

tiling of the process grid over a matrix, in general each member of the process

grid could represent an mb × nb block of matrix elements called a distribu-

tion block. The elemental approach to matrix distributions is defined by the
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choice of 1× 1 distribution blocks. PLAPACK requires that nb = rmb, where

r is again the number of process rows in the logical process grid. By skewing

the process grid tiling with distribution blocks that are r times wider than

their height, the diagonal of the process grid tiling will always span the entire

set of processes. For this reason, PLAPACK can use a multivector distribu-

tion analogous to our diagonal multivector. However, skewing the distribution

blocks to have an aspect ratio equal to the number of process rows is inherently

unscalable.

We begin by describing the approach to transposing a distribution when

the diagonal multivector distribution exists, and we use ‘⇒’ to denote the act of

redistributing, which consists of packing, communicating, and unpacking data.

The transposition sequence, shown at the top of Fig. 2.2, can be summarized

as

AC,R ⇒ AMD,N ⇒ AR,C,

where, for each process q(s, t), σq
MD

is chosen so that

Mq
D ≡ C

s ∩Rt.

The first step,

AC
s,Rt ⇒ AM

q
D,N, ∀ (s, t) ∈ TC × TR,

requires communication that involves collecting columns, indicated by the

transition of the second superscript from Rt to N ⊃ Rt, but only needing

a subset of the originally owned rows, indicated by the change from Cs to

Mq
D ⊂ Cs. This selective collection of subsets of columns can be accomplished
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AC,R︷ ︸︸ ︷

0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5


All-to-all
T̂R
⇒

AMD,N︷ ︸︸ ︷

0 0 0 0 0 0
3 3 3 3 3 3
4 4 4 4 4 4
1 1 1 1 1 1
2 2 2 2 2 2
5 5 5 5 5 5


All-to-all
T̂C
⇒

AR,C︷ ︸︸ ︷

0 1 0 1 0 1
2 3 2 3 2 3
4 5 4 5 4 5
0 1 0 1 0 1
2 3 2 3 2 3
4 5 4 5 4 5


AC,R︷ ︸︸ ︷

0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5


All-to-all
T̂C
⇒

AN,MD︷ ︸︸ ︷

0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5


All-to-all
T̂R
⇒

AR,C︷ ︸︸ ︷

0 1 0 1 0 1
2 3 2 3 2 3
4 5 4 5 4 5
0 1 0 1 0 1
2 3 2 3 2 3
4 5 4 5 4 5


Figure 2.2: Overlays of the owning process of each element of a 6× 6 matrix
during two different distribution transposition methods.

by an All-to-all within process rows. A simpler, but much less efficient, alter-

native would be to perform an Allgather within process rows and discard the

unneeded rows of the gathered data. The next step,

AM
q
D,N ⇒ AR

t,Cs

, ∀ (s, t) ∈ TC × TR,

is analogous to the first step, and can be accomplished via an All-to-all within

process columns.

It is important to realize that the distribution transposition could also

be achieved with the sequence

AC,R ⇒ AN,MD ⇒ AR,C,

which is shown at the bottom of Fig. 2.2. While the choice is arbitrary for

simply transposing the distribution, if we instead wanted to redistribute AC,R
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to AN,C, the second approach is advantageous to the first. The näıve extension

would be the sequence

AC,R ⇒ AN,MD ⇒ AR,C ⇒ AN,C,

where the last communication is performed using an Allgather within process

rows. Because the last two communication steps are within process rows,

we can simply combine them into a single communication and perform the

sequence

AC,R ⇒ AN,MD ⇒ AN,C.

From Eq. (2.33) we know that the last communication can be performed with

an Allgather within each process row. The process is demonstrated in Fig.

2.3.

For general process grids, we cannot assume that r and c are coprime,

so we must be able to handle distribution transposition without making use

of the diagonal multivector distribution. We are well equipped because of our

definitions of column-major and row-major multivectors. In fact, the only

difference from the approach with diagonal multivectors is that there is an

additional redistribution between column-major and row-major multivectors.

For instance, if our process grid is

0 2 4 6

1 3 5 7 ,

the sequence

AC,R ⇒ AMD,N ⇒ AR,C,
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AC,R︷ ︸︸ ︷

0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5
0 2 4 0 2 4
1 3 5 1 3 5


All-to-all
T̂C
⇒

AN,MD︷ ︸︸ ︷

0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5



AN,MD︷ ︸︸ ︷

0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5
0 3 4 1 2 5


Allgather
T̂R
⇒

AN,C︷ ︸︸ ︷

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R

T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R T̂ 0
R T̂ 1

R


Figure 2.3: Overlays of the owning processes of each element of a 6× 6 matrix
during the redistribution from a matrix distribution to a column-projected

row-wise PMD. T̂ 0
R = {0, 2, 4}, and T̂ 1

R = {1, 3, 5}.
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is replaced with

AC,R ⇒ AMC ,N ⇒ AMR,N ⇒ AR,C,

shown in Fig. 2.4, where σ
q(s,t)
MC

is chosen so that σ
q(s,t)
MC

mod r = σs
C for all

t ∈ TR, and σ
q(s,t)
MR

is chosen so that f
(
σ

q(s,t)
MR

)
mod c = σt

R for all s ∈ TC . The

first and last communications are nearly unchanged, but we have the added

complication of the step

AM
q
C ,N ⇒ AM

q
R,N, ∀ (s, t) ∈ TC × TR,

which can be accomplished with a single call to Send-recv on each process. The

redistribution is trivial because the only differences between column-major and

row-major multivectors are the alignment parameters. Additionally, Table

2.6 indicates that a Send-recv has a very low cost. Redistributing between

multivectors is a matter of each process receiving from the process that owns

in the current distribution what it would own in the new distribution, and

simultaneously sending to the process that will own in the new distribution

what it currently owns. More precisely, given a process q(s, t), where

∆σq = σq
MC
− σq

MR
,

process q sends its data to process qsend, where

qsend = f ((q + ∆σq) mod p) ,

and receives its data from process qrecv, where

qrecv = f−1 ((q −∆σq) mod p) .
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AC,R︷ ︸︸ ︷

0 2 4 6 0 2 4 6
1 3 5 7 1 3 5 7
0 2 4 6 0 2 4 6
1 3 5 7 1 3 5 7
0 2 4 6 0 2 4 6
1 3 5 7 1 3 5 7
0 2 4 6 0 2 4 6
1 3 5 7 1 3 5 7


All-to-all
T̂R
⇒

AMC,N︷ ︸︸ ︷

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7


AMC,N︷ ︸︸ ︷

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7


Send-recv
⇒

AMR,N︷ ︸︸ ︷

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6
1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5
7 7 7 7 7 7 7 7


AMR,N︷ ︸︸ ︷

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6
1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5
7 7 7 7 7 7 7 7


All-to-all
T̂C
⇒

AR,C︷ ︸︸ ︷

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
4 5 4 5 4 5 4 5
6 7 6 7 6 7 6 7
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
4 5 4 5 4 5 4 5
6 7 6 7 6 7 6 7


Figure 2.4: Overlays of the owning process of each element of an 8× 8 matrix
during a distribution transposition with a 2× 4 process grid.
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For convenience, from now on we will use

[ · ]↔ : AX ,Y → AY,X , (2.36)

to represent the result of a general distribution transposition.

It should also be noted that, in the case of a square process grid and

matrix, a shortcut exists for transposing the matrix distribution when σ0
C =

σ0
R. Taking advantage of symmetry, each process, with coordinates (s, t),

need only exchange local data with process (t, s) in order to complete the

distribution transposition. Finally, calls to Send-recv are extremely cheap

compared to the use of MPI collectives and can be used for shifting alignment

parameters. In later chapters, all analysis assumes that alignment parameters

of input matrices are compatible. In the general case this is not true, but the

performance impact of calls to Send-recv to adjust alignment parameters is

negligible and the handling of this technicality is left to implementations.
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Chapter 3

Matrix-Matrix Multiplication

Matrix-matrix multiplication, the composition of linear transforma-

tions, is at the core of dense linear algebra, so understanding how to optimize

its parallel performance provides a strong foundation for developing more com-

plicated operations. Using terminology from BLAS, general matrix-matrix

multiplication (gemm) is the class of operations

C := α op(A) op(B) + βC, (3.1)

where op(·) can either return the input matrix or its transpose, α and β are

arbitrary scalars, op(A) ∈ Rm×k, op(B) ∈ Rk×n, and C ∈ Rm×n. For the sake

of simplicity, we will assume α = 1 and β = 0 for our analysis. The four basic

categories are then

• C := AB (Normal-Normal)

• C := ABT (Normal-Transposed)

• C := ATB (Transposed-Normal)

• C := ATBT (Transposed-Transposed)
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Algorithm: C := AB + C

Partition A→
`

AL AR

´
, B →

„
BT

BB

«
where AL has 0 columns, BT has 0

rows
while n(AL) < n(A) do

Determine block size b
Repartition`

AL AR

´
→
`

A0 A1 A2
´

,„
BT

BB

«
→

0@ B0

B1

B2

1A
where A1 has b columns, B1 has b

rows

C := A1B1 + C

Continue with`
AL AR

´
←
`

A0 A1 A2
´

,„
BT

BB

«
←

0@ B0

B1

B2

1A
endwhile

Figure 3.1: Blocked panel-panel algorithm for normal-normal gemm.

For distributed-memory implementations, it is common[5, 24] to also divide

algorithms into the three cases

• Stationary A

• Stationary B

• Stationary C,

where the stationary matrix is not communicated during the algorithm. In

the extreme case where n� (m, k), which can be described as a matrix-panel

multiply[13], B and C are significantly smaller than A and it is often benefi-

cial to avoid communicating A. Similarly, when m� (n, k), one should avoid
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Algorithm: C := AB + C

Partition C →
`

CL CR

´
, B →

`
BL BR

´
where CL has 0 columns, BL has 0

columns
while n(CL) < n(C) do

Determine block size b
Repartition`

CL CR

´
→
`

C0 C1 C2
´

,`
BL BR

´
→
`

B0 B1 B2
´

where C1 has b columns, B1 has b
columns

C1 := AB1 + C1

Continue with`
CL CR

´
←
`

C0 C1 C2
´

,`
BL BR

´
←
`

B0 B1 B2
´

endwhile

Algorithm: C := AB + C

Partition C →
„

CT

CB

«
, A→

„
AT

AB

«
where CT has 0 rows, AT has 0 rows

while m(CT ) < m(C) do

Determine block size b
Repartition

„
CT

CB

«
→

0@ C0

C1

C2

1A ,

„
AT

AB

«
→

0@ A0

A1

A2

1A
where C1 has b rows, A1 has b rows

C1 := A1B + C1

Continue with

„
CT

CB

«
←

0@ C0

C1

C2

1A ,

„
AT

AB

«
←

0@ A0

A1

A2

1A
endwhile

Figure 3.2: Blocked matrix-panel (left) and panel-matrix (right) algorithms
for normal-normal gemm.

communicating B, and when k � (m,n), one should avoid communicating C.

The panel-panel blocking scheme is shown for normal-normal gemm in Fig.

3.1, and the matrix-panel and panel-matrix schemes are in Fig. 3.2. We have

now defined 12 categories to investigate. It is important to recognize that algo-

rithms very similar to our results are implemented in PLAPACK and discussed

by Gunnels et al[15]. The main purpose of this chapter is to demonstrate the

utility of the new notation for formally deriving parallel algorithms.

It should also be noted that the techniques presented for gemm di-

rectly apply to the other matrix-matrix multiplication routines in the Level 3

BLAS[7], such as syrk, syr2k, symm, and trmm.

39



3.1 Normal-Normal

Normal-normal gemm is described by

C := AB,

and if we choose to solve the problem in parallel with C ending up in a matrix

distribution, then we can express each process’s workload as

CC,R := [AB]C,R , (3.2)

which is (well-defined) shorthand for

CC
s,Rt

:= [AB]C
s,Rt

, ∀ (s, t) ∈ TC × TR.

Thus if each process performs the above operation, the operation C = AB

has been parallelized. Since the stationary C case is the simplest, we derive it

first, followed by the stationary A and B algorithms, as they are conceptually

the same in their approach.

3.1.1 Stationary C

Starting with the basic description of the parallel update, (3.2), we can

trivially modify it as

CC,R :=
[
AN,NBN,N]C,R ,

then apply the column filter to the columns of A, and the row filter to the

rows of B, such that

CC,R := AC,NBN,R. (3.3)
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Our stationary C algorithm can now easily be described. Recognizing that

we begin with A,B, and C in matrix distributions, then using relations (2.16)

and (2.15), we can simply Allgather AC,R across the process rows and BC,R

across the process columns to respectively form AC,N and BN,R. The update is

then completed by performing a local gemm on every process, shown in (3.3).

The parallelization of a single iteration, within a panel-panel blocking scheme,

is shown in Fig. 3.3. In this case, it is assumed that we begin with the column

filter of A aligned with the column filter of C, and similarly for the row filters

of B and C. If this is not the case, a call to Send-recv is needed for each

misalignment.

AC,N1 ⇐ AC,R1 Allgather over T̂R

BN,R
1 ⇐ BC,R1 Allgather over T̂C

CC,R += AC,N1 BN,R
1 gemm

Figure 3.3: Parallelization of a single iteration of normal-normal gemm with
stationary C.

3.1.2 Stationary A/B

Because the derivations of the stationary A and B algorithms are so

similar, we will derive the stationary A algorithm and then simply state the

analogous stationary B result. For the stationary A case, we rely upon (2.5)

to recognize that

[AB]C,N =
∑
q∈TR

AC,R
q

BR
q ,N,
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and after applying [ · ]N,R to both sides[
[AB]C,N

]N,R
=

[∑
q∈TR

AC,R
q

BR
q ,N

]N,R

.

We now make use of Eq. (2.3) to show that
[
[ · ]C,N

]N,R
= [ · ]C,R, and thus

[AB]C,R =

[∑
q∈TR

AC,R
q

BR
q ,N

]N,R

.

In expanded form we have that

[AB]C
s,Rt

=

[∑
q∈TR

AC
s,Rq

BR
q ,N

]N,Rt

, ∀(s, t) ∈ TC × TR.

It is clear that the quantity in brackets on the right-hand side is independent of

t and thus invariant within process rows. Thus if each process (s, t) ∈ TC ×TR

performs the local gemm AC
s,Rt

BR
t,N, sums the result over its process row

via a Reduce, and then applies [ · ]N,Rt

to the result of the summation, then

it has computed [AB]C
s,Rt

. While we have fully parallelized the local gemm,

the algorithm is not yet optimal, as it implies that each process receives the

full result of
∑

q∈TR
AC

s,Rq
BR

q ,N and then stores only the portion left after

applying [ · ]N,Rt

. Clearly this involves unnecessary communication, and we

recognize that the Reduce-scatter operation allows one to spread the result of

a summation within the group of processes that performed the summation.

Since ∪q∈TR
Rq = N and Ri ∩ Rj = ∅, i 6= j, we can use each process’s row

filter to select the columns it should receive from the Reduce-scatter. We now

rewrite (3.2) as

CC,R :=
∑
q∈TR

[
AC,R

q

BR
q ,N]N,R

, (3.4)
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or, in expanded form,

CC
s,Rt

:=
∑
q∈TR

[
AC

s,Rq

BR
q ,N]N,Rt

, ∀ (s, t) ∈ TC × TR.

Similarly, the stationary B algorithm is described by the equation

CC,R :=
∑
q∈TC

[
AN,Cq

BC
q ,R]C,N . (3.5)

The parallelizations of a single iteration from both cases are shown in Fig. 3.4,

with each algorithm using the previously described blocking schemes.

BMC ,N
1 ⇐ BC,R1 All-to-all over T̂R

BMR,N
1 ⇐ BMC ,N

1 Send-recv

BR,N
1 ⇐ BMR,N

1 Allgather over T̂C

X̂C,N := AC,RBR,N
1 gemm

CC,R1 +=
∑

q∈TR

[
X̂C,Nq

]N,R
Reduce-scatter over T̂R

AN,MR
1 ⇐ AC,R1 All-to-all over T̂C

AN,MC
1 ⇐ AN,MR

1 Send-recv

AN,C
1 ⇐ AN,MC

1 Allgather over T̂R

X̂N,R := AN,C
1 BC,R gemm

CC,R1 +=
∑

q∈TC

[
X̂N,R

q

]C,N
Reduce-scatter over T̂C

Figure 3.4: Parallelizations of a single iteration of normal-normal gemm with
stationary A (top) and B (bottom).
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3.2 Normal-Transposed/Transposed-Normal

Normal-transposed and transposed-normal gemm are respectively de-

scribed by

C := ABT , and

C := ATB,

while the elemental counterparts are

CC,R :=
[
ABT

]C,R
, and (3.6)

CC,R :=
[
ATB

]C,R
. (3.7)

Making use of duality, for each analysis of a normal-transposed case we will list

the corresponding transposed-normal result. We again start with the simplest

case, the stationary C algorithm.

3.2.1 Stationary C

We derive the normal-transposed stationary C algorithm by first ex-

panding
[
ABT

]C,R
as [

ABT
]C,R

= AC,N
[
BT
]N,R

,

then applying (2.2) to change the order of filter application and transposition

of B so that [
ABT

]C,R
= AC,N

[
BR,N]T .

The normal-transposed stationary C update is thus

CC,R := AC,N
[
BR,N]T , (3.8)
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and the transposed-normal update is analogously

CC,R :=
[
AN,C]T BN,R. (3.9)

A single iteration of each is shown in Fig. 3.5.

AC,N1 ⇐ AC,R1 Allgather over T̂R

BMC ,N
1 ⇐ BC,R1 All-to-all over T̂R

BMR,N
1 ⇐ BMC ,N

1 Send-recv

BR,N
1 ⇐ BMR,N

1 Allgather over T̂C

CC,R += AC,N1

[
BR,N

1

]T
gemm

BN,R
1 ⇐ BC,R1 Allgather over T̂C

AN,MR
1 ⇐ AC,R1 All-to-all over T̂C

AN,MC
1 ⇐ AN,MR

1 Send-recv

AN,C
1 ⇐ AN,MC

1 Allgather over T̂R

CC,R +=
[
AN,C

1

]T
BN,R

1 gemm

Figure 3.5: Parallelizations of a single iteration of normal-transposed gemm
with stationary C (top) and transposed-normal gemm with stationary C (bot-
tom).

3.2.2 NT Stationary A, TN Stationary B

Our goal is to find an algorithm that performs the normal-transposed

gemm update, (3.6), in parallel, but without communicating A. Using (2.5),
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we can expand
[
ABT

]C,N
as

[
ABT

]C,N
=
∑
q∈TR

AC,R
q [
BT
]Rq ,N

,

and after applying (2.2) to switch the order of the transposition and filter

application on B, [
ABT

]C,N
=
∑
q∈TR

AC,R
q [
BN,Rq]T

.

Applying [ · ]N,R to both sides, it follows that

[
ABT

]C,R
=

[∑
q∈TR

AC,R
q [
BN,Rq]T]N,R

.

We can now recast (3.6) as the normal-transposed update with stationary A,

CC,R :=
∑
q∈TR

[
AC,R

q [
BN,Rq]T]N,R

, (3.10)

and similarly, we can express (3.7) as the transposed-normal update with sta-

tionary B,

CC,R :=
∑
q∈TC

[[
AC

q ,N]T BCq ,R
]C,N

. (3.11)

The parallelizations of the matrix-panel normal-transposed and panel-matrix

transposed-normal blocking schemes are shown in Fig. 3.6.

3.2.3 NT Stationary B, TN Stationary A

We now seek an algorithm for the normal-transposed gemm that avoids

communicating the matrix B. One solution is to form the ABT update in the
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BN,R
1 ⇐ BC,R1 Allgather over T̂C

X̂C,N := AC,R
[
BN,R

1

]T
gemm

CC,R1 +=
∑

q∈TR

[
X̂C,Nq

]N,R
Reduce-scatter over T̂R

AC,N1 ⇐ AC,R1 Allgather over T̂R

X̂N,R :=
[
AC,N1

]T
BC,R gemm

CC,R1 +=
∑

q∈TC

[
X̂N,R

q

]C,N
Reduce-scatter over T̂C

Figure 3.6: Parallelizations of a single iteration of normal-transposed gemm
with stationary A (top) and transposed-normal gemm with stationary B (bot-
tom).

transposed matrix distribution, and then to redistribute it into the matrix

distribution. Using (2.5) to expand
[
ABT

]N,C
,

[
ABT

]N,C
=
∑
q∈TR

AN,Rq [
BT
]Rq ,C

,

and, using (2.2) to reverse the order of the transposition and filter application

on B, it follows that

[
ABT

]N,C
=
∑
q∈TR

AN,Rq [
BC,R

q]T
.

Applying [ · ]R,N to both sides,

[
ABT

]R,C
=

[∑
q∈TR

AN,Rq [
BC,R

q]T]R,N

.
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Now, we simply apply the definition of the distribution transposition operator,

[ · ]↔, to find that

[
ABT

]C,R
=

[∑
q∈TR

AN,Rq [
BC,R

q]T]R,N
↔ .

We again apply the concept of a Reduce-scatter and write our normal-transposed

update with stationary B as

CC,R :=

[∑
q∈TR

[
AN,Rq [

BC,R
q]T]R,N

]↔
, (3.12)

and the dual update, the transposed-normal with stationary A case, as

CC,R :=

[∑
q∈TC

[[
AC

q ,R]T BCq ,N
]N,C

]↔
. (3.13)

These expressions imply the parallelizations listed in Fig. 3.7.

3.3 Transposed-Transposed

The transposed-transposed gemm operation is

C := ATBT ,

and the elemental version is

CC,R :=
[
ATBT

]C,R
. (3.14)

As with the normal-normal gemm, we begin with the simplest case, stationary

C, then simultaneously describe the stationary A and stationary B algorithms.
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AN,R
1 ⇐ AC,R1 Allgather over T̂C

X̂N,C := AN,R
1

[
BC,R

]T
gemm

XR,C :=
∑

q∈TR

[
X̂N,C

q

]R,N
Reduce-scatter over T̂R

XC,R ⇐ XR,C Transpose the distribution

CC,R1 += XC,R axpys

BC,N1 ⇐ BC,R1 Allgather over T̂R

X̂R,N :=
[
AC,R

]T
BC,N1 gemm

XR,C :=
∑

q∈TC

[
X̂R,N

q

]N,C
Reduce-scatter over T̂C

XC,R ⇐ XR,C Transpose the distribution

CC,R1 += XC,R axpys

Figure 3.7: Parallelizations of a single iteration of normal-transposed gemm
with stationary B (top) and transposed-normal gemm with stationary A (bot-
tom).

3.3.1 Stationary C

We can quickly derive the stationary C algorithm by first expanding[
ATBT

]C,R
=
[
AT
]C,N [

BT
]N,R

,

and then applying (2.2) to find that[
ATBT

]C,R
=
[
AN,C]T [BR,N]T .

Thus our transposed-transposed stationary C approach is

CC,R :=
[
AN,C]T [BR,N]T , (3.15)
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and the blocked algorithm is shown in detail in Fig. 3.8.

AN,MR
1 ⇐ AC,R1 All-to-all over T̂C

AN,MC
1 ⇐ AN,MR

1 Send-recv

AN,C
1 ⇐ AN,MC

1 Allgather over T̂R

BMC ,N
1 ⇐ BC,R1 All-to-all over T̂R

BMR,N
1 ⇐ BMC ,N

1 Send-recv

BR,N
1 ⇐ BMR,N

1 Allgather over T̂C

CC,R +=
[
AN,C

1

]T [
BR,N

1

]T
gemm

Figure 3.8: Parallelization of a single iteration of transposed-transposed
gemm with stationary C.

3.3.2 Stationary A/B

The last two algorithms may be found by trivially modifying the results

from the normal-transposed stationary B and transposed-normal stationary

A algorithms, respectively. Thus the transposed-transposed stationary A and

stationary B expressions are

CC,R :=

[∑
q∈TC

[[
AC

q ,R]T [BN,Cq]T]N,C
]↔

, and (3.16)

CC,R :=

[∑
q∈TR

[[
AR

q ,N]T [BC,Rq]T]R,N
]↔

, (3.17)

and the procedure for a single iteration of each is described in Fig. 3.9.
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BN,MR
1 ⇐ BC,R1 All-to-all over T̂C

BN,MC
1 ⇐ BN,MR

1 Send-recv

BN,C
1 ⇐ BN,MC

1 Allgather over T̂R

X̂R,N :=
[
AC,R

]T [
BN,C

1

]T
gemm

XR,C :=
∑

q∈TC

[
X̂R,N

q

]N,C
Reduce-scatter over T̂C

XC,R ⇐ XR,C Transpose the distribution

CC,R1 += XC,R axpys

AMC ,N
1 ⇐ AC,R1 All-to-all over T̂R

AMR,N
1 ⇐ AMC ,N

1 Send-recv

AR,N
1 ⇐ AMR,N

1 Allgather over T̂C

X̂N,C :=
[
AR,N

1

]T [
BC,R

]T
gemm

XR,C :=
∑

q∈TR

[
X̂N,C

q

]R,N
Reduce-scatter over T̂R

XC,R ⇐ XR,C Transpose the distribution

CC,R1 += XC,R axpys

Figure 3.9: Parallelizations of a single iteration of transposed-transposed
gemm with stationary A (top) and B (bottom).

3.4 Performance Results

All twelve algorithms were implemented using C++/MPI and run on

small subsets of TACC’s Lonestar, a 5840 core Linux cluster with 4 cores per

node. Each algorithm was tested on 16 and 64 cores with an algorithmic

51



blocksize of 128, using square matrices ranging up to 35, 000× 35, 000 in size.

ScaLAPACK 1.8 performance, using a distribution blocksize of 128, serves as

a baseline for performance.

In order to test scalability, the stationary C variants were benchmarked

against ScaLAPACK on 1024 cores of Ranger, a 62,976 core Linux cluster

hosted at TACC. The algorithmic blocksize for the elemental algorithms, and

the distribution blocksize for ScaLAPACK, were both chosen to be 256. Ad-

ditionally, all parallel runs used MVAPICH 1.0 and GotoBLAS 1.26.

While running tests on square matrices would seem to only exercise

a special case, no pipelining or double-buffering is employed, so the perfor-

mance of each iteration of a particular algorithm does not noticeably change

during execution. Lower bounds for matrix-panel, panel-matrix, and panel-

panel multiplies are then respectively provided by the stationary A, B, and C

algorithms.

Figs. 3.10, 3.11, 3.12, and 3.13 respectively show the performance re-

sults for the normal-normal, normal-transposed, transposed-normal, and trans-

posed-transposed cases on Lonestar, where theoretical peak performance is set

as the ceiling of the plots. While we have defined flops as floating-point op-

erations, we define floating-point operations per second as FLOPS and report

performance in gigaflops per second, or GFLOPS.

The performance of the stationary C algorithms is shown to be signifi-

cantly higher than all other options for all four cases. Additionally, it is nearly
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constant for all four cases, asymptoting at over 84% of theoretical peak on 16

cores, and over 75% of theoretical peak on 64 cores. All three parallel vari-

ants dominate ScaLAPACK performance, with the exception of ScaLAPACK

reaching the performance of the stationary B case of transposed-transposed

multiplication on 16 cores.

Fig. 3.14 shows the performance results on Ranger. In all four cases,

the elemental versions greatly outperform ScaLAPACK. Due to the author

having finite cycles on the machine, the matrix sizes were not increased until

performance became asymptotic. Similar to the results on Lonestar, the per-

formance of the C variant does not significantly change over the four transpose

options.

While the performance results are clearly promising, the large gain in

performance in simple normal-normal panel-panel multiplication suggests that

significant portions of the overall performance gains are due to poor implemen-

tation of the ScaLAPACK algorithms rather than benefits of the presented

theory.

Additionally, the back-transformation of the eigenvectors of the tridiag-

onal EVP using WY transforms requires 2n3 +O(n2) flops. Because it is rich

in parallel triangular matrix-matrix multiplication, translating the presented

performance gains for general matrix-matrix multiplication would clearly be

beneficial and is left for future work.
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Figure 3.10: Performance and wall-clock time of parallel normal-normal gemm
on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 3.11: Performance and wall-clock time of parallel normal-transpose
gemm on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 3.12: Performance and wall-clock time of parallel transposed-normal
gemm on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 3.13: Performance and wall-clock time of parallel transposed-
transposed gemm on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 3.14: Performance of normal-normal (top-left), normal-transposed
(top-right), transposed-normal (bottom-left), and transposed-transposed par-
allel gemm on 1024 cores of Ranger.
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Chapter 4

Triangular Solves with Many Right-Hand

Sides

The second operation we explore is the triangular solve with many

right-hand sides. Because algorithms for solving against upper triangular ma-

trices can be trivially modified for lower triangular matrices, we choose to

analyze only the upper cases. The trsm operation is characterized by the

solution, X, to either

op(U) X = αB, or (4.1)

X op(U) = αB, (4.2)

where B is overwritten with X during the routine, and op(·) again returns

either the input matrix or its transpose. The corresponding updates are re-

spectively

B := α op(U)−1B, and (4.3)

B := αB op(U)−1. (4.4)

The first equation represents the two left cases, since the triangular matrix is

on the left, and thus the second equation represents the two right cases. The

distinction from triangular solves with few right-hand sides is made because a
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different approach is warranted, and in general, solves with few right-hand sides

are not scalable. “Many” right-hand sides is chosen to be pnb or more, where

nb is the algorithmic blocksize that yields optimal local gemm performance,

and p is the number of processes to distribute the operation between.

The general approach for each iteration of the four algorithms is to

perform a trsm with an nb × nb block of the triangular matrix, and then

update a panel of B with a gemm. This is accomplished by putting the

“right-hand sides”, which are on the left for the right triangular solves, into

a multivector distribution such that each right-hand side is owned by a single

process. A trivially parallelized trsm update is then performed, followed by a

gemm update. Each process is then left with nb or more right-hand sides in

their local trsm calls. While any multivector distribution can be used for the

trsm update, it is beneficial to choose one that can be reused in the gemm

update. A more thorough treatment for each of the four cases follows, where

α = 1 for simplicity.

4.1 Left-Upper-Normal

The left-upper-normal option of trsm solves

UX = B

by overwriting B with X, and thus it performs the update

B := U−1B. (4.5)
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If we conformally partition

U →
(
UTL UTR

0 UBR

)
, X →

(
XT

XB

)
, B →

(
BT

BB

)
,

then(
UTL UTR

0 UBR

)(
XT

XB

)
=

(
UTLXT + UTRXB

UBRXB

)
=

(
BT

BB

)
. (4.6)

A blocked recursive algorithm follows and is given in Fig. 4.1.

Algorithm: [B] := U−1B

Partition U →
(

UTL UTR

0 UBR

)
, B →

(
BT

BB

)
where UBR is 0 × 0, BB has 0

rows
while m(UBR) < m(U) do

Determine block size b
Repartition

(
UTL UTR

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

,
(

BT

BB

)
→

 B0

B1

B2


where U11 is b×b , B1 has b rows

B1 := U−1
11 B1

B0 := B0 − U01B1

Continue with(
UTL UTR

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22

,
(

BT

BB

)
←

 B0

B1

B2


endwhile

Figure 4.1: Blocked algorithm for performing multiple triangular solves when
the upper-triangular matrix is on the LHS.

As previously mentioned, a matrix distribution is not ideal for the up-
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date

B1 := U−1
11 B1,

as a row-wise multivector distribution of B1 yields trivial parallelism. In order

to determine which multivector distribution, we need to look at the other

update,

B0 := B0 − U01B1.

Expressed in a matrix distribution,

BC,R0 := BC,R0 − [U01B1]
C,R .

Because this is a panel-panel gemm, our previous analysis suggests the form

BC,R0 := BC,R0 − UC,N01 BN,R
1 .

Using (2.15) and (2.28), with appropriate alignments BN,R
1 can be reached

from BN,MR
1 through an Allgather over T̂C , and BC,R1 is a submatrix of BN,R

1 .

Then if B1 is in a row-major row-wise multivector distribution for the local

trsm, an intermediate redistribution into a matrix distribution is avoided by

a direct movement into a row-projected row-wise partial matrix distribution.

The parallelization of a single iteration of the blocked algorithm is shown in

Fig. 4.2, where the underlined steps store the final results of partitions of B.
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UN,N
11 ⇐ UC,R11 Allgather over T̂W

BN,MR
1 ⇐ BC,R1 All-to-all over T̂C

BN,MR
1 :=

[
UN,N

11

]−1
BN,MR

1 trsm

BN,R
1 ⇐ BN,MR

1 Allgather over T̂C

BC,R1 ⇐ BN,R
1 Filtered copy

UC,N01 ⇐ UC,R01 Allgather over T̂R

BC,R0 −= UC,N01 BN,R
1 gemm

Figure 4.2: Parallelization of a single iteration of the left-upper-normal trsm.

63



4.2 Left-Upper-Transposed

The analysis of the left-upper-transposed case mirrors that of the pre-

vious case. We solve the system

UTX = B

by overwriting B with X as

B := U−TB. (4.7)

If we partition our system of equations as(
UT

TL 0
UT

TR UT
BR

)(
XT

XB

)
=

(
UT

TLXT

UT
TRXT + UT

BRXB

)
=

(
BT

BB

)
, (4.8)

then the blocked algorithm in Fig. 4.3 is easily identified. Just as before, the

first update,

B1 := U−T
11 B1,

should be expressed with B1 as a multivector instead of in a matrix distribu-

tion. The second update is

B2 := B2 − UT
12B1,

which is a panel-panel gemm, and is efficiently parallelized as

BC,R2 := BC,R2 −
[
UN,C

12

]T
BN,R

1 .

We again apply (2.15) and (2.28) to determine that B1 should be a row-major

row-wise multivector for the first update. A single iteration of the blocked

parallel algorithm is shown in Fig. 4.4.
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Algorithm: [B] := U−T B

Partition U →
(

UTL UTR

0 UBR

)
, B →

(
BT

BB

)
where UTL is 0 × 0, BT has 0

rows
while m(UTL) < m(U) do

Determine block size b
Repartition

(
UTL UTR

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

,
(

BT

BB

)
→

 B0

B1

B2


where U11 is b×b , B1 has b rows

B1 := U−T
11 B1

B2 := B2 − UT
12B1

Continue with(
UTL UTR

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22

,
(

BT

BB

)
←

 B0

B1

B2


endwhile

Figure 4.3: Blocked algorithm for performing multiple triangular solves when
the upper-triangular matrix is transposed on the LHS.

4.3 Right-Upper-Normal

The right-upper-normal trsm operation solves the system

XU = B

by overwriting B with X as

B := BU−1. (4.9)

Partitioning

X →
(
XL XR

)
, U →

(
UTL UTR

0 UBR

)
, B →

(
BL BR

)
,
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UN,N
11 ⇐ UC,R11 Allgather over T̂W

BN,MR
1 ⇐ BC,R1 All-to-all over T̂C

BN,MR
1 :=

[
UN,N

11

]−T
BN,MR

1 trsm

BN,R
1 ⇐ BN,MR

1 Allgather over T̂C

BC,R1 ⇐ BN,R
1 Filtered copy

UN,C
12 ⇐ UC,R12 All-to-all T̂C , Send-recv, Allgather T̂R

BC,R2 −=
[
UN,C

12

]T
BN,R

1 gemm

Figure 4.4: Parallelization of a single iteration of the left-upper-transposed
trsm.

then

(
XL XR

)( UTL UTR

0 UBR

)
=
(
XLUTL XLUTR +XRUBR

)
=
(
BL BR

)
.

(4.10)

The solution method is shown in Fig. 4.5, and it is important to notice that

in the first update,

B1 := B1U
−1
11 ,

the rows of B1 can be solved for independently. It is then advantageous to put

B1 into a column-wise multivector. Analyzing the other update,

B2 := B2 −B1U12,

which is a panel-panel gemm, it is advantageous to distribute B1 as BMC ,N
1

for the first update so that we can cheaply gather BC,N1 and perform

BC,R2 := BC,R2 −BC,N1 UN,R
12 .
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Algorithm: [B] := BU−1

Partition U →
(

UTL UTR

0 UBR

)
, B →

(
BL BR

)
where UTL is 0 × 0, BL has 0

columns
while m(UTL) < m(U) do

Determine block size b
Repartition

(
UTL UTR

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

,
(
BL BR

)
→
(
B0 B1 B2

)
where U11 is b × b , B1 has b

columns

B1 := B1U
−1
11

B2 := B2 −B1U12

Continue with(
UTL UTR

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22

,
(
BL BR

)
←
(
B0 B1 B2

)
endwhile

Figure 4.5: Blocked algorithm for performing multiple triangular solves when
the upper-triangular matrix is on the RHS.

The parallel scheme is shown in Fig. 4.6.

4.4 Right-Upper-Transposed

Going through the motions for the last case, we solve the system of

equations

XUT = B
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UN,N
11 ⇐ UC,R11 Allgather over T̂W

BMC ,N
1 ⇐ BC,R1 All-to-all over T̂R

BMC ,N
1 := BMC ,N

1

[
UN,N

11

]−1
trsm

BC,N1 ⇐ BMC ,N
1 Allgather over T̂R

BC,R1 ⇐ BC,N1 Filtered copy

UN,R
12 ⇐ UC,R12 Allgather over T̂C

BC,R2 −= BC,N1 UN,R
12 gemm

Figure 4.6: Parallelization of a single iteration of the right-upper-normal trsm.

via the update

B := BU−T . (4.11)

Our serial algorithm, shown in Fig. 4.7, is found by partitioning the system of

equations into the form

(
XL XR

)( UT
TL 0

UT
TR UT

BR

)
=
(
XLU

T
TL +XRU

T
TR XRU

T
BR

)
=
(
BL BR

)
,

(4.12)

and the corresponding parallel algorithm is demonstrated in Fig. 4.8.

4.5 Performance Results

The four trsm algorithms were implemented in the same style as the

twelve gemm algorithms and were again benchmarked against ScaLAPACK.

Figs. 4.9, 4.10, 4.11, and 4.12 respectively show the performance and wall-clock

time of the left-upper-normal, left-upper-transposed, right-upper-normal, and
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Algorithm: [B] := BU−T

Partition U →
(

UTL UTR

0 UBR

)
, B →

(
BL BR

)
where UBR is 0 × 0, BR has 0

columns
while m(UBR) < m(U) do

Determine block size b
Repartition

(
UTL UTR

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

,
(
BL BR

)
→
(
B0 B1 B2

)
where U11 is b × b , B1 has b

columns

B1 := B1U
−T
11

B0 := B0 −B1U
T
01

Continue with(
UTL UTR

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22

,
(
BL BR

)
←
(
B0 B1 B2

)
endwhile

Figure 4.7: Blocked algorithm for performing multiple triangular solves when
the upper-triangular matrix is transposed on the RHS.

right-upper-transposed cases on both 16 and 64 cores of Lonestar. Just as be-

fore, the ceilings of the performance plots are the theoretical peak performance

of the given set of cores.

In all tests, the elemental implementation significantly outperforms

ScaLAPACK. However, the margin shrinks greatly for the right-upper-normal

case, where only ∼18% performance is gained at the maximum size tested on

64 cores.
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UN,N
11 ⇐ UC,R11 Allgather over T̂W

BMC ,N
1 ⇐ BC,R1 All-to-all over T̂R

BMC ,N
1 := BMC ,N

1

[
UN,N

11

]−T
trsm

BC,N1 ⇐ BMC ,N
1 Allgather over T̂R

BC,R1 ⇐ BC,N1 Filtered copy

UR,N
01 ⇐ UC,R01 All-to-all T̂R, Send-recv, Allgather T̂C

BC,R0 −= BC,N1

[
UR,N

01

]T
gemm

Figure 4.8: Parallelization of a single iteration of the right-upper-transposed
trsm.

The back-transformation of the eigenvectors from the standard eigen-

value problem is done by solving for Φ in (1.5),

ΦA = UΦ,

where (ΦA, U) ∈ Rn×n×Rn×n. This maps to a left-upper-normal trsm costing

roughly n3 flops, whose performance on 16 cores has been shown to increase

nearly 40% over ScaLAPACK when n > 15, 000.
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Figure 4.9: Performance and wall-clock time of left-upper-normal triangular
solve with multiple RHS on 16 (top) and 64 (bottom) cores of Lonestar.

71



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

20

40

60

80

100

120

140

160

Matrix size

G
F

LO
P

S

 

 
Elemental
ScaLAPACK

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix size

M
in

ut
es

 

 
Elemental
ScaLAPACK
Peak

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

100

200

300

400

500

600

Matrix size

G
F

LO
P

S

 

 
Elemental
ScaLAPACK

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

Matrix size

M
in

ut
es

 

 
Elemental
ScaLAPACK
Peak

Figure 4.10: Performance and wall-clock time of left-upper-transposed trian-
gular solve with multiple RHS on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 4.11: Performance and wall-clock time of right-upper-normal triangular
solve with multiple RHS on 16 (top) and 64 (bottom) cores of Lonestar.
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Figure 4.12: Performance and wall-clock time of right-upper-transposed trian-
gular solve with multiple RHS on 16 (top) and 64 (bottom) cores of Lonestar.
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Chapter 5

Cholesky Factorizations

Cholesky factorizations are a staple of dense linear algebra for both

theoretical and computational purposes, and at 1
3
n3 +O(n2) flops[12], they are

only half the price of LU factorizations. As previously discussed, the upper

Cholesky factor, U , of our SPD mass matrix, M , will be used to transform the

generalized EVP into standard form. We choose U to be upper, and thus it is

defined to satisfy the relation

UTU = M. (5.1)

We also use the notation

U = Γ(M),

where Γ(·) returns the Cholesky factor of the input matrix. Because we would

like to achieve the highest performance possible, three algorithmic variants

will be derived and analyzed.

5.1 The Three Variants

Using Hoare triples and loop-invariants[18], formal proofs of correctness

for implementations of algorithms can be systematically constructed[4]. A full
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listing of the three Cholesky loop-invariants and algorithms is included to serve

as a foundation for the similar work done for the reduction of the generalized

EVP to standard form.

Starting with M = UTU and partitioning into a 2×2 matrix of blocks,

we find that(
MTL MTR

? MBR

)
=

(
UT

TL 0
UT

TR UT
BR

)(
UTL UTR

0 UBR

)
=

(
UT

TLUTL UT
TLUTR

? UT
TRUTR + UT

BRUBR

)
,

where a ‘?’ is used to denote a portion of a symmetric matrix that is not

accessed. At the end of the factorization, the upper-triangle of M will be

overwritten with U , and thus we will use M̂ to denote the original state of

M . We define the goal of the Cholesky operation by the Partitioned Matrix

Expression (PME)

(
MTL MTR

? MBR

)
=

(
UTL UTR

? UBR

)
,where


M̂TL = UT

TLUTL

M̂TR = UT
TLUTR

M̂BR − UT
TRUTR = UT

BRUBR.

At this step in the derivation of loop-invariants, it is not always obvious how

to group the update operations. For Cholesky factorizations, they are easily

chosen and a simple Directed Acyclic Graph (DAG) of their dependencies is

shown in Fig. 5.1. Because loop-invariants are restricted to legal intermediate

states of an execution of the DAG, at least one, but not all, of the update

operations must have been performed. Due to the operation dependencies

and the mentioned requirement, there are only three loop-invariants. The first
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MTL := Γ(MTL)

MBR := MBR −MT
TRMTR

MTR := M−T
TL MTR

MBR := Γ(MBR)

Figure 5.1: Update dependencies for a Cholesky factorization.

Invariant 1
(

MTL MTR

? MBR

)
=

(
UTL M̂TL

? M̂BR

)
, M̂TL = UT

TLUTL

Invariant 2
(

MTL MTR

? MBR

)
=
(

UTL UTR

? M̂BR

)
,

M̂TL = UT
TLUTL

M̂TR = UT
TLUTR

Invariant 3
(

MTL MTR

? MBR

)
=
(

UTL UTR

? M̂BR − UT
TRUTR

)
,

M̂TL = UT
TLUTL

M̂TR = UT
TLUTR

Figure 5.2: Loop-invariants for a Cholesky factorization.

invariant includes only the first update, the second invariant includes the first

and second updates, and the third invariant includes the first, second, and third

updates. The invariants are summarized in Fig. 5.2 and their corresponding

algorithms may be found by assuming that the loop invariant holds at the

beginning of a loop and finding the algebraic steps required for it to again

hold after the repartitioning cycle[4]. The full algorithms are displayed in Fig.

5.3. It is immediately apparent that Variant 1 will not scale well, since the
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update

M01 := M−T
00 M01

corresponds to a triangular solve with the number of right-hand sides equal to

the algorithmic blocksize. For this reason, we will only parallelize algorithmic

Variants 2 and 3.

5.2 Parallelizing Variant 3

The analysis for parallelizing the Variant 3 algorithm is only a slight

extension from the left-upper-normal trsm work. Just as before, we know

from the update

M12 := M−T
11 M12

that M11 should be collected into a multiscalar, and M12 should be put in some

form of row-wise multivector distribution. We can determine which particular

multivector distribution by inspecting the following update,

M22 := M22 −MT
12M12.

While this update maps to a symmetric rank-k update (syrk) instead of a

gemm, the only difference is that the local blocking strategy should take

advantage of symmetry. Because it is still a panel-panel transposed-normal

matrix-matrix multiply, we should gather MN,C
12 and MN,R

12 for the syrk up-

date. Just as in the parallel left-upper-normal trsm algorithm, making M12

a row-major row-wise multivector for the trsm update allows us to prevent

communicating in order to store the result in a matrix distribution.
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Algorithm: [M ] := chol blk(M)

Partition M →
(

MTL MTR

? MBR

)
where MTL is 0× 0

while m(MTL) < m(M) do

Determine block size b
Repartition

(
MTL MTR

? MBR

)
→

 M00 M01 M02

? M11 M12

? ? M22


where M11 is b× b

variant 1 variant 2 variant 3
M01 := M−T

00 M01 M11 := M11 −MT
01M01 M11 := Γ(M11)

M11 := M11 −MT
01M01 M11 := Γ(M11) M12 := M−T

11 M12

M11 := Γ(M11) M12 := M12 −MT
01M02 M22 := M22 −MT

12M12

M12 := M−T
11 M12

Continue with(
MTL MTR

? MBR

)
←

 M00 M01 M02

? M11 M12

? ? M22


endwhile

Figure 5.3: Three blocked algorithms for performing an upper Cholesky fac-
torization. Each is derived from a different Partitioned Matrix Expression
(PME). The underlined update is not scalable.
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The last step is to determine how to handle the update

M11 := Γ(M11).

The operation is performed roughly n/b times, where b is the algorithmic

blocksize, and costs 1
3
b3 flops for each iteration. The overall cost is then roughly

only 1
3
nb2. Since we already need to collect M11 as a multiscalar for the trsm

update, it is reasonable to redundantly compute the Cholesky factorization of

M11 on all processors. The DAG for the chosen parallel updates is given in

Fig. 5.4, and the implemented execution path is shown in Fig. 5.5.

MC,R
22 −=

[
MN,C

12

]T
MN,R

12

MN,N
11 ⇐MC,R

11

MC,R
11 ⇐MN,N

11

MN,N
11 := Γ

(
MN,N

11

)

MN,MR
12 :=

[
M−T

11

]N,N
MN,MR

12

MN,MR
12 ⇐MC,R

12

MC,R
12 ⇐MN,R

12

MN,R
12 ⇐MN,MR

12

MN,C
12 ⇐MN,MC

12

MN,MC
12 ⇐MN,MR

12

Figure 5.4: DAG for parallel Variant 3 Cholesky.

80



MN,N
11 ⇐ MC,R

11 Allgather over T̂W

MN,N
11 := Γ

(
MN,N

11

)
Local Cholesky

MC,R
11 ⇐ MN,N

11 Filtered copy

MN,MR
12 ⇐ MC,R

12 All-to-all over T̂C

MN,MR
12 :=

[
M−T

11

]N,N
MN,MR

12 trsm

MN,R
12 ⇐ MN,MR

12 Allgather over T̂C

MC,R
12 ⇐ MN,R

12 Filtered copy

MN,MC
12 ⇐ MN,MR

12 Send-recv in T̂W

MN,C
12 ⇐ MN,MC

12 Allgather over T̂R

MC,R
22 := MC,R

22 −
[
MN,C

12

]T
MN,R

12 gemms

Figure 5.5: Parallelization of an iteration of the Variant 3 Cholesky algorithm.

5.3 Parallelizing Variant 2

The parallelization of the Variant 2 algorithm is more complicated than

the previous analysis because two of the updates are matrix-matrix multipli-

cations. The first,

M11 := M11 −MT
01M01,

is actually a symmetric rank-k update, but because M11 ∈ Rb×b, it is not

necessarily beneficial to take advantage of symmetry. In fact, we avoid doing

so in our parallel implementation. Whenever M01 is not empty, M01 is a

column-panel and the first update should be parallelized as either a stationary

A or stationary B matrix-matrix multiply. However, the second matrix-matrix
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multiply update,

M12 := M12 −MT
01M02,

should be parallelized using the previously discussed stationary B algorithm,

as M02 is typically larger than M12 and M01. We therefore decide to collect

MC,N
01 and parallelize the update as

MC,R
12 −=

∑
q∈TC

[[
MCq ,N

01

]T
MCq ,R

02

]C,N
.

Since we have committed to gathering MC,N
01 , we choose to reuse the distribu-

tion and parallelize the first update with the stationary B algorithm,

MC,R
12 −=

∑
q∈TC

[[
MCq ,N

01

]T
MCq ,R

01

]C,N
.

The remaining two updates are the Cholesky factorization of the diagonal

block,

M11 := Γ(M11),

and the trsm,

M12 := M−1
11 M12.

As before, we parallelize the trsm by putting M12 into a row-wise multivector

distribution and collecting M11 as a multiscalar. Since there is no opportunity

to reuse the multivector distribution, the choice of a particular multivector dis-

tribution is arbitrary. We again choose to redundantly compute the Cholesky

factorization of M11 on all nodes, and the resulting DAG and algorithm are

shown in Figs. 5.6 and 5.7.
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MC,R
12 ⇐MN,MR

12

MN,MR
12 :=

[
MN,N

11

]−1

MN,MR
12

MC,N
01 ⇐MC,R

01

MC,R
11 −=

∑
q∈TC

[
X̂N,R

q

]C,N
X̂N,R :=

[
MC,N

01

]T
MC,R

01

MN,N
11 := Γ

(
MN,N

11

)
MN,N

11 ⇐MC,R
11

Ŷ N,R :=
[
MC,N

01

]T
MC,R

02

MC,R
11 ⇐MN,N

11

MN,MR
12 ⇐MC,R

12

MC,R
12 −=

∑
q∈TC

[
Ŷ N,R

q

]C,N

Figure 5.6: DAG for parallel Variant 2 Cholesky.

5.4 Performance Results

The Variant 2 and 3 parallel algorithms were implemented using C++

and MPI, and then tested on 16 and 64 cores of Lonestar. Performance for

both variants is benchmarked against ScaLAPACK in Fig. 5.8, where ScaLA-

PACK is shown to outperform the Variant 3 implementation as the matrix

size increases past 25,000. However, the Variant 2 implementation uniformly

outperforms both ScaLAPACK and Variant 3, although Variant 2 is by far

more difficult to implement. The performance gain is due to Variant 2 cast-

ing its computation in terms of gemms instead of a syrk, which is harder to

map directly to serial BLAS calls in an elemental scheme. At a problem size
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MC,N
01 ⇐ MC,R

01 Allgather over T̂R

X̂N,R :=
[
MC,N

01

]T
MC,R

01 gemm

MC,R
11 −=

∑
q∈TC

[
X̂N,R

q

]C,N
Reduce-scatter over T̂C

MN,N
11 ⇐ MC,R

11 Allgather over T̂W

MN,N
11 := Γ

(
MN,N

11

)
Local Cholesky

MC,R
11 ⇐ MN,N

11 Filtered copy

Ŷ N,R :=
[
MC,N

01

]T
MC,R

02 gemm

MC,R
12 −=

∑
q∈TC

[
Ŷ N,R

q

]C,N
Reduce-scatter over T̂C

MN,MR
12 ⇐ MC,R

12 All-to-all over T̂C

MN,MR
12 :=

[
MN,N

11

]−1

MN,MR
12 trsm

MC,R
12 ⇐ MN,MR

12 Allgather over T̂C

Figure 5.7: Parallelization of an iteration of the Variant 2 Cholesky algorithm.

of 15,000, Variant 2 performance is shown to be more than 25% higher than

ScaLAPACK on both 16 and 64 cores.
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Figure 5.8: Performance and wall-clock time of parallel Cholesky factorizations
on 16 (top) and 64 (bottom) cores of Lonestar.
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Chapter 6

Reduction to Symmetric Standard EVP

The last tool needed for our generalized eigensolution is a scalable par-

allel algorithm for reducing the generalized EVP to standard form. This re-

duction is accomplished through forming a matrix A, which is defined in (1.7)

as

A = U−TKU−1,

where U = Γ(M), and K is symmetric. A näıve approach would be to ignore

the symmetry of the result and simply perform two successive parallel trsms,

which has a flop count of 2n3 +O(n2). While the standard algorithm for this

reduction, sygst, has a flop count of n3 + O(n2), we will show that one of

the steps of the algorithm is inherently unscalable and present an alternative

algorithm that avoids the scalability issue. All three approaches are then

benchmarked with some surprising results.

6.1 Original and Revised Algorithms

We begin by rearranging (1.7) into the form

K = UTAU,
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and partitioning the equation into 2× 2 matrices of blocks. Then,(
KTL KTR

? KBR

)
=
(

UT
TL 0

UT
TR UT

BR

)(
ATL ATR

? ABR

)(
UTL UTR

0 UBR

)
=
(

UT
TLATLUTL UT

TL (ATLUTR + ATRUBR)
? UT

BRABRUBR+UT
TRATLUTR+UT

BRAT
TRUTR+UT

TRATRUBR

)
,

where we have again used ‘?’ to denote an unaccessed portion of a symmetric

matrix. The algorithm used by LAPACK for the reduction, shown in the left

column of Fig. 6.1, has the loop-invariant(
KTL KTR

? KBR

)
=

(
ATL ATR

? UT
BRABRUBR

)
,

and we will use K̂ to represent the original state of the input matrix, K. From

the step

K12 := K12U
−1
22 ,

it is clear that a triangular solve with the number of “right-hand sides”, the

rows of K12, equal to the algorithmic blocksize must be performed. Since this

is an inherently unscalable operation and constitutes roughly 1/3 of the flops

of the routine, it is expected that this algorithmic variant will perform poorly.

If we instead choose the loop-invariant(
KTL KTR

? KBR

)
=

(
ATL U−T

TL K̂TR

? K̂BR

)
,

then we arrive at the algorithm shown in the right column of Fig. 6.1, which

has eliminated the unscalable trsm update.
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Algorithm: K := U−TKU−1

Partition K →
(
KTL KTR

? KBR

)
, U similarly

where KTL is 0× 0, UTL is 0× 0
while m(KTL) < m(K) do

Determine block size b
Repartition(

KTL KTR

? KBR

)
→

 K00 K01 K02

? K11 K12

? ? K22

, U similarly

where K11 is b× b , U11 is b× b

standard revised
K11 := U−T

11 K11U
−1
11 X := K00U01

K12 := U−T
11 K12 K01 := K01 −X

K12 := K12 − 1
2
K11U12 K11 := K11 −KT

01U01 − UT
01K01

K22 := K22 −KT
12U12 − UT

12K12 K11 := K11 − UT
01X

K12 := K12 − 1
2
K11U12 K11 := U−T

11 K11U
−1
11

K12 := K12U
−1
22 K01 := K01U

−1
11

K12 := K12 − UT
01K02

K12 := U−T
11 K12

Continue with(
KTL KTR

? KBR

)
←

 K00 K01 K02

? K11 K12

? ? K22

, U similarly

endwhile

Figure 6.1: The standard and revised sygst algorithms. The poorly paral-
lelizable update in the standard algorithm has been underlined.
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6.2 Parallelizing the Revised Algorithm

The first update to investigate is

X := K00U01,

where K00 is symmetric and stored in the upper triangle. The update is then

more accurately written as

X := triu(K00)U01 + trisu(K00)
TU01,

where triu(·) and trisu(·) respectively return their input matrices with only the

upper triangular and strictly upper triangular portions left nonzero. The up-

date should then be parallelized as the sum of normal-normal and transposed-

normal stationary A matrix-matrix multiplications, such that

XC,R :=
∑
q∈TR

[
triu(K00)

C,Rq

UR
q ,N

01

]N,R
+

[∑
q∈TC

[[
trisu(K00)

Cq ,R]T UCq ,N
01

]N,C
]↔

.

In order to do so, we are required to form both UC,N01 and UR,N
01 .

The second update is trivially parallelized as

KC,R01 := KC,R01 −XC,R,

so we move on to the third update,

K11 := K11 −KT
01U01 − UT

01K01,

which is a symmetric rank-2k update (syr2k). However, the local update is

in general not even square, and we avoid taking advantage of the global sym-

metry because K11 is nb × nb. We then decide to parallelize both KT
01U01 and
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UT
01K01 using transposed-normal stationary B algorithms because it requires

less communication than the stationary A approach. Additionally, we have

the added benefit that we are already required to collect UC,N01 and can simply

reuse it. The parallel update can be expressed as

KC,R11 :=
∑
q∈TC

[[
KC

q ,N
01

]T
UC

q ,R
01

]C,N
+
∑
q∈TC

[[
UC

q ,N
01

]T
KC

q ,R
01

]C,N
=

∑
q∈TC

[[
KC

q ,N
01

]T
UC

q ,R
01 +

[
UC

q ,N
01

]T
KC

q ,R
01

]C,N
,

and we are now required to also collect KC,N01 . In fact, we can use the same

technique to combine the parallelization of this update with the next one,

K11 := K11 − UT
01X,

so that we form the update as

KC,R11 := KC,R11 −
∑
q∈TC

[[
KC

q ,N
01

]T
UC

q ,R
01 +

[
UC

q ,N
01

]T
KC

q ,R
01 +

[
UC

q ,N
01

]T
XC

q ,R
]C,N

.

An astute reader will immediately notice that we can save a few flops by

grouping the update as

KC,R11 := KC,R11 −
∑
q∈TC

[[
KC

q ,N
01

]T
UC

q ,R
01 +

[
UC

q ,N
01

]T (
KC

q ,R
01 +XC

q ,R
)]C,N

.

In fact, recognizing that the previous update was to subtract X from K01, we

can avoid the operation KC,R01 +XC,R by computing
[
UC,N01

]T
KC,R01 before-hand.

The next update,

K11 := UT
11K11U

−1
11 ,
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should be redundantly computed in the same manner as the factorizations of

diagonal blocks in our parallel Cholesky algorithm. We then collect KN,N
11 and

UN,N
11 so that we may redundantly compute

KN,N
11 :=

[
UN,N

11

]−T

KN,N
11

[
UN,N

11

]−1

.

The following operation is

K01 := K01U
−1
11 ,

which is performed using the same technique as all previous trsms. Because

we do not need to redistribute K01 for any other updates, the choice of which

column-wise multivector distribution to use for K01 is arbitrary. The next-to-

last operation,

K12 := K12 − UT
01K02,

should be performed using a stationary B parallel matrix-matrix multiplica-

tion algorithm. We have already required the collection of UN,C
01 , so the only

communication necessary is in reducing the result across the team.

Finally, we have the trsm,

K12 := U−T
11 K12.

We have already gathered UN,N
11 , and this is the only update that requires

redistributing K12, so the required redistribution is to put K12 into an arbitrary

row-wise multivector. The resulting DAG for the parallel updates in shown in

Fig. 6.2, and a legal execution path is shown in Fig. 6.3.
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K
N,MR
12 :=

h
UN,N

11

i−T
K

N,MR
12

KC,R
12 ⇐ K

N,MR
12

KC,R
11 ⇐ KN,N

11

ĤN,R := −
h
UC,N

01

iT
KC,R

02

KC,R
12 +=

P
q∈TC

h
ĤN,R

q

iC,N

K
N,MR
12 ⇐ KC,R

12

UC,N
01 ⇐ UC,R

01ÊC,N := triu (K00)C,R UR,N
01

UR,N
01 ⇐ UC,R

01

F̂R,N :=
h
trisu (K00)C,R

iT
UC,N

01XC,R :=
P

q∈TR

h
ÊC,N

q

iN,R

KC,R
01 −= XC,R

XC,R+=

»P
q∈TC

h
F̂R,N

q

iN,C
–↔

ĜN,R+=
h
KC,N

01

iT
UC,R

01

KC,N
01 ⇐ KC,R

01

ĜN,R :=
h
UC,N

01

iT
KC,R

01

KC,R
11 −= triu (G)C,R

GC,R :=
P

q∈TC

h
ĜN,R

q

iC,N

K
MC ,N
01 ⇐ KC,R

01 UN,N
11 ⇐ UC,R

11

KC,R
01 ⇐ K

MC ,N
01

K
MC ,N
01 := K

MC ,N
01

h
UN,N

11

i−1

KN,N
11 :=

h
UN,N

11

i−T
KN,N

11

h
UN,N

11

i−1

KN,N
11 ⇐ KC,R

11

Figure 6.2: DAG for parallel revised sygst algorithm.
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UC,N01 ⇐ UC,R01 Allgather over T̂R

UR,N
01 ⇐ UC,R01 All-to-all T̂R, Send-recv, Allgather T̂C

ĜN,R := ĜN,R +
[
UC,N01

]T
KC,R01 gemm

ÊC,N := triu (K00)C,R UR,N
01 gemms

XC,R :=
∑

q∈TR

[
ÊC,Nq

]N,R
Reduce-scatter over T̂R

F̂R,N :=
[
trisu (K00)C,R

]T
UC,N01 gemms

XC,R := XC,R +
[∑

q∈TC

[
F̂R,N

q

]N,C
]↔

Reduce-scatter T̂C , transpose dist.

KC,R01 := KC,R01 −XC,R axpys

KC,N01 ⇐ KC,R01 Allgather over T̂R

ĜN,R +=
[
KC,N01

]T
UC,R01 gemm

GC,R :=
∑

q∈TC

[
ĜN,R

q

]C,N
Reduce-scatter over T̂C

KC,R11 := KC,R11 − triu (G)C,R axpys

UN,N
11 ⇐ UC,R11 Allgather over T̂W

KMC ,N
01 ⇐ KC,R01 All-to-all over T̂R

KMC ,N
01 := KMC ,N

01

[
UN,N

11

]−1

trsm

KC,R01 ⇐ KMC ,N
01 All-to-all over T̂R

KN,N
11 ⇐ KC,R11 Allgather over T̂W

KN,N
11 :=

[
UN,N

11

]−T

KN,N
11

[
UN,N

11

]−1

sygst

KC,R11 ⇐ KN,N
11 Filtered copy

ĤN,R := −
[
UC,N01

]T
KC,R02 gemm

KC,R12 := KC,R12 +
∑

q∈TC

[
ĤN,R

q

]C,N
Reduce-scatter over T̂C

KN,MR

12 ⇐ KC,R12 All-to-all over T̂C

KN,MR

12 :=
[
UN,N

11

]−T

KN,MR

12 trsm

KC,R12 ⇐ KN,MR

12 All-to-all over T̂C

Figure 6.3: Parallelization of a single iteration of the revised sygst algorithm.
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6.3 Performance Results

The parallelization of the revised sygst algorithm was implemented in

the same manner as before, and tested on 16 and 64 cores of Lonestar for prob-

lem sizes ranging between 2000 and 34, 000. Instead of simply benchmarking

the elemental revised reduction routine against the ScaLAPACK reduction

routine, comparisons were also made using the näıve approach to the reduc-

tion, two parallel trsms. Because the näıve approach incurs twice as many

flops as the standard and revised algorithms, its performance numbers were

halved to normalize against the symmetric reduction methods. It is important

to again note that using two trsms avoids taking advantage of symmetry and

results in the loss of any data stored in the lower half of the input matrix.

Results are shown in Fig. 6.4, and the simple approach is shown to do

surprisingly well. Though the elemental revised algorithm outperforms the

other three implementations for all cases, the simple elemental approach only

slightly lags on 64 cores. In fact, on both 16 and 64 cores, the elemental näıve

performance dominates that of both ScaLAPACK implementations. Addition-

ally, at a problem size of 15, 000 on 64 cores, both elemental approaches nearly

double the performance of the ScaLAPACK sygst.

Using the ScaLAPACK trsms, the simple approach is shown to be

inferior to the ScaLAPACK sygst for large problem sizes on 16 cores, but it

is uniformly superior on 64 cores, where it rapidly approaches its asymptotic

performance level. The reason for the relative degradation in performance of

the ScaLAPACK sygst is almost certainly the use of the unscalable triangular
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solve with the number of right-hand sides set to the algorithmic blocksize.

For large numbers of processes, it is likely that the wall-clock time of

the näıve elemental algorithm will be indistinguishable from the significantly

more complicated algorithm. We then conclude that the new parallel reduction

algorithm improves performance for arbitrary numbers of cores if auxilliary

data is stored in the lower-half of the matrix, but the benefit is negligible for

large numbers of cores when the entire matrix can be overwritten.

95



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

20

40

60

80

100

120

140

160

Problem size

G
F

LO
P

S

 

 
Elemental sygst
Elemental trsms
ScaLAPACK sygst
ScaLAPACK trsms

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12

14

16

Problem size

M
in

ut
es

 

 
Elemental sygst
Elemental trsms
ScaLAPACK sygst
ScaLAPACK trsms
Peak

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

100

200

300

400

500

600

Problem size

G
F

LO
P

S

 

 
Elemental sygst
Elemental trsms
ScaLAPACK sygst
ScaLAPACK trsms

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Problem size

M
in

ut
es

 

 
Elemental sygst
Elemental trsms
ScaLAPACK sygst
ScaLAPACK trsms
Peak

Figure 6.4: Performance and wall-clock time of parallel sygst on 16 (top) and
64 (bottom) cores of Lonestar
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Chapter 7

Conclusions

The use of the presented theory for deriving parallel algorithms has

been shown to significantly increase the performance of all of the wrapper rou-

tines for extending a parallel standard eigensolution to the generalized EVP.

A comparison of the O(n3) computational costs of the overall eigensolution

is shown in Fig. 7.1, and we note that the tridiagonal eigensolution is O(n2).

Though the discussed wrapper routines comprise less than half of the overall

computation for the generalized eigensolution, the techniques developed for

parallel matrix-matrix multiplication were not extended to the application of

WY transforms. Because applying WY transforms is the most computation-

ally expensive step, improving its performance is clearly very beneficial and is

left as future work.

The combined wall-clock times and performance numbers from Cholesky

factorization, the reduction to standard form, and the left-upper-normal trsm

on 16 and 64 cores are shown in Figs. 7.2 and 7.3 versus the equivalent ScaLA-

PACK operations. While there was an increase in performance for Cholesky

factorizations, the main improvements are in the algorithms for the reduction

to the standard eigenvalue problem and the back-transformation of the eigen-
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Cholesky

SYGST

Householder  WY

TRSM

Figure 7.1: The distribution of flops in the proposed generalized eigensolution
method. The routines that extend the standard eigensolution to generalized
form have been emphasized.

vectors to the generalized problem. Not only were there larger improvements

in the percent of peak attained by these two algorithms, but their flop-counts

are three times larger than for a Cholesky factorization.

Overall performance on both 16 and 64 cores shows the elemental ap-

proach having a large advantage over the entire range of problem sizes. At a

problem size of 34, 000, switching from ScaLAPACK to the elemental imple-

mentations roughly drops the wall-clock time from 20 minutes to 15 minutes

on 16 cores, and from 7 minutes to 5 minutes on 64 cores. On 64 cores, the

improved reduction algorithm was shown to be only slightly faster than using

successive left-upper-transposed and right-upper-normal parallel trsm. Addi-

tionally, the back-transformation implementation achieved large performance

gains, and is simply a parallel left-upper-normal trsm. The majority of our

performance can then be reached through the presented algorithms for parallel
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Figure 7.2: The total wall-clock time, on 16 cores of Lonestar, of the added
routines for the generalized EVP using ScaLAPACK (left) and the elemental
approach (right).

trsm, though this approach destroys the ability to store information in the

lower triangle of K.

The use of the presented theory clearly reaches well outside of the realm

of eigensolutions, as the general goal when deriving a parallel linear algebra

algorithm is to cast as much computation as possible into parallel matrix-

matrix multiplication. Additionally, performance results strongly suggest that

99



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

100

200

300

400

500

600

Problem size

G
F

LO
P

S

 

 
Elemental
ScaLAPACK

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6

7

Problem size

M
in

ut
es

 

 
Cholesky
SYGST
TRSM

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6

7

Problem size

M
in

ut
es

 

 
Cholesky
SYGST
TRSM

Figure 7.3: The total wall-clock time, on 64 cores of Lonestar, of the added
routines for the generalized EVP using ScaLAPACK (left) and the elemental
approach (right).

elemental distributions allow for faster implementations of the Level 3 BLAS

than those resulting from blocked distributions.
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