
IEEE TRANSACTIONS ON COMPUTERS 1

Co-Design Tradeoffs for High-Performance,
Low-Power Linear Algebra Architectures

Ardavan Pedram, Robert A. van de Geijn Member, IEEE , and Andreas Gerstlauer Senior Member, IEEE

Abstract—As technology is reaching physical limits, reducing power consumption is a key issue on our path to sustained performance.
In this paper, we study fundamental tradeoffs and limits in efficiency (as measured in energy per operation) that can be achieved for
an important class of kernels, namely the level-3 Basic Linear Algebra Subprograms. It is well-accepted that specialization is the key
to efficiency. This paper establishes a baseline by studying GEneral Matrix-matrix Multiplication (GEMM) on a variety of custom and
general-purpose CPU and GPU architectures. Our analysis shows that orders of magnitude improvements in efficiency are possible
with relatively simple customizations and fine-tuning of memory hierarchy configurations. We argue that these customizations can be
generalized to perform other representative linear algebra operations. In addition to exposing the sources of inefficiencies in current
CPUs and GPUs, our results show our prototype linear algebra processor implementing double-precision GEMM can achieve 600
GFLOPS while consuming less than 25 Watts in standard 45nm technology, which is up to 50× more energy efficient than cutting-edge
CPUs.

Index Terms—Low-power design, Energy-aware systems, Performance analysis and design aids, Matrix multiplication, Memory
hierarchy, Level-3 BLAS, Special-purpose hardware

F

1 INTRODUCTION

Power consumption is becoming the limiting factor for
continued semiconductor technology scaling. While one
could view this as a roadblock on the way to exascale
computing, we would like to view it as an opportunity
for specialization. In particular, it is now likely that
a future chip may combine heterogeneous cores while
having to cope with “dark silicon” [1]. Regions of a
chip can be dedicated to highly-specialized functionality
without constituting wasted silicon. If only part of the
chip can be powered at any given time, those regions can
simply be turned off when not in use. This allows us to
propose cores that are highly customized for inclusion
in such heterogeneous chip multiprocessor designs.

Full custom, application-specific design of on-chip
hardware accelerators can provide orders of magnitude
improvements in efficiencies for a wide variety of ap-
plication domains [2], [3]. However, full custom design
is expensive in many aspects. Hence, the question is
whether such techniques can be applied to a broader
class of more general applications to amortize the cost
of custom design by providing multiple functionalities.
If, in the future, neither fine-grain programmable com-
puting nor full custom design are feasible, can we design
specialized, on-chip cores that maintain the efficiency of

• Ardavan Pedram, and Andreas Gerstlauer are with The Department
of Electrical and Computer Engineering, The University of Texas at
Austin,Austin, Texas.
E-mail: ardavan@utexas.edu, gerstl@ece.utexas.edu

• Robert van de Geijn is with The Department of Computer Science, The
University of Texas at Austin, Austin, Texas
E-mail:rvdg@cs.utexas.edu

This research was partially sponsored by NSF grants OCI-0850750 and CCF-
1018075, and an endowment from AMD

full custom hardware while providing enough flexibility
to execute whole classes of coarse-grain operations?

In this paper, we aim to address this question for the
domain of matrix computations, which resides at the
core of many applications in scientific, high-performance
computing. It is well understood that many linear alge-
bra problems can be efficiently reduced down to a canon-
ical set of Basic Linear Algebra Subprograms (BLAS),
such as matrix-matrix and matrix-vector operations [4],
[5]. Highly efficient realizations of matrix computa-
tions on existing general-purpose processors have been
studied extensively. Among the highest profile efforts
is the currently fastest method for (GEneral) Matrix-
Matrix multiplication (GEMM) [6]. This operation is the
building block for other matrix-matrix operations (level-
3 BLAS) [7]. In [8], it is shown that this approach can be
specialized to yield high-performance implementations
for all level-3 BLAS on a broad range of processors.

However, rather than driving microarchitectural de-
sign, all these solutions react to any hardware changes
in order to exploit or work around any new architec-
tural features. We pursue instead the design of high-
performance, low-power linear algebra processors that
realize algorithms in specialized architectures. We exam-
ine how this can be achieved for GEMM, with an eye
on keeping the resulting architecture sufficiently flexible
to compute all level-3 BLAS operations and to provide
facilities for level-2 BLAS as well as for operations
supported by the Linear Algebra PaCKage (LAPACK),
like LU factorization with pivoting, QR factorization,
and Cholesky factorization. Hence, although we focus
our explanation on GEMM, we do so with confidence
that modest modifications to the design (e.g., addition
of a scalar inversion and/or square-root units next to

IEEE TRANSACTIONS ON COMPUTERS 2

a modified floating-point unit) will support all level-3
BLAS and operations beyond.

The main questions when designing these accelerators
are as follows: What are the upper limits on perfor-
mance/power ratios that can be achieved in current and
future architectures? What is the algorithm-architecture
co-design of optimal accelerator cores? What are the
parameters of the memory hierarchy to achieve both
high efficiency and high utilization? What are the sources
of under-utilization and inefficiency in existing general
purpose systems?

Previously, we introduced a custom micro-architecture
design for a Linear Algebra Core (LAC) [9]. In this
paper, we extend the LAC design with a more general
memory hierarchy model to evaluate different trade-offs
in system design, including the number of cores, the
bandwidth between the layers of memory hierarchy, and
the memory sizes in each layer. The results of these anal-
yses are consolidated in a framework that can predict the
utilization limits of current and future architectures for
matrix computations. Finally, we introduce a prototyp-
ical implementation to demonstrate fundamental limits
in achievable power consumption in current CPUs and
GPUs as compared to an ideal architecture.

Our analysis framework suggests that with careful al-
gorithm/architecture co-design and the addition of sim-
ple customizations, it should be possible to achieve core
level efficiencies of 45 double- and 110 single-precision
GFLOPS/Watt in 11-13 GFLOPS/mm2 with currently
available components and technologies, as published in
literature [10], [11]. This represents a 50-fold improve-
ment over current off-the-shelf, desktop- or server-class
CPUs and an order of magnitude improvement over
current commercial GPUs.

The rest of the paper is organized as follows: In the
next section we briefly discuss related work. Section 3
provides a review of the GEMM algorithm and the
matrix processor core microarchitecture of our design. In
Section 4, we build the memory hierarchy around such
cores, show the mapping of matrix multiplication onto a
multi-core system, and analyze the existing trade-offs in
the design space. Section 5 presents performance char-
acteristics of a realistic implementation based on current
technology in comparison to other, existing architectures.
A summary and outlook on future work is given in
Section 6. Details of formulae derivations in Section 3
and Section 4 are discussed in the Appendix.

2 RELATED WORK
Implementation of GEMM on traditional general-
purpose architectures has received a lot of attention.
Modern CPUs exploit vector extension units for high
performance matrix computations [8], [12], [13]. How-
ever, general instruction handling overhead remains.
Three main limitations of conventional vector architec-
tures are known to be the complexity of the central
register file [14], implementation difficulties of precise
exception handling, and expensive on-chip memory [15].

In recent years, GPUs have become a popular tar-
get for acceleration. Originally, GPUs were special-
ized hardware for graphics processing that provided
massive parallelism but were not a good match for
matrix computations [16]. More recently, GPUs have
shifted back towards general-purpose architectures. Such
GPGPUs replicate a large number of Single Instruction
Multiple Data (SIMD) processors on a single shared-
memory chip. GPGPUs can be effectively used for ma-
trix computations [17], [18] with throughputs of more
than 300 GFLOPS for Single-precision GEMM (SGEMM),
utilizing around 30-60% of the theoretical peak perfor-
mance. In the latest GPGPUs, two single-precision units
can be configured as one double-precision unit, achiev-
ing more than 700 single-precision and 350 double-
precision GFLOPS at around 70% utilization [19] for
matrices larger than 512× 512.

Over the years, many other parallel architectures for
high-performance computing have been proposed and
in many cases benchmarked using GEMM as a pro-
totypical application. Systolic arrays were popularized
in the 1980s. Different optimizations and algorithms
for matrix multiplication and more complicated matrix
computations have been compared and implemented on
both 1D [20], [21] and 2D systolic arrays [20], [22],
[23]. In [24], the concept of a general systolic array and
a taxonomy of systolic array designs is presented.

With increasing memory walls, recent approaches
have brought the computation units closer to mem-
ory, including hierarchical clustering of such combined
tiles [25], [26]. Despite such optimization, utilizations for
GEMM range from 60% down to less than 40% with
increasing numbers of tiles. Instead of a shared-memory
hierarchy, the approach in [27] utilizes a dedicated
network-on-chip interconnect with associated routing
flexibility and overhead. This architecture only achieves
around 40% utilization for matrix multiplication. Finally,
ClearSpeed CSX700 is an accelerator that specifically
targets scientific computing with BLAS and LAPACK
library facilities. It delivers up to 75 GFLOPS for double-
precision GEMM (DGEMM) at 78% of its theoretical
peak [28].

As utilization numbers indicate in general-purpose
cases, inherent characteristics of data paths and intercon-
nects coupled with associated instruction inefficiencies
make it difficult to fully exploit all available parallelism
and locality. By contrast, while we will build on the
SIMD and GPU concept of massive parallelism, we aim
to provide a natural extension that leverages the specifics
of matrix operations.

In the domain of custom design, recent Field Pro-
grammable Gate Arrays (FPGAs) [29], [30] have moved
towards achieving both high performance and power
efficiency. However, FPGAs offer limited on-chip logic
capacity, and at slow clock frequencies (100-300 MHz),
they can reach high efficiencies but peak performance
is limited. According to FPGA vendors, an FPGA in
40nm technology can achieve at most 100 GFLOPS per-

IEEE TRANSACTIONS ON COMPUTERS 3

formance at 7 GFLOPS/Watt of power efficiency [31].
Specialized hardware realizations of GEMM and other
BLAS routines on FPGAs have been explored, either
as standalone hardware implementations [32], [33] or
in combination with a flexible host architecture [34].
Such approaches show promising results (up to 99%
utilization), but are limited by the performance and size
restrictions in FPGAs [35], [36].

Existing solutions for dedicated realization of matrix
operations primarily focus on 1D and 2D arrangements
of Processing Elements (PEs) [22]. In early FPGA designs
with limited logic blocks on the chip, most of the ap-
proaches targeted an array arrangement that pipelines
the data in and out of the PEs [37], [33]. More re-
cently, with sufficient area on the chip, the design choice
between 1D and 2D arrangement of PEs once again
becomes relevant. There are three major benefits in a 2D
versus a 1D solution: scalability, addressing, and data
movement. The 2D arrangement has proven to be scal-
able with regard to the ratio of problem size to local store
memory size for level-2 and -3 BLAS operations [38].
Furthermore, address computations and data accesses in
local stores of PEs become simpler, with fewer calcula-
tions as compared to a 1D arrangement. This is especially
true for more complicated algorithms. Finally, with 2D
arrangements, different types of interconnects can be
explored, yielding various types of algorithms for BLAS
operations.

A taxonomy of matrix multiplication algorithms on
2D grids of PEs and their interconnect requirements
is presented in [39]. The flexibility of broadcast-based
SUMMA algorithms has made them the most practi-
cal solution for distributed memory systems [40] and
FPGAs [35]. This class of algorithms is the basis for our
design.

In most of the previous implementations of dedicated
matrix multiplications on systolic arrays and FPGAs, the
memory hierarchy was not explored. To study scalability
demands, we start by building our system from an inner
computational core that is a highly optimized matrix
multiplier [9] and then build the memory hierarchy
around it. In the process, partitioned and distributed
memory hierarchies and interconnects can be specifically
designed to realize available locality and required access
patterns.

3 LINEAR ALGEBRA CORE (LAC) DESIGN

In this section, we briefly review our design for a LAC, as
published in [9] and illustrated in Figure 1. It consists of
a 2D array of nr×nr PEs, with nr = 4 in the figure. Each
PE has a Multiply-ACcumulate (MAC) unit with a local
accumulator, and local Static Random-Access Memory
(SRAM) storage, bus interfaces to communicate data
within rows and columns. LAC control is distributed and
each PE has a state machine that drives a predetermined,
hardcoded sequence of communication, storage, and
computation steps for each supported BLAS operation.

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

`

MEM B

Address Regs

Row Bus
Write

Column Bus
Write

A B

µ programmed
Controller

Column
Bus Read

Row Bus
Read

MAC
Accumulator

Cin

Memory Interface

RF
MEM A

`

MEM B

Address Regs

Column Bus
Write

A B

µ programmed
Controller

MAC
Accumulator

Cin

RF
MEM A

Fig. 1. Core architecture. PEs that own the current
column of 4 × kc matrix A and the current row of kc × 4
matrix B, write elements of A and B to the buses and the
other PEs read them.

In the following, we start by generally describing how
a GEMM algorithm is implemented and blocked across
different layers of a memory hierarchy, which will cul-
minate in a discussion of how, in our case, the innermost
GEMM kernel is mapped onto our LAC architecture.

3.1 GEMM Operation

In designing a complete linear algebra realization, we
not only need to optimize the core kernels, but also
describe how data can move and how computation
can be blocked to take advantage of multiple layers of
memory. In order to analyze the efficiency attained by
the core itself, we first need to describe the multiple
layers of blocking that are required. We do so with the
aid of Figure 2.

Assume the square n × n matrices A, B and C are
stored in external memory. In our discussions, upper
case letters denote (sub)matrices while Greek lower case
letters denote scalars. We can observe that C += AB
can be broken down into a sequence of smaller matrix
multiplications (rank-k updates with k = kc in our
discussion):

C += (A0 · · · AK−1)

(
B0

...
BK−1

)
=

K−1∑
p=0

ApBp,

so that the main operation to be mapped to the Linear
Algebra Processor (LAP) becomes C += ApBp, where Ap
and Bp are of dimension n× kc and kc× n, respectively.
This partitioning of matrices is depicted in the bottom
layer in Figure 2.

In the next higher layer (third from the top), we then
focus on a single update C += ApBp. If one partitions

C =

 C0

...
CM−1

 and Ap =

 A0,p

...
AM−1,p

, then the ith

panel of C, Ci, must be updated by Ci += Ai,pBp as
part of computing C += ApBp.

Let us further look at a typical Ci += Ai,pBp. At this
point, the mc × kc block Ai,p is loaded into the local
memories of the PEs using a 2D block cyclic round-robin

IEEE TRANSACTIONS ON COMPUTERS 4

+=

xAi,p

C A B

C

x

x

+=

x+=

Accumulator
(Register Level)

Local Store
(Cache Level)

On-chip
Memory

Ai,p in Local Store of PEs Bp,j Bp,j+1Blocks of Ci,j
1-Stream Out
2-Current
3-Prefetch

+=

x

kc nr

mc kcnr

nr

n
Bp

Ap

Ci

Bp,j

Main
Memory

L2 Cache
(CPUs) L1 Cache

(CPUs)

Fig. 2. Memory hierarchy while doing GEMM. In each of the top three layers of the pyramid, the largest matrix is
resident, while the other matrices are streamed from the next layer down.

distribution. Then, partition Ci and Bp into panels of nr
columns:

Ci =
(
Ci,0 · · ·Ci,N−1

)
and Bp =

(
Bp,0 · · ·Bp,N−1

)
.

Now Ci += Ai,pBp requires the update Ci,j += Ai,pBp,j
for all j. For each j, the kc × nr block Bp,j is loaded
into the local memories of the PEs. The computation to
be performed is described by the second layer (from the
top) of the pyramid, which is also magnified to its right.

Finally, we use a case of nr = 4 to illustrate how Ai,p is
partitioned into panels of four rows and Ci,j into squares
of 4 × 4, which are processed from top to bottom in a
blocked, row-wise fashion across i. The 4 × 4 blocks of
Ci,j are each brought in from main memory.

The multiplication of each row panel of Ai,p with Bp,j
to update the corresponding 4 × 4 block of Ci,j (see
Figure 2-right) is accomplished by our core via so-called
rank-1 updates as follows. Let Ĉ, Â , and B̂ be 4 × 4,
4× kc, and kc× 4 matrices, respectively. Then Ĉ += ÂB̂
can be computed as below: γ̂(0,0) · · · γ̂(0,3)

...
. . .

...
γ̂(3,0) · · · γ̂(3,3)

 +=

kc−1∑
q=0

 α̂(0,q)

...
α̂(3,q)

 (β̂(q,0) · · · β̂(q,3))

Each such update is known as a rank-1 update. Our core
micro-architecture introduced previously is designed to
natively implement these rank-1 updates. In our design,
we distribute the matrices Ai,p and Bp,j on the array
of PEs in Figure 1 in a 2D cyclic round-robin fashion,
much as one distributes matrices on distributed mem-
ory architectures [41], [42]. Element γ̂(x̂,ŷ) resides in an
accumulator of PE(x̂, ŷ) during the computation. Now,
a simple algorithm for computing this special case of
GEMM among the PEs is, for q = 0, . . . , kc − 1, to
broadcast the qth column of Â within PE rows, the qth
row of B̂ within PE columns, after which a local MAC
operation on each PE updates the local element of Ĉ.

This blocking of the matrices facilitates reuse of data,
which reduces the need for high bandwidth between the
memory banks of the PEs, the on-chip LAP memory and
the LAP-external storage: (1) fetching of a 4× 4 block of

Ci,j is amortized over 4× 4× kc MAC operations (4× 4
of which can be performed simultaneously); (2) fetching
of a kc×4 block Bp,j is amortized over mc×4×kc MAC
operations; and (3) fetching of a mc × kc block Ai,p is
amortized over mc × n× kc MAC operations.

This approach is very similar to how GEMM is
mapped to a general purpose architecture [6]. There, Ai,p
is stored in the L2 cache, Bp,j is kept in the L1 cache,
and the equivalent of the 4 × 4 block of C is kept in
registers. The explanation shows that there is symmetry
in the problem: one could have exchanged the roles of
Ap and Bp, leading to an alternative, but very similar,
approach. Note that the description is not yet complete,
since it assumes that, for example, C fits in the on-chip
memory. Even larger matrices can be accommodated by
adding additional layers of blocking, as will be described
later (see Section 4.2.3).

3.2 Core Architecture
With an understanding of LAC operation, the basic core
design, and how matrix multiplication can be blocked,
we can now investigate specific core implementations,
including tradeoffs between the size of the local store
and the bandwidth between the on-chip memory and
the core (we will consider external memory later). In our
subsequent discussion, 4× 4, the size of the submatrices
of C, is generalized to nr × nr. Furthermore, in accor-
dance with the blocking at the upper memory levels, we
assume that each core locally stores a larger mc×kc block
of Ai,p, a nr ×nr subblock of Ci,j and a kc×nr panel of
Bp,j .

The local memory requirements for the core are that
matrices Ai,p and Bp,j must be stored in the aggregate
memories of the PEs. To avoid power and area waste of
a dual-ported SRAM, we decided to separate the local
stores for Ai,p and Bp,j . A single-ported SRAM keeps
elements of Ai,p with one access every nr cycles. Since
the size of Bp,j is small, we can keep copies of B in
all PEs of the same column. This avoids extra column
bus transactions and allows overlapping of computation
with data movement in and out of the core. This parti-
tioning needs only the second SRAM, which is much

IEEE TRANSACTIONS ON COMPUTERS 5

0 4 8 12 16 20 24 28 32 36 40
0

20

40

60

80

100

Local Memory [KBytes/PE]

Ut
ili

za
tio

n
[P

er
ce

nt
 o

f P
ea

k]

8 B/cycle nr=4
4 B/cycle nr=4
3 B/cycle nr=4
2 B/cycle nr=4
1 B/cycle nr=4
8 B/cycle nr=8
4 B/cycle nr=8
3 B/cycle nr=8
2 B/cycle nr=8
1 B/cycle nr=8

Fig. 3. Estimated core performance as a function of the
bandwidth between LAC and on-chip memory, and the
size of local memory with nr = 4 and nr = 8, mc = kc,
and n = 512.

smaller than the first one, to be dual-ported. In each
cycle, an element of B is read from this SRAM to feed
the local MAC unit in each PE. This strategy increases
the aggregate local store size by a negligible amount, but
reduces the power consumption significantly.

The goal is to overlap computation of the current
submatrix of Ci,j with the prefetching of the next such
submatrix. This setup can achieve over 90% of peak
performance. The focus is thereby on one computation
Ci += Ai,pBp. Since the complete computation C += AB
requires loops around this “inner kernel” for one Ci, it
is this kernel that dictates the performance of the overall
matrix multiplication.

To achieve peak performance, the prefetching of the
next block of A, Ai,p+1, should also be overlapped
with the computations using the current block of Ai,p,
resulting in full overlapping of communications with
computation. In such a scenario, each PE requires a big-
ger local memory for storing the current and prefetching
of the next block of A. This extra memory is effective if
there is enough bandwidth to bring data to the cores.

We have developed detailed analytical performance
models in relation to storage and bandwidth require-
ments. Derivation of these models can be found in the
Appendix.

3.3 Core-Level Exploration
Figure 3 reports performance of a single core as a func-
tion of the size of the local memory and the bandwidth to
the on-chip memory. Here we use nr ∈ {4, 8}, mc = kc
(the submatrix Ai,p is square), and n = 512 (which is
relatively small). This graph clearly shows that a trade-
off can be made between bandwidth and the size of
the local memory, which in itself is a function of the
kernel size (kc, mc, and nr). The graph also shows the
conditions under which we can achieve 100% utilization.

The tradeoff between bandwidth per core and local
store per PE is shown in Figure 4. The curve illustrates
the required bandwidth to maintain peak performance

0 5 10 15 20

5

10

15

20

25

Local Memory [KBytes/PE]

Pe
ak

 B
an

dW
id

th
 [b

yt
es

/c
yc

le
]

 nr=4

nr=8

Fig. 4. Core Performance vs. bandwidth between LAC
and on-chip memory for peak performance with nr = 4
and nr = 8, mc = kc, and n = 512.

as a function of local store size. It shows that by doubling
the size of the cores while fixing the local store size, the
bandwidth demand doubles and performance quadru-
ples. This suggests that making nr as large as possible
is more efficient. However, nr cannot grow arbitrarily:
(1) when nr becomes too large, the intra-core broadcast
requires repeaters, which adds overhead; (2) exploiting
task-level parallelism and achieving high utilization is
easier with a larger number of smaller cores; and (3)
with our choice of nr = 4, the number of MAC units in
each core is comparable to modern GPUs, allowing us
to more easily provide a fair comparison.

4 LINEAR ALGEBRA PROCESSOR (LAP)
In the previous section, we showed how a LAC can
easily compute with data that already resides in on-
chip memory. The question is now how to compose the
GEMM C += AB for general (larger) matrices from the
computations that can occur on a (larger) linear algebra
processor (LAP) that is composed of multiple cores. The
key is to amortize the cost of moving data in and out of
the cores and the LAP. We describe that in this section
again with the aid of Figure 2. This framework will
allow us to generally study tradeoffs in the memory
hierarchy built around the execution cores. For simplicity
and clarity of the following explanations, we assume that
all original A, B, and C are square n× n matrices.

4.1 LAP Architecture
We further translate the insights about the hierarchical
implementation of GEMM into a practical implementa-
tion of a LAP system. We investigate a simple system
architecture that follows traditional GPU and multi-
processor styles in which multiple cores are integrated
on a single chip together with a shared on-chip L2
memory. The shared memory can in turn be banked or
partitioned with corresponding clustering of cores. In
doing so, we derive analytical models (see Appendix) for
the size of the shared on-chip memory and the required
bandwidth between the LAP and external memory, all

IEEE TRANSACTIONS ON COMPUTERS 6

+=

xAi,p

C
x

LAC 1

Memory

On-Chip

Memory
n

Bp

Ap

Ci+2

Bp,j

+= xAi+1,p+= xAi+2,p+=

Ci
Ci+1

LAC 0

Memory

LAC 2

Memory

Fig. 5. Memory hierarchy with multiple cores in a LAP
system.

Core

Local Memory

[Words
PE]

Intra-core BW

[Words
Cycle]

Core-chip BW

[Words
Cycle]

Partial
overlap (mckc/n

2
r + 2kc)

nr + nr×
(2
kc

+ 1
mc

)

n2
r×

(2
kc

+ 1
mc

)

Full
overlap (2mckc/n

2
r + 2kc)

nr + nr×
(2
kc

+ 1
mc

+ 1
n)

n2
r×

(2
kc

+ 1
mc

+ 1
n)

Chip

Memory Size

[Words]

Intra-chip

[Words
Cycle]

Off-chip BW

[Words
Cycle]

Partial
overlap

n2 + Smckc
+2kcn

n2
r×

(2S
kc

+
1(S)
mc

)
2Sn2

r
n

Full
overlap

2n2 + Smckc
+2kcn

n2
r×

(2S
kc

+
1(S)
mc

+ S
n)

4Sn2
r

n

Fig. 6. Bandwidth and memory requirements of different
layers of memory hierarchy.

in relation to the number and size of the LAP cores
themselves (see Section 3.2).

Figure 5 shows the use of the memory hierarchy for a
larger matrix multiplication distributed across multiple
(S = 3) cores. Different row blocks and panels of A and C
are assigned to different cores. Bigger panels and blocks
of A, B and C are then stored at the next higher level of
the memory hierarchy. Since elements of C are both read
and written, we aim to keep them as close as possible to
the execution units. Hence, the shared on-chip memory
is mainly dedicated to storing a complete n × n block
of matrix C. In addition, we need to share the current
kc × n row panel of B among the cores.

Our analysis for the case of partial overlap shows that
when computation time dominates the communication
time, the peak performance is independent of the gran-
ularity at which C and the A panels are split into row
chunks. Thus, this size mc can be chosen to optimize
bandwidth requirements and the local store sizes of the
cores.

4.2 Chip-Level Exploration
Designing a complete system is an optimization and
exploration problem that strives to minimize the size of
and bandwidth between layers of the memory hierarchy,
while optimizing the performance and utilization of
the cores. Given specific restrictions, e.g. on memory
bandwidth or input matrix size, this yields the number
of PEs in each core, the number of cores on a chip, and

0 2 4 6 8 10 12 14
0

50

100

150

On−Chip Memory [MBytes]

O
n
−
C
h
i
p

B
a
n
d
w
i
d
t
h

[
b
y
t
e
s
/
c
y
c
l
e
]

n=2048 n

r
=4 S=8

n=1024 n
r
=4 S=8

n=512 n
r
=4 S=8

n=2048 n
r
=8 S=2

n=1024 n
r
=8 S=2

n=512 n
r
=8 S=2

Fig. 7. On-chip bandwidth vs. memory size for different
core organizations, and problem sizes for fixed number of
total PEs, and mc = kc. Utilization in all cases is 93%+.

the sizes and organization of the different levels of the
memory hierarchy.

Figure 6 summarizes the bandwidth requirements and
size of different layers of the memory hierarchy. This
table shows the demands of the partially overlapped
and the fully overlapped versions of the algorithm as a
function of the number of cores, block sizes, and matrix
sizes when m = n = k. In the core level analyses, the par-
tially overlapped version assumes that bringing blocks of
Ai,p to the core is not overlapped with computation. At
the chip level, partially overlapped versions assume that
transferring of matrix C to and from off-chip memory is
not overlapped with computation.

The main design challenge is to understand the depen-
dency of design parameters on each other and their ef-
fects on power, area, and performance. In the following,
we describe several explorations of the design space and
analyze the tradeoffs between parameters and the overall
performance. In Section 5, we will merge the knowledge
gained from these studies with power and area models
to explore the design space from a practical perspective.

4.2.1 Memory size vs. bandwidth

Based on our analytical model, we can evaluate the
trade-off between the size of the on-chip memory and
the intra-chip bandwidth between cores, and the on-chip
memory, as shown in Figure 7. The resulting utilization
in all cases is over 90%. We explore this trade-off for
S = 8, nr = 4 and S = 2, nr = 8 with a total number of
PEs on the chip (S×n2r) equal to 128 in both cases. We can
note that bandwidth demands grow exponentially as the
size of available on-chip memory is reduced. This graph
also demonstrates that bigger but fewer cores on the
chip demand much less on-chip bandwidth. However,
for a fixed problem size of C, bigger cores will require
a larger on-chip memory, leading to a trade-off between
on-chip memory size and bandwidth. This extra space
requirement is due to wider panels of A and B that must
be stored in the shared memory.

IEEE TRANSACTIONS ON COMPUTERS 7

4.2.2 LAP size vs. on-chip bandwidth and memory

In the following, we analyze the overall performance of
the design for different on-chip memory sizes and on-
chip memory bandwidths when the number of cores is
increased. The curves in Figure 8 show the percentage of
performance compared to a single 4×4 core for different
numbers of cores and available on-chip bandwidths. The
graph contains four sets of four curves where each set
has the same ratio of the number of cores to available
on-chip bandwidth, S/BW (indicated by same marker
type). We observe that for small memory sizes, different
points of the same set with the same S/BW ratio all
exhibit similar performance. Although the on-chip band-
width is increased linearly with the number of cores,
there is no performance improvement. To achieve per-
formance gains when increasing the number of cores, the
bandwidth has to grow super-linearly. However, as the
size of memory increases, there are performance gains
when using more cores even with linear bandwidth
increases.

For configurations with the same number of cores S
(indicated by the same line style or color), we observe
that, as the bandwidth increases, the curves reach a peak
eventually. The point in each curve with the smallest
on-chip memory that achieves peak performance is the
optimal design point. Note that such a point is on the
optimal design curve in Figure 7, too. For example, for
the case of S = 8 cores, a bandwidth of 4 bytes (or
0.5 words) per cycle with an on-chip memory size of
13 MBytes, or a bandwidth of 8 bytes per cycle with
an on-chip memory size of 2.5 MBytes are both optimal
design points.

As mentioned above, we observe that an exponential
increase in bandwidth is needed to maintain optimal per-
formance with a linear increase in the number of cores.
This can be further studied by finding the optimal points
that have equal on-chip memory sizes, but a different
number of cores. For example, to achieve peak perfor-
mance with different number of cores S = 4, 8, 16 and
2.5 MBytes of on-chip memory, the required bandwidth
is 2, 8, 32, bytes per cycle respectively. This shows the
exponential growth in bandwidth demand to maintain
utilization when increasing the number of the cores.

4.2.3 On-chip memory size vs. off-chip bandwidth

Finally, we analyze the tradeoff between the size of the
on-chip memory and the external, off-chip bandwidth.
We assume that the problem size and number of cores
are fixed, and initially the optimal local store size is
allocated in the cores and PEs. Next, we shrink the
available on-chip memory and compute the external
bandwidth demands necessary to keep the performance
over 90%. The algorithmic solution to this problem is
adding another layer of blocking as shown in Figure
9. The matrix dimension of the original problem size
is n and the new block size is ns. We call this ratio
d = n/ns. After shrinking the available on-chip memory,

0 2 4 6 8 10 12 14

200

400

600

800

1000

1200

1400

1600

On−chip Memory [MBytes]

Re
la

tiv
e

Pe
rfo

rm
an

ce
 [p

er
ce

nt
 o

f s
in

gl
e

co
re

]

 S=4 BW=1
 S=8 BW 2
 S=12 Bw=3
 S=16 BW=4
 S=4 BW=2
 S=8 BW=4
 S=12 Bw=6
 S=16 BW=8
 S=4 BW=4
 S=8 BW=8
 S=12 Bw=12
 S=16 BW=16
 S=4 BW=8
 S=8 BW=16
 S=12 Bw=24
 S=16 BW=32

Fig. 8. LAP performance for different on-chip memory
sizes, different number of cores, and different total on-chip
bandwidths with nr = 4 and S = 4, 8, 12, 16.

the solution assumes that a single (Figure 9-(a)) or k̃ ≤ d
(Figure 9-(b,c) , with k̃ = d) sub-block of the original
matrix C can fit in the new on-chip memory. Then, the
algorithm performs all operations and data movements
necessary to compute these k̃ sub-blocks of C. The new
off-chip bandwidth for the smaller on-chip memory and
a sub-problem size k̃ × (ns × ns) can be computed as

k̃((2)n2s) + (k̃ + 1)nns

k̃n2
sn

=
(2)k̃ + (k̃ + 1)d

k̃n
elements/cycle.

Figure 10 shows the external bandwidth demands for
three different problem sizes and how they increase
as the size of on-chip memory decreases. We observe
that as the original problem size n × n increases, the
external off-chip bandwidth requirement for the same
system configuration decreases slightly. Still, to maintain
high system utilization, a similar bandwidth vs. on-chip
memory size trade-off exists.

Figure 11 summarizes overall performance of a
1.4 GHz LAP as a function of the size of the on-chip
memory (dictating the possible kernel size), the number
of cores, and the external bandwidth to the off-chip
memory. Here we use nr = 4, mc = kc (the submatrix
Ai,p is square) and ns = 256, 512, 768 or 1024 as the
dimension of matrix C (kernel size, which translates
into a corresponding on-chip memory size). As we in-
crease the available core parallelism, the needed off-
chip bandwidth increases for the same problem size1.
Also, with the same off-chip bandwidth, we observe
better performance, when the problem size grows. This
graph shows that a small L2 memory size (as is the
case in GPUs), which determines the possible on-chip
problem size, limits the achievable peak utilization (”ex-

1. Note that the needed on-chip memory size also increases slightly
due to additional storage required for prefetching across more cores.

IEEE TRANSACTIONS ON COMPUTERS 8

C11
C11+=C11 x

x+=

On-chip
Memory n/2

Bp

Ap

Ci

Main
Memory C A B

+= x

x+=

n
Bp

Ap

Ci

C A B

a b
+= x

x+=

n/2
Ap

Ci c

BC A

Bp

Fig. 9. Blocking algorithm to map a big problem on a small on-chip memory. a) blocking for quarter size b,c)blocking
for half size.

0 2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

20

On−Chip Memory [MBytes]

E
x
t
e
r
n
a
l

B
a
n
d
w
i
d
t
h

[
b
y
t
e
/
c
y
c
l
e
]

N=2048
N=1024
N=512

Fig. 10. External Bandwidth vs. Size of on-chip memory
tradeoff for different original problem sizes. All utilization
numbers are over 92%.

0 2 4 6 8
0

100

200

300

400

500

600

700

On−Chip Memory [Mbytes]

Pe
rfo

rm
an

ce
 [G

FL
O

PS
]

24 B/cycle, S=16

16 B/cycle, S=16

8 B/cycle, S=16

16 B/cycle, S=8

8 B/cycle, S=8

4 B/cycle, S=8

16 B/cycle, S=4

8 B/cycle , S=4

4 B/cycle, S=4

Fig. 11. LAP performance as a function of external off-
chip bandwidth and the size of on-chip memory with nr =
4, mc = kc. Horizontal lines denote peak performance for
S = 4, 8, 16 respectively.

ploitable parallelism”). Overall, with 16 cores, 5 Mbytes
of shared on-chip memory and an external bandwidth
of 16B/cycle, we can achieve 600 GFLOPS.

4.3 Model Validation and Performance Prediction
The analytical models that we presented so far can
help designers in early stages of the design process
verify performance and utilization of their architecture
for the class of matrix operations. In this section, we
demonstrate the benefits and feasibility of our analytical
models for early performance prediction by using them

to discuss common sources of inefficiencies in existing
architectures. We specifically study examples of state-of-
the-art GPU and other accelerated architectures.

There are two common limitations in parallel architec-
tures that restrict their performance and efficiency. First,
the core architectural and micro-architectural features
can limit the accessibility of local register files and the
number of instructions executed in each cycle. Second,
the memory hierarchy organization that includes sizes
of layers and bandwidths between them might not be
able to sustain data movement from/to the computation
cores. In the following, we assume that the cores are
perfectly designed. The main metric affected by core-
level design issues is the achievable peak efficiency in
terms of both energy spent per operation (GFLOPS/W)
and achievable utilization. We have shown how to de-
sign such an ideal core in Section 3. A further study of
core-level micro-architectural tradeoffs is outside of the
scope of this paper. Instead, we focus on analysis of the
memory hierarchy. The main efficiency metric affected
by the memory hierarchy trade-off is achievable utiliza-
tion. In the following, we will specifically show how we
can apply our analytical memory hierarchy model to
predict limitations in Nvidia’s Fermi and Clearspeed’s
CSX architectures.

The Nvidia Fermi C2050 architecture has 14 cores with
16 double-precision MAC units in each core. The size
of the on-chip cache is 768 KBytes. The clock frequency
is 1.15 GHz. Let us assume that cores are designed to
achieve up to peak performance. With 768 KBytes and
S = 14 cores, the dimension of the largest block of
matrix C that is evenly divisible by S and nr = 4 while
fitting in the on-chip memory is ns = 280. Including
the corresponding panels of A and B, this setup fills
700 KBytes of on-chip L2 cache. Dividing the block C
into row panels among the 14 cores results in mc =
ns/S = 280/14 = 20. Hence, the size of each row panel
of C is mc × ns = 20× 280. Thus, the parameters of the
design are as follows: mc = kc = 20, S = 14, ns = 280.
Assuming full overlapping, the maximum required off-
chip bandwidth according to Figure 6 is (4×14×42

280) ×
1.15GHz×8Bytes= 30GBytes/second, which is within
the 144 GBytes/second that Fermi offers. The required
on-chip bandwidth is (2Skc + S

mc
)n2r = (2×14

20 + 14
20)4

2 ×
1.15 GHz ×8 Bytes= 310 GBytes/second, which is much
more than the 230 GBytes/second that Fermi offers. To
calculate theoretically achievable utilization using such

IEEE TRANSACTIONS ON COMPUTERS 9

a configuration, we divide the available bandwidth by
the demanded bandwidth: 230/310 = 74%. In reality, im-
plementations of GEMM on C2050 achieve 70% of peak
performance [19]. Hence, our model accurately predicts
that the on-chip bandwidth of Fermi does not meet the
needs of matrix multiplication. One can overcome this
under-utilization by increasing the on-chip bandwidth
(see above), or by increasing the on-chip memory size.
If the size of on-chip memory is doubled in the previous
case, the required on-chip bandwidth can drop to half,
or 160 GBytes/second, using the solution in Figure 9-c.

We use the same methodology to analyze the Clear-
speed CSX architecture. The CSX architecture achieves
up to 78% of peak performance for matrix multiplica-
tion [28]. The CSX architecture has 128 KBytes of on-
chip memory. The block of C that fits on this memory
is 64× 128. Again, we assume that this architecture has
six optimal 4 × 4 cores. Using the algorithm described
in Figure 9, with d = 16, k̃ = 2, the minimum off-chip
bandwidth demand is 4.7 GBytes/second. With an actual
4 GBytes/second off-chip bandwidth, our predicted up-
per limit for achievable utilization for this architecture
is 83%. We can increase the utilization by increasing
the size of on-chip memory. If one doubles the size
of memory it can fit 128 × 128 blocks of C. Using the
same algorithm with d = 8, k̃ = 1, the minimum off-
chip bandwidth drops to 3.375 GBytes/second, which
is less than off-chip bandwidth provided by the CSX
architecture.

5 LAP IMPLEMENTATION

We have developed both simulation and analytical
power and performance models of the LAP in compari-
son with other architectures. The analytical performance
model was presented in previous sections, and we will
describe our power model next.

We validated the performance model and LAP oper-
ation in general by developing a cycle-accurate micro-
architectural LAP simulator. The simulator is written in
C++, and can be plugged into a typical linear algebra
implementation. The simulator is configurable in terms
of PE pipeline stages, bus latencies, and memory and
register file sizes. Furthermore, using power consump-
tion numbers for the components, our simulator is able
to produce an accurate power profile of the overall
execution. We accurately modeled the cycle-by-cycle
control and data movement for GEMM, and we veri-
fied functional correctness of the produced results. The
simulator provides a testbed for investigation of other
linear algebra operations. We were able to successfully
realize Cholesky factorization with minimal changes to
the LAP control and data paths.

We have studied the feasibility of a LAP implementa-
tion in current 45nm bulk CMOS technology using pub-
licly available components and their characteristics as
published in literature. Details of the basic PE and core-
level implementation are reported in [9], [43]. We used

data from [10] for MAC units. For memories, register
files and buses we used CACTI [11]. Running at a clock
frequency of 1 GHz, which provides the best tradeoff be-
tween energy-delay and raw area and power efficiency,
a 4× 4 LAC is estimated to achieve an efficiency of 110
single-precision or 45 double-precision GFLOPS/W. The
corresponding area efficiency and energy-delay are 0.1
mm2/GFLOPS and 10 mW/GFLOPS2, respectively.

5.1 Power Modeling of Architectures
We have developed a general analytical power model
that builds on existing component models (e.g. for
Floating-Point Units (FPUs) and memories) described
in the previous section. The model is derived from
methods described in [44], [45], and we applied it to
both our LAP and various existing architectures. Our
power model computes the total power as the sum of
the dynamic power and idle power over all components
in the architecture.

Power = Pdyn + Pidle =

n∑
i=1

(Pdyn,i) +

n∑
i=1

(Pidle,i)

Pdyn,i = Pmax,i × activityi
Pidle,i = Pmax,i × ratio

Dynamic power is modeled as a maximal component
power multiplied by the component’s activity factor.
We estimated activity of memory components based on
access patterns for matrix multiplications. Otherwise, we
assume activity factors of one or zero depending on
whether a component is utilized during GEMM oper-
ations. For leakage and idling, we use a model derived
from calibrations that estimates idle power as a constant
fraction of dynamic power ranging between 25% and
30% depending on the technology used.

We calibrated our power model and its parameters
against power and performance numbers presented for
the NVidia GTX280 Tesla GPGPU running matrix mul-
tiplication [46], [47]. We used the sizes of different GPU
memory levels reported in [47] together with numbers
from [46] and [48] to match logic-level, FPU, CACTI
and leakage parameters and factors in order to achieve
consistent results across published work and our model.
We then applied this model to other architectures, such
as the NVidia GTX480 Fermi GPGPU [49], [50] or the
Intel Penryn [51] dual-core processor. To the best of
our knowledge, there are no detailed power models
yet for these architectures. We adapted our model to
the architectural details as far as reported in literature
using calibrated numbers for basic components such as
scalar logic, FPUs, or various memory layers. In all cases,
we performed sanity checks to ensure that total power
numbers match reported numbers in literature.

5.2 Power and Area Exploration
In this section, we use power and area models to study

the design space that we created in Section 4. We explore

IEEE TRANSACTIONS ON COMPUTERS 10

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0  5  10  15  20 

A
re
a 
[m

m
^2
] 

Local Store Size [KBytes] 

PE 

Local Store 

FPU 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0  5  10  15  20 

W
/G

FL
O
P 

Local Store Size [KBytes] 

PE 

Local store 

FPU 

PE leakage 

Fig. 12. Area of a single PE in a 4x4 core for different local store sizes (left), and leakage, local store, and total power
efficiency of a PE in a 4x4 core at 45nm (right).

1 

10 

100 

0.1  1  10 

A
re
a 
[m

m
^2
] 

Onchip Memory Size [MBytes] 

All cores 

Chip 

On‐chip 
memory 

0.1 

1 

10 

0.1  1  10 

W
/G

FL
O
P 

Onchip Memory Size [MBytes] 

All cores 

Chip 

On‐chip 
Memory 

Fig. 13. Area (left) and power efficiency (right) of cores, on-chip memory and a total 128 MAC unit system with S=8
4x4 cores, different on-chip SRAM memory sizes, and n=2048.

1 

10 

100 

1000 

0.1  1  10 

A
re
a 
[m

m
^2
] 

Onchip Memory Size [MBytes] 

All cores 

Chip 

On‐chip 
memory 

0 

1 

2 

3 

4 

5 

6 

0.1  1  10 

W
/G

FL
O
P 

Onchip Memory Size [MBytes] 

All cores 

Chip 

On‐chip 
memory 

Fig. 14. Area (left) and power efficiency (right) of cores, on-chip memory and a total 128 MAC unit system with S=8
4x4 cores, different on-chip NUCA memory sizes, and n=2048.

various trade-offs and how each design feature can affect
the power and area consumption of the whole system.
We use analytical results from Section 4 and apply
representative power and area numbers to each point
in the design space. This will allow us to evaluate how
size and bandwidth of different layers of the memory
hierarchy affect the overall performance and efficiency
of the design.

At the core level, the goal is to have enough band-
width and local store to maintain peak performance
(equivalent to Figure 4). We select the size of the core
to be nr = 4 and show the core-level area and power
consumptions. Figure 12-(left) illustrates the area of dif-
ferent components within the PE. With a local store size
of 18 KByte, the local store occupies at most 2/3 of the
PE. Overall PE area exhibits a linear relation to the local

store capacity. The power/throughput ratio of the PE,
the local store, and the total leakage is shown in Figure
12-(right). The graph suggests that with smaller local
stores, less power is consumed in each PE. The overall
PE power consumption is dominated by the FPU. These
graphs advocate smaller local store sizes in terms of
power and area consumption. However, there are three
reasons that force larger PE local stores. First, the power
density increases if local store size is reduced, which may
limit the overall performance. Second, although decreas-
ing the local store size does not affect the core power
consumption, the on-chip bandwidth requirement will
increase exponentially, which decreases the utilization
and also results in a significant increase in total power
consumption. Finally, for algorithms like Cholesky fac-
torization in which all the data is in-core, a bigger local

IEEE TRANSACTIONS ON COMPUTERS 11

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

()*&+!"
,-./"

()*&+!"
0(122"

34,"
50,6"

7
8(

93
:
,0
"

;<=>?.=?";.@A-"3'"
;<=>?.=?";.@A-"3&"
;<=>?.=?";.@A-"3%"
)-B?CD-"3&")3E"
)-B?CD-";.@A-"3&"
)-B?CD-";.@A-"3%"
43F"
09FGHIJK?"9,F"
3&")3E"
0@.L.D"3<MK@"
N=?-M-D",F"
O-MK>?-D"9KL-"
N=>?DC@P<=";.@A-"
EC>->"
0A.D-Q"2-R<DS""
9,F"
NQL-";AKT"

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

)*+(,!"-."

/012"

)*+(,!"

-)344"

56."

7-.8"

)*+(,!"9."

/012"

)*+(,!"

9)344"

56."

79.8"

:
;)

<5
=
.
-
"

5%"*0>?@A0"B1CD0""

-<E"

9B1CD0;FD1A0G"5%"

HB1CD0"5%"

I0JKF?0A"<KL0"

BMNF?1N?"C1CD0"

*5O"

-C1L1A"5MJKC"

65E"

O@F0F"

<.EF"

9B1CD0"5&"

-D1A0G"P0PMAQ"

HGL0"BDK/"

Fig. 15. Normalized power breakdown of Nvidia GPUs: Tesla GTX280 versus LAP at 65nm (left) and Fermi GTX480
versus LAP at 45nm.

store per PE yields the ability to handle bigger kernels
and amortize more of the irregular computations over
the available parallelism.

At the chip level, we estimate the effect of on-chip
memory size on overall power and area while maintain-
ing peak performance (similar to Figure 10). For each on-
chip memory size, there are different options in terms
of core configuration. We choose the biggest possible
local store size to minimize intra-chip traffic and hence
power consumption. Here, the power consumption due
to external accesses is not included. Figure 13-(left)
shows the area consumption of the cores and on-chip
memory. Figure 13-(right) shows that with our domain-
specific design of on-chip SRAM memory, almost all of
the power of the chip is used by the eight cores and
memory trade-offs are negligible.

In order to get a better sense of memory trade-offs
in more general systems, we performed the same analy-
sis using the NUCA [52] memory simulator of CACTI
and replacing the SRAM design with NUCA caches.
Here, the effects of increased bandwidth with smaller
memory sizes are seen more realistically. In our LAP
design, we use single-ported memory banks in low-
power technology and with low clock frequencies. In a
NUCA cache-based design, either multi-ported caches or
high-performance, high-power banks have to be used to
maintain the same high bandwidths at small memory
sizes. We chose high-performance, high-power caches
since they require less area and power compared to
multi-ported designs. As shown in Figure 14-(left), in
all cases the on-chip NUCA memory occupies more
space than the computation cores do. Furthermore, a
design with small capacity, high bandwidth banks ends
up occupying more space than a larger, slower on-
chip memory. Higher bandwidth also affects the power
consumption of the system. Figure 14-(right) shows that
at lower capacities, on-chip NUCA memory consumes
more power than the computation cores. In other words,
a design with larger but simpler on-chip NUCA cache
size is both more power and more area efficient.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

)*+,-+"

./011"

23)"

4.)5"

!
"#

$%
&
'
(
)

666"

7,8+9*+:"

0;*<"

11="

>?@"

2$"

A6"

1B@<"

1CA."

Fig. 16. Normalized power breakdown of Intel dual-core
Penryn versus LAP at 45nm.

5.3 Comparative Power and Performance Analysis

Figure 15 and Figure 16 show a breakdown of
performance-normalized power consumption for cur-
rent high-performance GPGPU and multi-core archi-
tectures as compared to single- or double-precision
versions of a prototypical LAP with an equivalent
number of cores (i.e. Shared Multiprocessors, SMs, in
GPUs2) running at equivalent raw Floating-point MAC
(FMAC) performance (1.3GHz or 1.4GHz). In the case of
GPUs (Figure 15), we show efficiencies for both peak
operation and when running GEMM. Current GPUs
run single- or double- precision GEMM (SGEMM or
DGEMM) at around 60-70% of their theoretical peak
performance [17], [18], [19]. As the graphs show, reduced
utilization has a significant effect on achievable efficien-
cies, even when considering that unneeded components,
such as constant caches, texture caches, extra ALUs or
Special Functional Units (SFUs) can be turned off. By
contrast, the Intel Penryn dual-core processor and a LAP
with two 4 × 4 cores running at 1.4GHz, i.e. at around
half of the Penryn’s 2.66GHz clock speed, achieve near
peak utilization at a performance of 20 and 90 double-
precision GFLOPS, respectively (Figure 16).

2. In the GTX480, each SM provides 16-way double-precision or
32-way single-precision parallelism. Correspondingly, we replace SMs
with one or two 4× 4 double- or single-precision LACs, respectively.

IEEE TRANSACTIONS ON COMPUTERS 12

Breakdowns show that traditional architectures in-
clude significant overhead. The only units that are ac-
tually useful for performing matrix multiplication are
FPUs/execution units, shared memories/L1 caches, L2
caches and TLBs. In the GPUs, components like shared
memories, instruction caches, and register files can con-
sume up to 70% of the power, and in some cases the
register file alone contributes more than 30%. By elimi-
nating instructions, associated cache power is removed
from the LAP. Similarly, register files are very small and
shared memories are replaced by sequentially accessed,
partitioned SRAMs with a maximum of two read/write
ports. For comparison with the Penryn, we mainly relied
on the power breakdown presented in [51], where we
assumed that GEMM utilizes the core with peak perfor-
mance. In the graph, the SRAMs and MACs of the LAP
are listed under the MMU and execution unit categories.
We conservatively added all of the miscellaneous and
IO power consumption factors to the LAP, which favors
the Penryn in this comparison. We can observe that
the Penryn uses 40% of the core power (over 5 W) in
the Out of Order (OOO) and Frontend units that do
not exist in the LAP architecture. Furthermore, with
around 5 W, the execution unit consumes one third of
the core power, which may be attributed to register
file overheads, support for exception handling, and full
IEEE-754 compatibility.

Overall, some of the major differences between tradi-
tional general-purpose designs and a specialized linear-
algebra architecture lie in the memory architecture and
the core execution unit datapaths. The LAP has relatively
large L1- and L2-equivalent PE and on-chip memories,
comparable in size to multi-core architectures, but an or-
der of magnitude larger than in GPUs. This keeps band-
width between memory layers low. All PE- and LAP-
internal memories are pure, banked SRAMs with no
tagging or internal cache consistency overhead. Conse-
quently, despite being larger, memories are more power
efficient and smaller than in other architectures. Shared
on-chip memory can be partitioned among groups of
cores with each bank being only coupled with its set
of cores. Note that we do not include external memory
in our analysis. With system architectures increasingly
integrating host processors and accelerators on a single
die, we can expect similar benefits to extend into other
memory layers. Again, larger on-chip memories in the
LAP help to decrease external memory bandwidth and
power consumption requirements.

For execution units and data paths, we can observe
that unnecessary overheads are removed by performing
whole chains of operations in local accumulators without
any register file moves that become necessary in tradi-
tional SIMD arrangements. This is further confirmed by
low GEMM utilizations in GPGPU architectures, which
indicate that despite existing architectural features, id-
iosyncrasies of such architectures make it difficult to
keep a large number of FPUs busy. Overall, the 2D PE
arrangement with local, partitioned memory is scalable

0.1

1

10

100

GTX480

SGEMM

LAP-30 (SP)

(same Flops)

GTX480

DGEMM

LAP-15 (DP)

(same Flops)

GTX280

SGEMM

LAP-15 (SP)

(same Flops)

Penryn(DP)

DGEMM

LAP-2 (DP)

G
F

L
O

P
S

/W

Core Chip

Fig. 17. Comparison of efficiencies for single- and
double-precision GEMM between NVidia Tesla GTX280,
NVidia Fermi GTX480, Intel Penry and a LAP of equiva-
lent throughput.

with an exponential growth in computation power for
a linear growth in interconnect and bus lengths. With
relatively low overhead for specialized MAC units and
broadcast buses, we can envision such specialized data
paths to be integrated into standard processor pipelines
for orders of magnitude improved efficiency in a linear
algebra computation mode.

5.4 Summary Comparison
We compare overall efficiency and inverse energy-
delay [53] of single- and double-precision realizations of
our design against other systems. Figure 17 shows an
analysis of core- and chip-level efficiencies for studied
architectures and a LAP in which we vary the number of
cores to match the throughput in existing architectures.
Our LAP with 30 single- or 15 double-precision cores
and 5 Mbytes of on-chip memory achieves a GEMM
performance of 1200 and 600 GFLOPS at a utilization of
90% in an area of 115 mm2 or 120 mm2, respectively. By
comparison, the dual-core CPU achieves 22 GFLOPS in
100mm2 and the GTX480 runs SGEMM/DGEMM with
940/470 GFLOPS and 70% utilization using 15 SMs at
1.4 GHz in total 500mm2 chip area.

Finally, Figure 18 summarizes key metrics for vari-
ous systems running GEMM as a representative matrix
computation. For this table, we extended the analysis
presented in [26] by including estimates for our LAP de-
sign, the 80-tile network-on-chip architecture from [27],
the Power7 processor [54], the Cell processor [55], Intel
Penryn [51], Intel Core i7-960 [56], CSX700 [28], Altera
Stratix IV [31], and the NVidia Fermi GPU (GTX480) [50]
all scaled to 45nm technology and to GEMM utilizations.

We note that for a single-precision LAP at around 1.4
GHz clock frequency, the estimated performance/power
ratio is an order of magnitude better than in GPUs.
The double-precision LAP design yields around 30 times
higher efficiency compared to CPUs. The power density
is also significantly lower, as most of the LAP area
is used for local store. The performance/area ratio of
our LAP is in all cases equal to or better than other
processors. Finally, the inverse of energy delay of a LAP

IEEE TRANSACTIONS ON COMPUTERS 13

Architecture GFLOPS GFLOPS
mm2

GFLOPS
W

Util.

Cell 200 1.5 5.0 88%
Nvidia GTX280 410 0.8 2.6 66%
Rigel 850 3.2 10.7 40%
80-Tile @0.8V 175 1.2 6.6 38%
80-Tile @1.07V 380 2.66 3.8 38%
Nvidia GTX480 940 0.9 5.2 70%
Core i7-960 96 0.50 1.14 95%
Stratix IV 200 0.1 7 90+%
LAP (SP) 1200 6-11 30-55 90+%
Intel Quad-Core 40 0.4 0.8 95%
Intel Penryn 20 0.2 0.6 95%
IBM Power7 230 0.5 1.0 95%
CSX700 75 0.2 12.5 78+%
Nvidia GTX480 470 0.5 2.6 70%
Core i7-960 48 0.25 0.57 95%
Stratix IV 100 0.05 3.5 90+%
LAP (DP) 600 3-5 15-25 90+%

Fig. 18. 45nm scaled performance and area of various
systems running GEMM.

is at least an order of magnitude better than all other
designs. All in all, with a double-precision LAP we can
achieve up to 32 times higher performance in the same
area as a complex conventional core using almost the
same power.

6 CONCLUSIONS AND OUTLOOK

This paper provides initial evidence regarding the ben-
efits of customized architectures for linear algebra com-
putations. As had been postulated [2], one to two orders
of magnitude improvement in power efficiency can be
achieved. We now discuss possible extensions.

Figures 3 and 11 clearly show the trade-off between
the sizes of the local and on-chip memories, and their
corresponding bandwidth to on-chip and off-chip mem-
ory. One question that remains is the careful optimiza-
tion of this trade-off across the multi-dimensional power,
performance, utilization and area design space. Using a
combination of simulations and further physical proto-
typing, we plan to address these questions in our future
work. Similarly, the choice of the size of the PE array,
nr = 4 is arbitrary: it allows our discussion to be more
concrete. A natural study will be how to utilize more PEs
yet. As nr grows, the buses that connect the rows and
columns of PEs will likely become a limiting factor. This
could be overcome by pipelining the communication
between PEs or by further extending the interconnect
into a flat on-chip network (NoC) of PEs that can be
dynamically configured and partitioned into clusters of
cores of variable sizes.

So far, we modeled the power consumption for our
design and its competitors. The next step is to further ex-
pand our analysis into area and complexity breakdowns
for these architectures. This will help designers take into
account both area and power budgets, with one of the
main concerns in the future being the power density. We
also plan to extend our cycle-accurate simulator into a
full LAP system simulator and, if possible, integrate it
with other multi-core simulators to study detailed design

tradeoffs both at the core and chip levels. This inte-
gration will allow cycle-accurate modeling of dynamic
power consumption of different design choices.

The GEMM operation is in and of itself important.
It indirectly enables high performance for the level-3
BLAS [5], [7] as well as most important operations in
packages like LAPACK [57]. We started our research
by initially designing a LAP for Cholesky factorization,
an operation that requires the square root and inver-
sion of scalars. As such, our LAP simulator is already
able to simulate both matrix-matrix multiplication and
Cholesky factorization. It is well-understood that an
approach that works for an operation like Cholesky
factorization also works for GEMM and level-3 BLAS.
Additional evidence that the LAP given in this paper can
be extended to other such operations can be found in [8],
in which the techniques on which our GEMM is based
are extended to all level-3 BLAS. The conclusion, which
we will pursue in future work, is that with the addition
of a square-root unit, a scalar inversion unit, and some
future ability to further program the control unit, the
LAP architecture can be generalized to accommodate
this entire class of operations.

REFERENCES

[1] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore
scaling,” ISCA ’11, pp. 365–376, 2011.

[2] R. Hameed et al., “Understanding sources of inefficiency in
general-purpose chips,” ISCA ’10, Jun 2010.

[3] N. Zhang et al., “The cost of flexibility in systems on a chip de-
sign for signal processing applications,” University of California,
Berkeley, Tech. Rep., 2002.

[4] J. J. Dongarra et al., “An extended set of FORTRAN basic linear
algebra subprograms,” ACM Trans. Math. Soft., vol. 14, no. 1, pp.
1–17, March 1988.

[5] ——, “A set of level 3 basic linear algebra subprograms,” ACM
Trans. Math. Soft., vol. 16, no. 1, pp. 1–17, March 1990.

[6] K. Goto et al., “Anatomy of a high-performance matrix multipli-
cation,” ACM Trans. Math. Soft., vol. 34, no. 3, May 2008.

[7] B. Kågström et al., “GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark,”
ACM Trans. Math. Soft., vol. 24, no. 3, pp. 268–302, 1998.

[8] K. Goto et al., “High-performance implementation of the level-3
BLAS,” ACM Trans. Math. Softw., vol. 35, no. 1, pp. 1–14, 2008.

[9] A. Pedram et al., “A high-performance, low-power linear algebra
core,” ASAP ’11, pp. 35–41, 2011.

[10] S. Galal et al., “Energy-efficient floating point unit design,” IEEE
Transactions on Computers, vol. PP, no. 99, pp. 1 – 1, 2010.

[11] N. Muralimanohar et al., “CACTI 6.0: a tool to model large
caches,” HP Laboratories Palo Alto, Technical Report HPL-2009-
85, 2009.

[12] “Intel R© Math Kernel Library,” Intel, User’s Guide 314774-009US,
2009.

[13] R. C. Whaley et al., “Automatically tuned linear algebra software,”
in Proceedings of SC’98, 1998.

[14] S. Rixner et al., “Register organization for media processing,”
HPCA-6, pp. 375 – 386, 2000.

[15] C. Kozyrakis et al., “Overcoming the limitations of conventional
vector processors,” ISCA’03, pp. 399 – 409, 2003.

[16] K. Fatahalian et al., “Understanding the efficiency of GPU algo-
rithms for matrix-matrix multiplication,” HWWS ’04:ACM SIG-
GRAPH/EUROGRAPHICS, Aug 2004.

[17] V. Allada et al., “Performance analysis of memory transfers and
GEMM subroutines on NVIDIA Tesla GPU cluster,” CLUSTER
’09, pp. 1 – 9, 2009.

[18] V. Volkov et al., “Benchmarking GPUs to tune dense linear alge-
bra,” SC 2008, pp. 1 – 11, 2008.

IEEE TRANSACTIONS ON COMPUTERS 14

[19] G. Tan et al., “Fast implementation of DGEMM on fermi GPU,”
SC ’11.

[20] R. Urquhart et al., “Systolic matrix and vector multiplication
methods for signal processing,” IEEE Communications, Radar and
Signal Processing,, vol. 131, no. 6, pp. 623 – 631, 1984.

[21] V. Kumar et al., “Synthesizing optimal family of linear systolic
arrays for matrix computations,” ICSA ’88, pp. 51 – 60, 1988.

[22] H. Jagadish et al., “A family of new efficient arrays for matrix
multiplication,” Computers, IEEE Transactions on, vol. 38, no. 1,
pp. 149 – 155, 1989.

[23] T. Lippert et al., “Hyper-systolic matrix multiplication,” Parallel
Computing, Jan 2001.

[24] K. Johnson et al., “General-purpose systolic arrays,” Computer,
vol. 26, no. 11, pp. 20 – 31, 1993.

[25] C. Takahashi et al., “Design and power performance evalua-
tion of on-chip memory processor with arithmetic accelerators,”
IWIA2008, pp. 51 – 57, 2008.

[26] J. Kelm et al., “Rigel: an architecture and scalable programming
interface for a 1000-core accelerator,” ISCA ’09, Jun 2009.

[27] S. Vangal et al., “An 80-tile sub-100-w teraFLOPS processor in 65-
nm cmos,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.
29 – 41, 2008.

[28] “CSX700 Floating Point Processor,” ClearSpeed Technology Ltd,
Datasheet 06-PD-1425 Rev 1, 2011.

[29] M. Parker, “Achieving teraFLOPS performance with 28nm
FPGAs,” EDA Tech Forum, December 2010.

[30] O. Garreau et al., “Scaling up to teraFLOPS performance with
the Virtex-7 family and high-level synthesis,” Xilinx White Paper:
Virtex-7 FPGA, February 2011.

[31] M. Parker, “High-performance floating-point implementation us-
ing FPGAs,” in MILCOM, 2009.

[32] P. Zicari et al., “A matrix product accelerator for field pro-
grammable systems on chip,” Microprocessors and Microsystems 32,
2008.

[33] L. Zhuo and V. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on reconfigurable computing
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 4, pp. 433 – 448, 2007.

[34] G. Kuzmanov et al., “Floating-point matrix multiplication in a
polymorphic processor,” ICFPT 2007, pp. 249 – 252, 2007.

[35] Y. Dou et al., “64-bit floating-point FPGA matrix multiplication,”
FPGA ’05.

[36] J.-W. Jang et al., “Energy- and time-efficient matrix multiplication
on FPGAs,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 13, no. 11, pp. 1305 – 1319, 2005.

[37] V. Kumar and Y. Tsai, “On synthesizing optimal family of linear
systolic arrays for matrix multiplication,” Computers, IEEE Trans-
actions on, vol. 40, no. 6, pp. 770 – 774, 1991.

[38] V. Eijkhout, Introduction to High Performance Scientific Computing.
www.lulu.com, 2011.

[39] J. Li, “A poly-algorithm for parallel dense matrix multiplication
on two-dimensional process grid topologies,” Citeseer, Jan 1996.

[40] R. van de Geijn and J. Watts, “SUMMA: Scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience,
vol. 9, no. 4, pp. 255–274, April 1997.

[41] B. A. Hendrickson and D. E. Womble, “The Torus-Wrap mapping
for dense matrix calculations on massively parallel computers,”
SIAM J. Sci. Stat. Comput., vol. 15, no. 5, pp. 1201–1226, 1994.

[42] J. Choi et al., “ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers,” FMPC ’92.

[43] A. Pedram et al., “Co-design tradeoffs for high-performance, low-
power linear algebra architectures,” UT Austin, CERC, Tech. Rep.
UT-CERC-12-02, 2011.

[44] S. Li et al., “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
MICRO-42., 2009.

[45] D. Brooks et al., “Wattch: a framework for architectural-level
power analysis and optimizations,” ISCA, 2000., pp. 83 – 94, 2000.

[46] S. Hong et al., “An integrated GPU power and performance
model,” ISCA ’10, Jun 2010.

[47] H. Wong et al., “Demystifying gpu microarchitecture through
microbenchmarking,” ISPASS’2010, pp. 235 – 246, 2010.

[48] “Samsung DDR3 SDRAM:High-Performance, Energy-Efficient
Memory for Today’s Green Computing Platforms,” SAMSUNG
Green Memory, Tech. Rep., March 2009.

[49] “Fermi computer architecture white paper,” NVIDIA, Technical
Report, 2009.

[50] D. Kanter, “Inside Fermi: Nvidia’s HPC push,” Real World Tech-
nologies, Tech. Rep., September 2009.

[51] V. George et al., “Penryn: 45-nm next generation intel R© coreTM 2
processor,” IEEE Asian Solid-State Circuits Conference, Jan 2008.

[52] N. Muralimanohar et al., “Architecting efficient interconnects for
large caches with cacti 6.0,” IEEE Micro, vol. 28, 2008.

[53] R. Gonzalez and M. Horowitz, “Energy dissipation in general
purpose microprocessors,” Solid-State Circuits, IEEE Journal of,
vol. 31, no. 9, pp. 1277 –1284, sep 1996.

[54] M. Ware et al., “Architecting for power management: The IBM R©
POWER7TM approach,” HPCA 2010, pp. 1 – 11, 2010.

[55] F. Lauginiger et al., “Performance of a multicore matrix multipli-
cation library,” STMCS 2007,, Jan 2007.

[56] E. S. Chung et al., “Single-chip heterogeneous computing: Does
the future include custom logic, FPGAs, and GPGPUs?” MICRO
’43, pp. 225–236, 2010.

[57] E. Anderson et al., LAPACK Users’ guide (third ed.). Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1999.

Ardavan Pedram is a PhD candidate at the
University of Texas at Austin. He received the
masters degree in computer engineering from
the University of Tehran in 2006. He enrolled in
the doctoral program in computer engineering at
the University of Texas at Austin in 2007. His re-
search interests include high performance com-
puting and computer architecture. He specifi-
cally works on hardware-software co-design (al-
gorithm for architecture) of special purposed ac-
celerators for high-performance energy-efficient

linear algebra and signal processing applications.

Robert A. van de Geijn is a Professor of Com-
puter Science and member of the Institute for
Computational Engineering and Sciences at the
University of Texas at Austin. He received his
PhD in Applied Mathematics from the University
of Maryland College Park, in 1987. His interests
are in linear algebra, high-performance comput-
ing, parallel computing, and formal derivation
of algorithms. He heads the FLAME project,
a collaboration between UT-Austin, Universidad
Jaume I (Spain), and RWTH Aachen University

(Germany). This project pursues foundational research in the field of
linear algebra libraries and has led to the development of the libflame
library, a modern, high-performance dense linear algebra library that
targets both sequential and parallel architectures. One of the benefits
of this library lies with its impact on the teaching of numerical linear
algebra, for which Prof. van de Geijn received the UT Presidents
Associates Teaching Excellence Award. He has published several books
and more than a hundred refereed publications.

Andreas Gerstlauer received the Dipl.-Ing. de-
gree in electrical engineering from the University
of Stuttgart, Germany, in 1997, and the M.S.
and Ph.D. degrees in information and computer
science from the University of California, Irvine
(UCI), in 1998 and 2004, respectively.

Since 2008, he has been with the University
of Texas at Austin, where he is currently an
Assistant Professor in electrical and computer
engineering. Prior to joining the University of
Texas, he was an Assistant Researcher with the

Center for Embedded Computer Systems, UCI, leading a research
group to develop electronic system-level design tools.

Dr. Gerstlauer serves on the program committee of major conferences
such as DAC, DATE and CODES+ISSS. His research interests include
system-level design automation, system modeling, design languages
and methodologies, and embedded hardware and software synthesis.

1

APPENDIX
ANALYTICAL FORMULAE

In this Appendix, we present derivations of our analyt-
ical formulae, which are summarized in Figure 6. We
first derive details of the core layer and then details of
the shared memory layer.

Core Architecture
The size of the local store, aggregated over all PEs, is
given by mc × kc elements for Ai,p, plus 2× kc ×nr ×nr
elements for the current and next Bp,j and Bp+1,j

1. In
total, the local memory must be able to hold mckc +
2kcn

2
r = (mc +2n2r)kc single or double precision floating

point numbers. The nr×nr submatrix of Ci,j is always in
the accumulators and never stored. However, concurrent
prefetching and streaming out of the next and previous
such submatrix, respectively, occupies two additional
entries in the register file of each PE. Together with a
register each for internal transfers of locally replicated
element of Bp,j , βp,j , every PE requires a register file of
size 4 (a size of 3, rounded up to the next power of two).

To analyze performance, let us assume an effective
bandwidth of x elements/cycle and focus on one com-
putation Ci += Ai,pBp. Reading Ai,p requires mckc/x
cycles. Reading and writing the elements of Ci and
reading the elements of Bp requires (2mcn + kcn)/x
cycles. Finally, computing Ci += Ai,pBp assuming peak
performance requires (mckcn)/n

2
r cycles. Overlapping

the communication of Ci and Bp with the computation
of Ci gives us an estimate for computing Ci += Ai,pBp

of
mckc
x

+max

(
(2mc + kc)n

x
,
mcnkc
n2r

)
cycles.

Given that at theoretical peak this computation would
take (mckcn)/n

2
r cycles, the attained core utilization can

easily be estimated as the fraction of the two.
To achieve peak performance, the prefetching of the

next block of A, Ai,p+1, is also overlapped with the com-
putations using the current block of Ai,p resulting in full
overlapping of communications with computation. In
such a scenario, each PE requires a bigger local memory
for storing the current and prefetching of the next block
of A. Thus, the size of the local store, aggregated over
all PEs, will become 2mckc +2kcn

2
r = 2(mc + n2r)kc. This

extra memory is effective if there is enough bandwidth
to bring data to the cores.

LAP Architecture
As discussed previously, each core locally stores a mc×kc
(or 2mc × kc to allow for prefetching to achieve peak
performance) block Ai,p , a n2r subblock of Ci,j and a
kc × nr panel Bp,j (replicated across PEs). The shared
on-chip memory stores a complete n×n block of matrix

1. Note that the elements of Bp,j and Bp+1,j are replicated and the
storage is nr times more.

C and the current kc×n row panel of B, which is shared
among the cores. With S cores in the LAP system and
space for prefetching of blocks and panels of A and B,
the total size of the on-chip shared memory therefore
becomes n2+S×mc×kc+2kc×n. This on-chip memory
size does not reflect full overlapping of computations
with communication at the chip level.

The intra-chip bandwidth required between cores and
the on-chip memory for optimal performance can be
computed as: S×mc×n elements of C have to be fed into
the cores and the results collected back in Smcnkc/Sn

2
r

cycles, and kc×n elements of B have to be broadcast to
all cores in mckcn/n

2
r cycles. With this, the maximum

bandwidth required for the shared, on-chip memory
becomes 2S×nr2

kc
+

n2
r

mc
. Extrapolating from the analysis

presented in previous section with n/mc row panels and
sub-blocks evenly distributed across S parallel cores,
and again assuming a limited memory bandwidth of
y elements/cycle, a whole C + = ApBp computation
including fetching of S mc×kc blocks of Ai,p will require
the following number of cycles:

n

Smc

(
Smckc
y

+max

(
(2Smc + kc)n

y
,
Smcnkc
Sn2r

))
.

Note that when computation dominates (the second
term in the ”max“ dominates) the peak performance is
independent of mc.

Finally, the required bandwidth between the LAP
and external memory can be estimated. The bandwidth
required for transfering the kc×n panels of Ap and Bp in
the n2kc/Sn2r cycles required to process one such set of
blocks, is 2Sn2r/n

2. Furthermore, assuming we were to
amortize reading and writing of n2 elements of C over
the n3/Sn2r cycles required to perform the whole com-
putation for all n/kc panels, the external bandwidth re-
quired would be the same as what is internally needed to
feed the cores, i.e. 2Sn2r/n. All combined, the maximum
bandwidth required at the LAP’s memory interface can
be estimated as 3Sn2r/n for reading and Sn2r/n for writ-
ing from/to external memory. Conversely, if we assume
an external memory bandwidth of z elements/cycle and
overlap computation with communication of A and B
but not of C, the whole matrix multiplication will take

2n2

z
+max

(
2n2

z
,
n3

Sn2r

)
cycles.

Overlapping transfers of C can be estimated in a similar
fashion. Furthermore, given that at theoretical peak this
computation would take n3/Sn2r cycles, the achievable
utilization can be estimated.

