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Abstract

The scalable parallel implementation, targeting SMP and/or multicore architectures, of the LU fac-
torization of a matrix is studied. It is shown that an algorithm-by-blocks exposes a higher degree of
parallelism than traditional implementations based on multithreaded BLAS. This algorithm requires a
different pivoting strategy, incremental pivoting, but allows most computation to be cast in terms of
matrix-matrix multiplication without adversely increasing the operation count. Its implementation us-
ing the SuperMatrix runtime system is discussed and the scalability of the solution is demonstrated on
an ccNUMA platform with 16 processors.

1 Introduction

With the emergence of parallel computing architectures with many processing elements (e.g., SMP systems
with many processors, multicore chips with many cores, and CPUs featuring hardware accelerators such as
the Cell processor [25, 2]), it is now widely recognized that commonly used libraries like LAPACK will need
to be reimplemented, possibly from scratch. In this paper, we explore algorithmic modifications to the LU
factorization with pivoting that support an algorithm-by-blocks. It is shown that this algorithm-by-blocks
exhibits a high degree of parallelism that can be exploited by multithreaded architectures. This adds to a
body of work that provides insights into how linear algebra algorithms in general can be rewritten to better
utilize the compute power of systems with many processing cores [7, 30, 8, 31, 6, 5].

Traditional algorithms for the LU factorization with partial pivoting exhibit the property that, period-
ically, an updated column is required for a critical computation; in order to compute which row to pivot
during the k-th iteration, the k-th column must have been updated with respect to all previous computation.
This greatly restricts the order in which the computations can be performed.

The problem is compounded by the observation that, for scalability and data locality, it is beneficial to
view, store, and compute with the matrix as a two dimensional array of submatrices (blocks) [7, 9, 30, 8, 6, 5].
Thus, the column needed for computing which row to pivot, as well as the row to be pivoted, likely span
multiple blocks. This need for viewing and/or storing matrices by blocks was also observed for out-of-
core dense linear algebra computations [35] and the implementation of dense linear algebra operations on
distributed-memory architectures [38, 11].

The challenge we confront in this paper is that of developing a high performance LU factorization algo-
rithm with pivoting while keeping the implementation simple. The contributions of this paper include:
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• A demonstration that the LU factorization can attain high performance even when coded at a high level
of abstraction and even when targeting complex environments such as manythreaded architectures.

• A study that compares and contrasts traditional blocked algorithms for the LU factorization, which
extract parallelism within the Basic Linear Algebra Subprograms (BLAS) [26, 14, 13], to the pure
algorithm-by-blocks first proposed in [23]. This algorithm is similar to the algorithm-by-blocks for the
QR factorization proposed in [18], for which multithreaded parallel implementations are given in [30, 6].

• Further examples of how (a) the FLASH extension of FLAME/C supports storage by blocks for both
types of algorithms and (b) the SuperMatrix runtime system supports, transparent to the programmer,
out-of-order computation on blocks.

• A discussion on the numerical stability of the algorithm.

• An analysis that the extra work associated with the algorithms-by-blocks represents a lower order cost
term, in contrast to a claim in [6].

• Performance that rivals that of an algorithms-by-blocks for the QR factorization, in contrast to per-
formance reported in [5].

The remainder of the paper is structured as follows: Sections 2 and 3—taken essentially verbatim
from [29]—review algorithms for the LU factorization with partial pivoting and how to modify them to
factor a 2× 2 matrix of blocks, using incremental pivoting, in order to update an existing LU factorization.
Section 4 explains how updating an LU factorization can be extended to yield algorithms-by-blocks. The
empirical data in Section 5 shows how incremental pivoting affects element growth and more generally the
stability of the algorithm. Section 6 provides an overview of various tools and methods derived from the
FLAME project which were used in the implementation (and also discussed in [30]). Performance results
can be found in Section 7 and concluding remarks follow in the final section.

We adopt the following conventions: matrices, vectors, and scalars are denoted by upper-case, lower-case,
and lower-case Greek letters, respectively. Algorithms are presented in a notation that we have developed
as part of the FLAME project [17, 3]. If one keeps in mind that the thick lines in the partitioned matrices
and vectors indicate how far the computation has proceeded, we believe the notation to be mostly intuitive.
Otherwise, we suggest that the reader consult some of these related papers.

2 The LU Factorization with Partial Pivoting

Consider an m× n matrix A and its LU factorization with partial pivoting given by

PA = LU, (1)

where P is a permutation matrix, L is lower trapezoidal, and U is upper triangular. The LU factorization
is obtained by means of a triangularization procedure also known as Gaussian elimination [16, 33]. Here, a
sequence of permutation matrices P1, P2, . . . , Pn and Gauss elimination matrices L1, L2, . . . , Ln are computed
to reduce matrix A to upper triangular form. In practice, the factors L and U overwrite matrix A and the
pivots are stored in an array of min(m,n) elements.

The LINPACK [12] implementation of (1) corresponds to an expression of the form

L−1
n Pn · · ·L−1

2 P2L
−1
1 P1A = U,

that does not provide the factor L explicitly. The LINPACK algorithm applies row permutations to A as
the matrix is factorized. The LAPACK implementation provides the lower triangular factor by rearranging
the computations in this expression as

L̂−1
n · · · L̂−1

2 L̂−1
1 Pn · · ·P2P1A = L−1PA = U.
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Algorithm: [A, p] := [{L\U}, p] = LUunb(A)

Partition A→
„

ATL ATR

ABL ABR

«
and p→

„
pT

pB

«

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Repartition
„

ATL ATR

ABL ABR

«
→
0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A and

„
pT

pB

«
→
0
@

p0

π1

p2

1
A

where α11 and π1 are scalars

LINPACK variant: LAPACK variant:»„
α11

a21

«
, π1

–
:= Pivot

„
α11

a21

«

if α11 6= 0 then„
aT
12

A22

«
:= P (π1)

„
aT
12

A22

«

a21 := a21/α11

A22 := A22 − a21aT
12

endif

»„
α11

a21

«
, π1

–
:= Pivot

„
α11

a21

«

if α11 6= 0 then„
aT
10 aT

12
A20 A22

«
:= P (π1)

„
aT
10 aT

12
A20 A22

«

a21 := a21/α11

A22 := A22 − a21aT
12

endif

Continue with„
ATL ATR

ABL ABR

«
←
0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A and

„
pT

pB

«
←
0
@

p0

π1

p2

1
A

endwhile

Figure 1: LINPACK and LAPACK unblocked algorithms for the LU factorization, LUlin
unb and LUlap

unb re-
spectively.

Algorithm: [A, p] := [{L\U}, p] = LUblk(A)

Partition A→
„

ATL ATR

ABL ABR

«
and p→

„
pT

pB

«

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Determine block size b
Repartition
„

ATL ATR

ABL ABR

«
→
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

„
pT

pB

«
→
0
@

p0

p1

p2

1
A

where A11 is b× b and p1 has b elements

LINPACK variant: LAPACK variant:»„
A11

A21

«
, p1

–
:=

»„ {L\U}11
L21

«
, p1

–

= LUlap
unb

„
A11

A21

«

»„
A11

A21

«
, p1

–
:=

»„ {L\U}11
L21

«
, p1

–

= LUlap
unb

„
A11

A21

«

„
A12

A22

«
:= P (p1)

„
A12

A22

« „
A10 A12

A20 A22

«
:= P (p1)

„
A10 A12

A20 A22

«

A12 := U12 = L−1
11 A12 A12 := U12 = L−1

11 A12

A22 := A22 − L21U12 A22 := A22 − L21U12

Continue with„
ATL ATR

ABL ABR

«
←
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

„
pT

pB

«
←
0
@

p0

p1

p2

1
A

endwhile

Figure 2: LINPACK and LAPACK blocked algorithms for the LU factorization built upon an LAPACK
unblocked factorization, LUlin

blk and LUlap
blk respectively.
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However, in order to do so, the LAPACK algorithm requires the row permutations to be applied to both L
and A [16]. Both of these unblocked algorithms are given in Figure 1. There, the notation

[(
α11

a21

)
π1

]
:= Pivot

(
α11

a21

)

refers to a function which swaps α11 and the element of largest magnitude in the input vector, and returns
the index of that element in π1; P (π1) denotes the corresponding permutation matrix.

Blocked variants of these algorithms cast the bulk of their computation in terms of matrix-matrix multi-
plication and inherently attain high performance on modern architectures (see, e.g., [24]). They are presented
in Figure 2. In both algorithms, P (p1) refers to a permutation matrix obtained during the LU factorization
with partial pivoting of the current column block.

3 Updating an LU factorization

In this section we discuss how to compute the LU factorization of a matrix A of the form

A =
(

B C
D E

)
(2)

in such a way that the LU factorization with partial pivoting of B can be reused if D, C, and E change.
We consider A in (2) to be of dimension n× n, with square B and E of orders nB and nE , respectively. For
reference, factoring the matrix in (2) using the standard LU factorization with partial pivoting costs 2

3n3

floating-point arithmetic operations (FLOPs). Note that in this expression (and future computational cost
estimates) we neglect terms of lower-order complexity, including the cost of pivoting the rows.

3.1 Basic procedure

We propose employing the following procedure, consisting of 5 steps, which computes an LU factorization
with incremental pivoting of the matrix in (2):

Step 1: Factor B. Compute the LU factorization with partial pivoting

[B, p] := [{L\U}, p] = LUlap
blk(B).

This step is skipped if B was already factored. If the factors are to be used for future updates to C, D, and
E, then a copy of U is needed since it is overwritten during subsequent steps.

Step 2: Update C consistent with the factorization of B (by means of the forward substitution):

C := FSlap(B, p, C) = L−1P (p)C.

Step 3: Factor
(

U
D

)
. Compute the LU factorization with partial pivoting

[(
U
D

)
, L̄, r

]
:=

[( {L̄\Ū}
Ľ

)
, r

]
= LUlap

blk

(
U
D

)
.

Here Ū overwrites the upper triangular part of B (where U was stored before this operation). The lower
triangular matrix L̄ that results needs to be stored separately, since both L, computed in Step 1 and used
at Step 2, and L̄ are needed during the forward substitution stage when solving a linear system.

Step 4: Update
(

C
E

)
consistent with the factorization of

(
U
D

)
:

(
C
E

)
:= FSlap

((
L̄
D

)
, r,

(
C
E

))
.
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Approximate cost (in flops)
Operation Basic Structure-Aware Structure-Aware

procedure LAPACK LINPACK
procedure procedure

1: Factor B 2
3n3

B
2
3n3

B
2
3n3

B

2: Update C n2
BnE n2

BnE n2
BnE

3: Factor
(

U
D

)
n2

BnE + 2
3n3

B n2
BnE + 1

2bn2
B n2

BnE + 1
2bn2

B

4: Update
(

C
E

)
2nBn2

E +n2
BnE 2nBn2

E +n2
BnE 2nBn2

E +bnBnE

5: Factor E 2
3n3

E
2
3n3

E
2
3n3

E

Total 2
3n3 + 2

3n3
B + n2

BnE
2
3n3 +n2

B

(
1
2b + nE

)
2
3n3 +bnB

(
nB

2 + nE

)

Figure 3: Computational cost (in FLOPs) of the different approaches to compute the LU factorization of the
matrix in (2). The highlighted costs are those incurred in excess of the cost of a standard LU factorization.

Step 5: Factor E. Finally, compute the LU factorization with partial pivoting

[E, s] :=
[
{L̃\Ũ}, s

]
= LUlap

blk(E).

Overall, the five steps of the procedure apply Gauss transforms and permutations to reduce A to an
upper triangular matrix as follows:

(
I 0
0 L̃−1P (s)

)(
L̄ 0
Ľ I

)−1

P (r)
(

L−1P (p) 0
0 I

)(
B C
D E

)

︸ ︷︷ ︸
Steps 1 and 2

=

(
I 0
0 L̃−1P (s)

) (
L̄ 0
Ľ I

)−1

P (r)
(

U Ĉ
D E

)

︸ ︷︷ ︸
Steps 3 and 4

=

(
I 0
0 L̃−1P (s)

)(
Ū Č

0 Ě

)

︸ ︷︷ ︸
Step 5

=
(

Ū C̄

0 Ũ

)
,

where {L\U},
{(

L̄ 0
Ľ I

)
\

(
Ū
0

)}
, and {L̃\Ũ} are the triangular factors computed, respectively, in the

LU factorizations in Steps 1, 3, and 5; and p, r, and s are the corresponding permutation vectors.

3.2 Analysis of the basic procedure

For now, the factorization in Step 3 does not take advantage of any zeroes below the diagonal of U : After

matrix B is factored and C is updated, the matrix
(

U C
D E

)
is factored as if it were a matrix without

special structure. Its computational cost is stated in the column labeled “Basic procedure” in Table 3. In
this table, we assume that b ¿ nE , nB and report only those costs that equal at least O(bnEnB), O(bn2

E),
or O(bn2

B). If nE is small (that is, nB ≈ n), the procedure clearly does not benefit from the existence of an
already factored B. Also, the procedure requires additional storage for the nB ×nB lower triangular matrix
L̄ computed in Step 3.

We describe next how to reduce both the computational and storage requirements by exploiting the upper
triangular structure of U during Steps 3 and 4.
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Algorithm:

»„
U
D

«
, L̄, r

–
:= LUsa−lin

blk

„
U
D

«

Partition U →
„

UTL UTR

0 UBR

«
, D → `

DL DR

´
, L̄→

„
L̄T

L̄B

«
, r →

„
rT

rB

«

where UTL is 0× 0, DL has 0 columns, L̄T has 0 rows, and rT has 0 elements

while n(UTL) < n(U) do
Determine block size b
Repartition
„

UTL UTR

0 UBR

«
→
0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,
`

DL DR

´→ `
D0 D1 D2

´
,

„
L̄T

L̄B

«
→
0
@

L̄0

L̄1

L̄2

1
A,

„
rT

rB

«
→
0
@

r0

r1

r2

1
A

where U11 is b× b, D1 has b columns, L̄1 has b rows, and r1 has b elements

»„ {L̄1\U11}
D1

«
, r1

–
:= LUlap

unb

„
U11

D1

«

„
U12

D2

«
:= P (r1)

„
U12

D2

«

U12 := L̄−1
1 U12

D2 := D2 −D1U12

Continue with„
UTL UTR

0 UBR

«
←
0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,
`

DL DR

´← `
D0 D1 D2

´
,

„
L̄T

L̄B

«
←
0
@

L̄0

L̄1

L̄2

1
A,

„
rT

rB

«
←
0
@

r0

r1

r2

1
A

endwhile

Figure 4: SA-LINPACK blocked algorithm for the LU factorization of
(
UT , DT

)T built upon an LAPACK
blocked factorization.

3.3 Exploiting the structure in Step 3

A blocked algorithm that exploits the upper triangular structure of U during the factorization of
(

U
D

)
is

given in Figure 4 and illustrated in Figure 5. We name this algorithm LUsa−lin
blk to reflect that it computes

a “Structure-Aware” (SA) LU factorization. At each iteration of the algorithm, the panel of b columns

consisting of
(

U11

D1

)
is factored using the unblocked LAPACK algorithm LUlap

unb. (In our implementation

this algorithm is modified to take advantage of the zeroes below the diagonal of U11.) As part of the
factorization, U11 is overwritten by {L̄1\Ū11}. However, in order to preserve the strictly lower triangular
part of U11 (which contains the part of the matrix L that was computed in Step 1), we employ the b × b
submatrix L̄1 of the nB × b array L̄ (see Figure 5). As in the blocked LINPACK algorithm in Figure 2, the
LAPACK and LINPACK styles of pivoting are combined: the current panel of columns are pivoted using

the LAPACK approach but the permutations from this factorization are only applied to
(

U12

D2

)
.

Figure 3 gives the cost of this approach in Step 3 of the column labeled “SA LINPACK procedure”. The
cost difference comes from the updates of U12 in Figure 4 which, provided b ¿ nB , is insignificant compared
to 2

3n3.
A blocked SA LAPACK algorithm for Step 3 only differs from that in Figure 4 in that, at a certain

iteration, after the LU factorization of the current panel is computed, these permutations must also be

applied to
(

U10

D0

)
. As indicated in Step 3 of the column labeled “SA LAPACK procedure”, this does not
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U00 U01 U02

U110

0

00

U12

U22

D0 D1 D2

-

U00 U01 U02

U11

L̄1
0?

0

00

U12

U22

untouched!

D0 D1 D2

L̄1

@
@@

@
@@

@
@@

@
@@

@
@@

-

L̄

6

Figure 5: Illustration of an iteration of the SA LINPACK blocked algorithm used in Step 3 and how it
preserves most of the zeroes in U . The zeroes below the diagonal are preserved, except within the b × b
diagonal blocks, where pivoting will fill below the diagonal. The shaded areas are the ones updated as part
of the current iteration. The fact that U22 is not updated demonstrates how computation can be reduced.
If the SA LAPACK blocked algorithm were used, then nonzeroes would appear during this iteration in the
block marked as 0?, due to pivoting; as a result, upon completion, zeros would be lost in the full strictly
lower triangular part of U .

incur a (significative) computational overhead for this step. However, it does require an nB × nB array for
storing L̄ (see Figure 5) and, as we will see next, makes Step 4 more expensive.

3.4 Revisiting the update in Step 4

The same optimizations made in Step 3 must now be carried over to the update of
(

C
E

)
. The algorithm

for this is given in Figure 6. Since computation corresponding to zeroes is avoided, the update may be
performed with 2nBn2

E + bnBnE FLOPs, as indicated in Step 4 of the column labeled as “SA LINPACK
procedure” of Figure 3.

The blocked SA LAPACK algorithm in Step 3 destroys the structure of the lower triangular matrix,
which cannot be recovered during the forward substitution stage in Step 4, and therefore incurs a significant
additional computational cost, as reported in the column labeled as “SA LAPACK procedure” in Figure 3.

3.5 Key contribution

The cost of the approaches analyzed in Figure 3 is illustrated in Figure 7. Each curve reports, as a function of
nE , the ratio between the cost of that procedure and the cost of the LU factorization with partial pivoting for
a matrix with nB = 1000 with b = 32. The analysis shows that the overhead of the SA LINPACK procedure
is consistently low. On the other hand, as nE/n → 1 the cost of the basic procedure, which is initially twice
as expensive as that of the LU factorization with partial pivoting, decreases. The SA LAPACK procedure
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Algorithm:

»„
C
E

«–
:= FSsa−lin

blk

„„
L̄
D

«
, r,

„
C
E

««

Partition L̄→
„

L̄T

L̄B

«
, D → `

DL DR

´
, r →

„
rT

rB

«
, C →

„
CT

CB

«
,

where L̄T and CT have 0 rows, DL has 0 columns, and rT has 0 elements

while n(DL) < n(D) do
Determine block size b
Repartition
„

L̄T

L̄B

«
→
0
@

L̄0

L̄1

L̄2

1
A,
`

DL DR

´→ `
D0 D1 D2

´
,

„
rT

rB

«
→
0
@

r0

r1

r2

1
A,

„
CT

CB

«
→
0
@

C0

C1

C2

1
A,

where L̄1 and C1 have b rows, D1 has b columns,
and r1 has b elements

„
C1

E

«
:= P (r1)

„
C1

E

«

C1 := L̄−1
1 C1

E := E −D1C1

Continue with„
L̄T

L̄B

«
←
0
@

L̄0

L̄1

L̄2

1
A,
`

DL DR

´← `
D0 D1 D2

´
,

„
rT

rB

«
←
0
@

r0

r1

r2

1
A,

„
CT

CB

«
←
0
@

C0

C1

C2

1
A,

endwhile

Figure 6: SA-LINPACK blocked algorithm for the update of
(
CT , ET

)T consistent with the SA-LINPACK

blocked LU factorization of
(
UT , DT

)T .
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Figure 7: Overhead cost of the different approaches to compute the LU factorization in (2) with respect to
the cost of the LU factorization with partial pivoting.

incurs only a negligible overhead as nE → 0 (that is, when the dimension of the update is very small).
The key insight of the proposed approach is the recognition that combining LINPACK and LAPACK

styles of pivoting allows one to use a blocked algorithm while avoiding filling most of the zeroes in the lower
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Step Algorithm Cost
for k = 0 : N − 1

T-1 [Akk, pkk] := LUlap
blk(Akk) 2

3 t3 flops
for j = k + 1 : N − 1

T-2 Akj := FSlap(Akk, pkk, Akj) t3 flops
endfor
for i = k + 1 : N − 1

T-3

[(
Akk

Aik

)
, Lik, pik

]
:= LUsa−lin

blk

(
Akk

Aik

)
t3 flops

for j = k + 1 : N − 1

T-4

[(
Akj

Aij

)]
:= FSsa−lin

blk

((
Lik

Aik

)
, pik,

(
Akj

Aij

))
2t3 flops

endfor
endfor

endfor

Figure 8: Algorithm-by-blocks for the LU factorization with incremental pivoting. (Only leading term of
cost of each operation is listed.)

triangular part of U . This, in turn, makes the extra cost of Step 4 acceptable. In other words, for the SA
LINPACK procedure, the benefit of the higher performance of the blocked algorithm comes at the expense
of a lower-order amount of extra computation.

The extra memory required by the SA LINPACK procedure consists of an nB × nB upper triangular
matrix and an nB × b array.

4 An Algorithm-By-Blocks

In this section it is shown how the insights from the previous section can be used to implement an algorithm-
by-blocks for the LU factorization with incremental pivoting. Throughout this section we will consider a
matrix A of dimension n× n.

Assume for simplicity that n = Nt, where N is an integer, and consider the partitioning by tiles

A →




A00 · · · A0,N−1

...
. . .

...
AN−1,0 · · · AN−1,N−1


 ,

with all Aij of size t × t. Then the algorithm in Figure 8 is a generalization of the algorithm described in
Section 3 that computes the LU factorization of A with incremental pivoting. The algorithm is annotated
with the cost of each operation in terms of FLOPs.

The total number of FLOPs performed by the algorithm-by-blocks is approximately given by

N−1∑

k=0


2

3
t2 +

N−1∑

j=k+1

t3 +
N−1∑

i=k+1


t3 +

N−1∑

j=k+1

2t3





 ≈ 2

3

(n

t

)3

t3 =
2
3
n3.

Notice that that there is some flexibility in the order in which the loops are arranged. Indeed, the
SuperMatrix runtime system, described in Section 6.3, rearranges the operations and therefore the exact
order of the loops is not important.

In [6] it is claimed that a similar algorithm-by-blocks requires 50% additional FLOPs. Our analysis shows
this overhead can be avoided.
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Figure 9: Element growth in the LU factorization using different pivoting techniques.

5 Remarks on the Numerical Stability

The algorithm-by-blocks for the LU factorization with incremental pivoting carries out a sequence of row
permutations (corresponding to the application of pivots) which are different from those that would be
performed in an LU factorization with partial pivoting. Therefore, the numerical stability of this algorithm
is also different. In this section we offer some remarks on the stability of the algorithm-by-blocks.

The numerical (backward) stability of an algorithm that computes the LU factorization of a matrix A
depends on the growth factor [34]

ρ =
‖L‖‖U‖
‖A‖ , (3)

which is basically determined by the problem size and the pivoting strategy. For example, the growth
factors of complete, partial, and pairwise ([39, p. 236]) pivoting have been demonstrated to be bounded
as ρc ≤ n1/2(2 · 31/2 · · ·n1/n−1), ρp ≤ 2n−1, and ρw ≤ 4n−1, respectively [32, 34]. Statistical models and
extensive experimentation in [36] have shown that, on average, ρc ≈ n1/2, ρp ≈ n2/3, and ρw ≈ n. Thus,
in practice partial/pairwise pivoting are both numerically stable and pairwise pivoting can be expected to
numerically behave only slightly worse than partial pivoting.

The algorithm-by-blocks applies partial pivoting during the factorizations in steps T-1 and T-3. Fur-
thermore, tiles are annihilated pairwise in what can be considered a blocked (or tiled) version of pairwise
pivoting. Thus, we can expect an element growth for the algorithm-by-blocks that is between those of partial
and pairwise pivoting. In particular, if the tile size equals the problem size (t = n) our algorithm strictly
employs partial pivoting, while if t = 1 the algorithm employs pairwise pivoting. Next we discuss the results
of an experiment that provides evidence in support of this observation.

In Figure 9 we report the element growths observed during the computation of the LU factorization of
matrices of dimensions n = 500, 1000, and 1500, using partial (t = n), incremental (1 < t < n), and pairwise
pivoting (t = 1). The entries of the matrices are generated randomly, chosen from a uniform distribution
in the interval (0.0, 1.0). The experiment was carried out on an Intel Xeon processor using matlab R© 7.0.0
(ieee double-precision arithmetic). The results report the average element growth for 20 different matrices
for each matrix dimension. The figure shows that the growth factor of incremental pivoting is smaller than
that of pairwise pivoting and approximates that of partial pivoting as the tile size increases.

For those who are not sufficiently satisfied with the element growth of incremental pivoting, we suggest
performing a few refinement iterations of the solution to Ax = b as this guarantees stability at a low
computational cost [22]. We can combine this strategy with an estimation of the backward error ‖PA−LU‖1
a posteriori, at a cost of O(n2) FLOPs, to determine whether iterative refinement is actually needed.
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6 Tools

In this section we briefly review some of the tools that the FLAME project puts at our disposal.

6.1 The FLAME/C API

The algorithms presented in this paper require intricate modifications to the standard implementations. The
FLAME/C API allows the algorithms that are given in Figures 4 and 6 to be coded in the C programming
language such that the code closely reflects these algorithm [4], thereby greatly reducing the time required
for development of library routines.

6.2 FLASH

While many have studied the benefits of storing matrices by blocks [10, 15, 21, 28], the conventional approach
inherently engenders complex and unwieldy code implementations. Some researchers have tried to solve this
via programming language solutions [37, 40] while others view matrices as higher dimensional arrays to
capture the levels of blocking [1, 19].

We have observed that, conceptually, one naturally thinks of a matrix stored by blocks as a matrix
of submatrices. As a result, if the API encapsulates information that describes a matrix in an object, as
FLAME/C does, and allows an element in a matrix to itself be a matrix object, then algorithms over matrices
stored by blocks can be represented in code at the same high level of abstraction. This layering may be
instantiated recursively if multiple levels of hierarchy in the matrix are to be exposed. We call this extension
to FLAME/C the FLASH API [27]. Examples of how simpler operations can be transformed from FLAME
to FLASH implementations may be found in [7, 9].

6.3 SuperMatrix

Finally, we observed that, given an API that views matrices as composed of unit blocks and an algorithm
implemented using this API, the inner workings of the library can be changed so that instead of executing
operations over blocks, sub-operations can be enqueued as tasks and subsequently assembled into a directed
acyclic graph (DAG) that represents dependencies between sub-operations. The DAG can then be exploited
by a runtime system that dynamically schedules tasks for execution as dependencies are fulfilled. These two
phases—constructing the DAG (analyzer) and scheduling the tasks (scheduler/dispatcher)—can take place
transparently regardless of the algorithm used in the library routine.

To accomplish this, the subproblems within the sequential algorithm are replaced (via C preprocessor
macros) with function invocations that enqueue all pertinent information about the sub-operation on a global
task queue. Once all tasks are enqueued, the DAG is complete, and a separate function call initiates parallel
execution. When a task completes execution, all dependent tasks that use blocks updated by the recently
completed task are “notified”. Once a notified task has all of its dependencies fulfilled, it is marked as ready
and available and then enqueued at the tail of the waiting queue. Idle threads dequeue tasks from the head
of this second queue until all tasks have been executed. We call this extension to FLASH the SuperMatrix
runtime system since it allows out-of-order computation similar to machine instructions within superscalar
architectures [20]. For further details on SuperMatrix, see [7, 9, 30, 8, 31].

7 Experiments

In this section, we examine the three approaches for the LU factorization in order to assess the potential
performance benefits offered by the algorithm-by-blocks.

All experiments were performed on an SGI Altix 350 server using double-precision floating-point arith-
metic. This ccNUMA architecture consists of eight nodes, each with two 1.5 GHz Intel Itanium2 processors,
providing a total of 16 CPUs and a peak performance of 96 GFLOPs/sec. (96×109 floating-point operations
per second). The nodes are connected via an SGI NUMAlink connection ring and collectively provide 32 GB
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(32 × 230 bytes) of general-purpose physical RAM. The OpenMP implementation provided by the Intel C
Compiler served as the underlying threading mechanism used by SuperMatrix. Performance was measured
by linking to the BLAS in Intel Math Kernel Library (MKL) version 8.1.

We report the performance of the following four parallel implementations of the LU factorization:

• LAPACK dgetrf + multithreaded MKL. LAPACK 3.0 routine dgetrf (LU factorization) linked
to multithreaded BLAS in MKL 8.1.

• Multithreaded MKL dgetrf. Multithreaded implementation of routine dgetrf (LU factorization)
in MKL 8.1.

• AB + serial MKL. Our implementation of the algorithm-by-blocks, with matrices stored in tradi-
tional column-major order so that blocks are not contiguous, tasks scheduled using the SuperMatrix
run-time system, and linked to serial BLAS in MKL 8.1.

• AB + serial MKL + contiguous blocks. Our implementation of the algorithm-by-blocks, with
matrices stored in contiguous blocks, tasks scheduled using the SuperMatrix run-time system, and
linked to serial BLAS in MKL 8.1.

Remarkable performance results are reported in Figure 10. The matrix size (m = n) is reflected along the
x-axis and the y-axis is scaled such that the top of the graph represents the theoretical peak performance of
the system. When hand-tuning block sizes, an effort was made to determine the best values of inner blocking,
b and outer blocking t for all combinations of parallel implementations and BLAS. The algorithmic block
size used for LAPACK and parameter t for the indicated algorithm-by-blocks are reported in Figure 11. An
inner block size of 16 was used for all problem sizes by both algorithm-by-blocks implementations. The block
size used by MKL implementation of dgetrf is internally hidden in the library and unknown to us at the
time of this writing.

8 Conclusions

We have shown that an algorithm-by-blocks first developed for out-of-core computation can be easily con-
verted to a parallel algorithm that targets multithreaded architectures. By executing the algorithm with the
SuperMatrix runtime system on matrices stored by blocks, remarkable performance was attained relative to
LAPACK and MKL dgetrf implementations. Empirical evidence indicates that the element growth due to
incremental pivoting is likely to be reasonable, resulting in an algorithm that is only mildly less stable than
the traditional LU factorization with partial pivoting.

With this study, we have demonstrated the benefits of algorithms-by-blocks, coupled with the SuperMa-
trix runtime system, for all three major factorization operations: Cholesky factorization [7], QR factoriza-
tion [30], and now LU factorization. In addition, the benefits of algorithms-by-blocks and SuperMatrix for
the parallel implementation of the level-3 BLAS were discussed in [9], the inversion of a symmetric positive
definite matrix in [8], and the factorization of band matrices in [31]. Altogether, these papers suggest the
broad applicability of this approach toward the goal of retargeting libraries such as LAPACK and FLAME
to multithreaded architectures.

Possibly the most important contribution of this and previous related work is a practical demonstration
of the reduced programming burden required for implementing algorithms such as the one discussed in this
paper. With the tools provided by FLAME/C, FLASH, and SuperMatrix, the time required to take an
algorithm from whiteboard to high-performance parallel implementation may be measured in days rather
than weeks or months.
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