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We focus on how applications that lead to large dense linear systems naturally build matrices.
This allows us explain why traditional interfaces to dense linear algebra libraries for distributed
memory architectures, which evolved from sequential linear algebra libraries, inherently do not
support applications well. We review the application interface that has been supported by the
Parallel Linear Algebra Package (PLAPACK) for almost a decade, which appears to support
applications better. The lesson learned is that an application-centric interface can be easily
defined, deminishing the obstacles that exist when using large distributed memory architectures.
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1. INTRODUCTION

Application-centric interfaces to dense linear algebra libraries can greatly simplify
the task of porting a typical application that utilizes such libraries to distributed
memory architectures. The classic doctrine has been that if your library has the
right functionality and is fast, it will be used. A consequence of the doctrine has
been that the application interface to the library has typically been library-centric.
For sequential dense linear algebra libraries like the Linear Algebra Package (LA-
PACK), this doctrine led to obvious success: LAPACK is undoubtedly the most
widely used library for this problem domain. That this doctrine does not apply in
general is obvious from the frustration voiced by users of ScaLAPACK, the exten-
sion of LAPACK for distributed memory architectures [Choi et al. 1992; Anderson
et al. 1994]. It is by abandoning this doctrine and focusing on application-centric
interfaces to libraries that these shortcomings can be avoided without sacrificing
performance or functionality.
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The primary contribution of this paper is to prominently register the importance
of application-centric interfaces. Such interfaces greatly reduce the effort required
to parallelize complex applications and should therefore be a primary concern of
library developers. We demonstrate that they are easy to define and straightforward
to implement for the problem domain targeted by ScaLAPACK.

In Section 2 we analyze a prototypical application that gives rise to a large dense
linear system and propose an abstraction for parallelizing the generation of the
matrix. In Section 3 we show how the application interface of the Parallel Linear
Algebra Package (PLAPACK) [Alpatov et al. 1997; Baker et al. 1998; van de Geijn
1997; ] supports the abstractions needed to parallelize the prototypical application.
Related work is discussed in Section 4. Conclusions can be found in the final section.

2. ANALYSIS OF A PROTOTYPICAL APPLICATION

Practical applications solved using the Boundary Element Method (BEM) often
lead to very large dense linear systems1. The idea there is that by placing the dis-
cretization on the boundary of a three-dimensional object, the degrees of freedom
are restricted to a two-dimensional surface. In contrast, Finite Element Methods
(FEM) set degrees of freedom throughout the three dimensional object. The result-
ing reduction of degrees of freedom comes at a price: BEM elements have all-to-all
interaction, each element-element interaction defines a submatrix, all elements of
that submatrix are generated as unit, and the resulting matrix is typically complex
valued [Cwik et al. 1994; Demkowicz et al. 1992; Geng et al. 1996].

In Fig. 1 we show for a discretization with only two elements how the formation
of the global matrix is inherently additive. In the case of a 2D discretization (the
surface of a 3D object), more interfaces between elements occur and the mapping to
the global matrix is somewhat more complex, but the same principles apply. When
hp-adaptive discretization is used and/or the application involves multi-physics,
the number of degrees of freedom per element can be nonuniform, leading to local
matrices with nonuniform dimensions. In Fig. 3 we show how for a discretization
with N elements the linear system is computed via a double loop, each over all
elements.

The computation of the local submatrix inherently computes all ele-
ments of that submatrix simultaneously, rather than one element at a
time. Thus, computing the global matrix one element at a time is not
practical.

In Fig. 4 we show how conceptually the computation of the global matrix can
be parallelized. Here the I compute function returns true if and only if the node
with index me is to compute the row of blocks {Ai,0, . . . , Ai,N−1}. Since there is
relatively little data associated with the discretization and the physical parameters,
that data can be assumed to have been duplicated to all nodes.

There are two requirements for the approach in Fig. 4:

1New methods are increasingly being used to solve such problems iteratively. These methods
use the Fast Multipole Method (FMM) or other fast summation method to accelerate the matrix-
vector multiply. Nonetheless, many applications resort to solving such problems by forming a dense
linear system instead. Regardless, our example demonstrates how applications often interface to
dense solvers.
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Fig. 1. A simple discretization.
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Fig. 2. Contributions from the coupling between the two elements yield the global stiffness matrix.

A = 0
for i = 0, ..., N − 1

for j = 0, ..., N − 1

Compute coupling matrix A(i,j)

Add A(i,j) into A
endfor

endfor

Fig. 3. Simple look that computes all element-element interactions.

—Communication must occur in order to add each contributed submatrix A(i,j)

into the global, distributed matrix A.
—Ideally this communication is transparent to the application such that the ap-

plication is not required to explicitly receive the contributed submatrix (or any
entries of the submatrix) on the nodes that “own” those portions of the global,
distributed matrix.

We note that another important application that similarly generates contribu-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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A = 0
for i = 0, ..., N − 1

if I compute(i) == me then
for j = 0, ..., N − 1

Compute coupling matrix A(i,j)

Add A(i,j) into A (requires communication)
endfor

endif
endfor

Fig. 4. Simple (but effective) parallelization of the computation in Fig. 3.

tions to a global matrix is a sparse direct solver, where the matrix that corre-
sponds to the interface problem is filled with contributions from disjoint interior
regions [Edwards 1997].

3. AN EXEMPLAR APPLICATION INTERFACE

We now discuss an interface for filling matrices and vectors that has been suc-
cessfully employed by PLAPACK since its inception in 1997. We assume that the
reader is familiar with MPI and how it uses object-based programming [Snir et al.
1996], as well as the C programming language.

3.1 A simple example

We employ a simple example: Partition matrix A by columns, A =
(

a0 · · · an−1

)
.

Given p nodes, the code in Fig. 5 computes columns aj on node (j mod p) and
submits it for addition to a global matrix A. Details of the interface are

Line 4:. Global matrix A and related information (like its distribution) are en-
capsulated in the linear algebra object A, which is passed to the subroutine.

Line 15:. Initialize A to the zero matrix.
Lines 17 & 37:. These begin/end functions initiate and finalize the “behind

the scenes” communication mechanism that allows each node to perform indepen-
dent “submatrix add into global matrix” operations. These are global synchronous
function calls.

Lines 19 & 35:. These open/close functions first open the global matrix A to
local, independent submission (or extraction) of submatrices, and then resolves
all of the submissions into (or extractions from) A. These are global synchronous
function calls.

Line 21:. Create local space for a single column, local a j.
Lines 23–31:. Loop that fills columns and submits them for addition to the

global matrix. Column j is created on node (j mod p) and submitted to the global
matrix.

Line 29:. Submit column j for addition to the global matrix. Here n, 1 indi-
cates the dimension of the matrix being submitted (in this case a column); d one
indicates that 1.0 × local a j is to be added to the jth column of matrix A;
local a j is the address, locally, where the matrix being submitted resides; n is
the leading dimension of the array in which the matrix being submitted resides; A
is the descriptor of the global matrix; 0, j indicates that aj is to be added to the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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1 #include "mpi.h"

2 #include "PLA.h"

3
4 void create_problem( PLA_Obj A )

5 {

6 int n, me, nprocs, i, j;

7 double *local_a_j, d_one = 1.0;

8
9 PLA_Obj_global_length( A, &n ); /* Extract matrix dimension */

10
11 /* Extract this node’s rank and the total number of nodes */

12 MPI_Comm_rank( MPI_COMM_WORLD, &me );

13 MPI_Comm_size( MPI_COMM_WORLD, &nprocs );

14
15 PLA_Obj_set_to_zero ( A ); /* Initialize A = 0 */

16
17 PLA_API_begin(); /* Start of critical section for filling */

18
19 PLA_Obj_API_open(A); /* Open A for contributions */

20
21 local_a_j = (double *) malloc( sizeof( double ) * n );

22
23 for ( j=0; j<n; j++ ) {

24 if ( j%nprocs == me ){ /* if ( j mod nprocs ) == me fill column */

25 for ( i=0; i<n; i++ )

26 local_a_j[i] = ( double ) i + j*0.001; /* A(i,j) = i + j*0.001 */

27
28 /* A( 0:n-1,: ) = A( 0:n-1,: ) + local_a_j; */

29 PLA_API_axpy_matrix_to_global( n, 1, &d_one, local_a_j, n, A, 0, j );

30 }

31 }

32
33 free( local_a_j );

34
35 PLA_Obj_API_close(A); /* Close A for contributions */

36
37 PLA_API_end(); /* End of critical section for filling */

38 }

Fig. 5. A sample subroutine for filling a matrix A.

submatrix of A that has its top-left element at index (0, j) in matrix A. This call
is only made on the node that is submitting data. It is not a synchronous call.

Extracting data from a global matrix can be similarly accommodated.
The “add into” calls like the one on Line 29 merely submit contri-

butions. These contributions are not guaranteed to be resolved until the close
function (Line 35) is called for the global, distributed object A. The “behind the
scenes” communication mechanism for this submit & resolve strategy could have a
variety of implementations, depending upon the underlying communication library
(MPI-1, MPI-2, OpenMP, etc.) and performance considerations. Typically perfor-
mance focuses on minimizing the time-to-fill, i.e. minimize the time between the
begin & end operations (Lines 17 & 37) inclusively. Other performance considera-
tions could include memory overhead, or more significantly whether the overall fill

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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operation should be deterministic or is allowed to be nondeterministic.

3.2 Determinism: a performance trade-off

A deterministic fill operation would guarantee that if the global matrix A were
identically distributed, an identical set of local submatrix contributions were made,
and the application code is executed on an identical computer then the resulting
data in A will be identical. Consider the two following simple summations:

a =
N−1∑

i=0

xi versus b =
0∑

i=N−1

xi (reverse order).

For finite precision arithmetic a cannot be guaranteed to be equal to b due to the
roundoff resulting from a different ordering of contributions. Similarly, in order
to guarantee that a fill operation produces identical results (is deterministic), the
implementation must guarantee that the submatrix contributions are summed in
an identical order. Given the non-deterministic nature of a typical communication
mechanism (e.g. MPI), requiring the parallel fill operation to be deterministic
would cause the implementation to use more time and/or memory. For PLAPACK
this performance trade-off favored speed and as such does not require the parallel
fill operation to be deterministic.

3.3 Implementation history

The initial implementation of the PLAPACK Application Interface (1997) utilized
the Managed Message-Passing Interface (MMPI) [Edwards 1996], a package that
layers one-sided communication on top of the MPI-1 standard. This implementa-
tion was replaced in 1999 in order to minimize the number of messages (commu-
nication startup cost) while simultaneously ensuring that MPI would not run out
of buffer space. The current implementation accumulates submatrix contributions
on the local node and then generates a single MPI message from the contributing
node to the “owning” node that contains data from multiple contributions. Future
implementation improvements could include the use of pthreads or the one sided
communication mechanisms in the MPI-2 standard.

3.4 Performance Issues

Given that computation on dense matrices typically involves O(n3) operations and
that the communication of data to where it belongs in a global matrix inherently
involves O(n2) data, the cost of the communication is invariably negligible once
the matrix becomes large. What is important is that the work associated with
the computation of matrix entries is load-balanced among the nodes, something
that is conveniently facilitated by the demonstrated interface. We do not show
performance results.

4. RELATED WORK

The need for an application-centric interface to parallel distributed linear algebra
libraries was recognized by the authors over a decade ago [Edwards 1997] and
implemented in PLAPACK. In the same time-frame, other research & development
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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projects also recognized the importance of, and have acted upon, this need. To
mention a few:

• Global Arrays Toolkit [Nieplocha et al. 1996] at Pacific Northwest Laboratory,
• Portable, Extensible Toolkit for Scientific Computation (PETSc) [Balay et al.

1996; 1997] at Argonne National Laboratory, and
• Finite Element Interface (FEI) to solvers [Clay et al. 1999] at Sandia National

Laboratories,

All of these projects provide application-centric / application-friendly interfaces for
filling parallel distributed matrices and similarly for extracting submatrices.

Unfortunately ScaLAPACK, currently the most widely used dense linear algebra
library for distributed memory architectures, has yet to act upon the need for an
application-friendly interface. ScaLAPACK employs a two-dimensional block-cyclic
distribution of matrices to nodes. Applications must either build the matrix ac-
cording to this distribution, requiring the application programmer to understand
the intricate details of the distribution, or must build the matrix according to some
other distribution, after which a redistribution routine is provided. The fundamen-
tal problem is that both the ScaLAPACK native distribution and the distributions
that are supported by the redistribution routines have the property that each entry
in the matrix can only reside on one node. As a result, all communication required
to fill the matrix is the responsibility of the application, or, alternatively, redundant
computation must be performed. This interface is entirely library-centric, which
has led to considerable frustration among its users [LAPACK 2005].

5. CONCLUSION

The importance of an application-friendly interface to libraries cannot be under-
stated, especially in the setting of complex data structures for storing matrices.
The PLAPACK interface demonstrates that such an interface is easily defined and
implemented. The consequences of declining to address this need has been clearly
demonstrated by the frustrations of the users of ScaLAPACK.

The distribution of a dense matrix to a distributed memory architecture is only
one example of a complex data structure that stores matrices. Recently, the storage
of dense matrices by blocks (as opposed to column-major order) has become a
prominent research topic, since it is believe to better map to architectures with
complex multi-level memories. The complications of filling such matrices presents
challenges similar to those discussed in this paper. In [Low and van de Geijn 2004]
it is shown that an interface similar to the one proposed in this paper again yields
an application-friendly solution.
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