
Extracting SMP Parallelism for Dense Linear Algebra
Algorithms from High-Level Specifications

Tze Meng Low
Robert A. van de Geijn

Field G. Van Zee
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
{ltm,rvdg,field}@cs.utexas.edu

ABSTRACT
We show how to exploit high-level information, available
as part of the derivation of provably correct algorithms,
so that SMP parallelism can be systematically identi-
fied. Recent research has shown that loop-based dense
linear algebra algorithms can be systematically derived
from the mathematical specification of the operation.
Fundamental to the methodology is the determination
of loop-invariants (in the sense of Dijkstra and Hoare)
from which correct loops can be systematically derived.
We show how the high-level specification of the opera-
tion together with these loop-invariants can be exploited
to detect the independence of loop iterations. This in
turn then allows a Workqueuing Model to be used to
implement and parallelize the algorithms using a fea-
ture proposed for OpenMP 3.0, task queues. Although
performance is not the main feature of this paper, per-
formance is reported on a 4 CPU Itanium2 server for a
concrete example, the symmetric rank-k update opera-
tion.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel program-
ming; D.2.11 [Software Architectures]: Domain-specific
architectures; D.3.4 [Processors]: Code generation

General Terms
Algorithms, Design, Theory

Keywords
Formal derivation, linear algebra, code generation, SMP
Parallelism

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

1. INTRODUCTION
We describe a systematic way of generating provably

correct dense linear algebra implementations for SMP
systems from the mathematical (high level) specifica-
tion of the operation. Our method of generating these
implementations for SMP systems involves prescribed
steps: (1) We examine a high-level description of the op-
eration to determine if an algorithm with independent
iterations can exist. (2) If it is determined that there
can be an algorithm with independent iterations, we find
a loop-invariant where the corresponding algorithm has
independent iterations from the mathematical specifi-
cation of the operation. (3) We derive an algorithm
from the loop-invariant via the Formal Linear Algebra
Methodology Environment (FLAME) approach [5]. (4)
We translate the algorithm to code using the FLAME
API for the C programming language [2]. (5) We par-
allelize the sequential code by inserting task queue di-
rectives, a proposed construct for OpenMP 3.0 [11, 10,
7].

The primary contribution of the paper is in the the-
ory that allows us to perform Steps 1 and 2. In the
interest of making this paper self-contained, brief in-
troductions to FLAME and the the use of task queues
under the FLAME framework have been included. De-
tails regarding Steps 3 through 5 are described in the
literature.

Our approach towards extracting SMP parallelism is
very different from that taken by current compilers,
which analyze code in order to determine how iterations
can be parallelized. This typically requires indices into
arrays in order to perform dependence analysis on the
code. After determining whether a code can be paral-
lelized, the compiler will then perform program trans-
formations in order to transform the code into one that
has better parallelism [6, 12]. Instead, we analyze the
loop-invariant, which the FLAME approach to deriving
algorithms makes available to us.

We illustrate our implementation generation process
via a concrete example: the computation of the symmet-
ric rank-k update (SYRK). This operation is supported by
the Basic Linear Algebra Subprograms (BLAS) [3] and

is employed by algorithms for computing the Cholesky
factorization and reduction to tridiagonal form. More
importantly, the SYRK operation is representative of many
algorithms that are part of the BLAS and LAPACK and
that can be systematically derived via the FLAME ap-
proach.

This paper is organized as follows: In the following
section, we review FLAME as a means of deriving al-
gorithms from a high level specification of the problem.
Next, we describe how the use of task queues, a fea-
ture proposed for inclusion into OpenMP 3.0, allows us
to parallelize algorithms without having to deal with
intricate indexing. In Section 4, we discuss how to de-
termine a priori if algorithms can be parallelized using
task queues. We show performance resulting from the
use of task queues in Section 5. Concluding remarks are
given in the final section.

2. FLAME
FLAME is a methodology for deriving families of prov-

ably correct linear algebra algorithms[5, 1]. FLAME al-
lows users to reason about linear algebra algorithms at
a level that avoids the use of explicit indexing. This is
achieved by partitioning matrices into disjoint subma-
trices and casting the required updates as updates of
the various submatrices. We illustrate the process via a
concrete example.

2.1 Deriving an algorithm
Consider the SYRK operation, C := AAT +C, where C

is symmetric matrix stored in the lower triangular part
of matrix C, A is a general matrix, and we overwrite
the original value of C with the computed value. To
distinguish between the input and computed values of
C, we shall use C and Ĉ to denote the output and input
values, respectively.

To derive an algorithm for C := AAT + Ĉ, we first
partition C and A conformally in the following manner:

C →

�
CTL ∗

CBL CBR

�
, and A→

�
AT

AB

�
.

Here CTL and CBR are symmetric submatrices. The
thick lines are meant to indicate how the computation
proceeds through the data. The ∗ indicates the symmet-
ric part that is not stored. Upon completion, matrix C
should contain, in terms of the submatrices,�

CTL ∗

CBL CBR

�
≡

�
AT

AB

��
AT

AB

�T

+

ĈTL ∗

ĈBL ĈBR

!
.

This implies
CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ABAT

B + ĈBR

!
,

which we call the partitioned matrix expression (PME).
The PME gives all computation that must be per-

formed to compute C in terms of the submatrices. To

CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ĈBL CBR ≡ ĈBR

!
Loop-invariant 1

CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ĈBR

!
Loop-invariant 2

CTL ≡ ĈTL ∗

CBL ≡ ĈBL CBR ≡ ABAT

B + ĈBR

!
Loop-invariant 3

CTL ≡ ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ABAT

B + ĈBR

!
Loop-invariant 4

Figure 1: Four feasible loop-invariants for algo-
rithms that compute C := AAT + Ĉ.

derive a loop, we need a loop-invariant. A loop-invariant
should describe a state that is a partial result towards
the final result. The FLAME approach derives a loop-
invariant by removing some of the computation from
the PME. Some of these states will not yield valid loops.
Those that do we call feasible loop-invariants. For our
example, four feasible loop invariants are given in Fig. 1.

The process of deriving an algorithm from a specific
loop invariant via the FLAME approach is a systematic
process consisting of eight steps. We refer the reader
to [1] for details. Using the following loop-invariant,

CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ĈBR

!
the derivation process derives an algorithm to compute
C := AAT + Ĉ given in Figure 2. That figure shows a
blocked algorithm, which, for performance reasons, casts
most computation in terms of matrix-matrix products.

We believe the algorithm to be self-explanatory. In
short, the thick lines are used to show progress through
the matrices. Thin lines show submatrices that will be
updated and/or used. The function m(X) returns the
row dimension of matrix X. The reader may wish to
consult [1].

2.2 Translating the algorithm to code
Having derived an algorithm, a translation from the

algorithm into code is required. The FLAME APIs [2]
allow users to represent FLAME algorithms in code.
The correctness of the derived algorithm is captured in
its implementation by making the code look similar to
the algorithm that results from the derivation. This
is achieved by hiding details such as indices, storage

Algorithm: [D, E, F, . . .] := op(A,B, C, D, . . .)

Partition A→

�
AT

AB

�
, C →

�
CTL ∗

CBL CBR

�
where AT has 0 rows, CTL is 0× 0

while m(AT) 6= m(A) do
Determine block size b
Repartition�

AT

AB

�
→

0� A0

A1

A2

1A ,�
CTL ∗

CBL CBR

�
→

0� C00 ∗ ∗

C10 C11 ∗
C20 C21 C22

1A
where A1 has b rows, C11 is b× b

C11 := A1A
T

1 + C11

C21 := A2A
T

1 + C21

Continue with�
AT

AB

�
←

0� A0

A1

A2

1A ,�
CTL ∗

CBL CBR

�
←

0� C00 ∗ ∗
C10 C11 ∗

C20 C21 C22

1A
end while

Figure 2: Algorithm for computing C := AAT + Ĉ
that maintains loop-invariant 2.

methods, and matrix dimensions from the programmer
through the use of object based programming, similar to
that used in the Message Passing Interface (MPI) [13].
Currently, the FLAME APIs include APIs for Fortran,
C, and Matlab[8]. PLAPACK [14], an API for coding
linear algebra algorithms that targets distributed mem-
ory architectures, has also been extended to allow code
targeting those architectures to resemble FLAME algo-
rithms.

The FLAME/C API is a FLAME API for C. The im-
plementation of the derived algorithm in Figure 2 using
FLAME/C is shown in Figure 3. Notice that by us-
ing APIs that make the code look like the description
of the algorithm, the implementation does not include
intricate indexing.

A consequence of removing explicit loop coun-
ters is that traditional compiler approaches to
code analysis and automatic parallelization can-
not be applied to the resulting FLAME code.

3. OPENMP AND FLAME/C
Since the FLAME APIs do not encourage the use

of explicit loop counters, directives that are part of
OpenMP 2.0 do not allow us to easily generate code for
SMP systems. Fortunately, we can utilize the Workqueue-
ing Model introduced in [11, 10] to extract SMP par-
allelism [7]. A construct, the task queue, that sup-
ports this model has been proposed for inclusion into

OpenMP 3.0.

3.1 The Workqueueing Model
Conceptually, a taskq pragma creates an empty task

queue. Within the taskq block, tasks that can be en-
queued onto the task queue are identified by the task

pragma. A single thread executes the code within the
taskq block sequentially. Each time a task pragma is
encountered, a task is created and enqueued onto the
task queue. Other threads would then dequeue tasks
from the task queue and execute the tasks in parallel.

3.2 Parallelizing FLAME/C with OpenMP
task queues

In Figure 4, we present how task queue constructs
can be added to the FLAME/C implementation. We
highlight the following lines in the code:

• Line 16: The task queue is initialized.

• Line 31: This line indicates the start of a task
that is to be enqueued. Since the values of C11,
C21, A1 and A2 change with every iteration, we
need to preserve their values with the use of the
captureprivate directive.

• Line 35: This indicates the end of the task.

• Line 37: This indicates the end of the task queue.
An implicit synchronization of the threads is per-
formed to ensure that all tasks have been com-
pleted.

Notice that by inserting two lines of OpenMP direc-
tives, and a few curly-brackets, a sequential C code is
turned into code for SMP systems. However, in order to
parallelize code using task queues, the programmer has
the responsibility of ensuring that the tasks are indepen-
dent. Here we use the term update for the expressions
between the lines “/* ---- · · · ---- */”. Since a task
in Figure 4 is essentially all the updates in the loop,
it follows that to parallelize FLAME algorithms using
task queues, we need to ensure that (updates in) the
iterations of the loops are independent. In other words,
we need to ensure that the result of updates in previ-
ous iterations are not needed by computations in future
iterations and data required by computations in future
iterations are not overwritten by updates of previous
iterations.

As mentioned previously, compilers use indices to an-
alyze the code to determine if the iterations of the loop
being parallelized are independent. However, since APIs
are used to capture the correctness of a FLAME al-
gorithm, the lack of indices require us to analyze the
FLAME/C code via other means.

4. DETERMINING INDEPENDENCE OF
ITERATIONS A PRIORI

The purpose of using APIs to implement a FLAME
algorithm is to ensure that the code is similar in ap-
pearance to the algorithm. Therefore, an analysis of

1 int Syrk_blk(FLA_Obj A, FLA_Obj C, int nb_alg)
2 {
3 FLA_Obj AT, A0,
4 AB, A1,
5 A2;
6

7 FLA_Obj CTL, CTR, C00, C01, C02,
8 CBL, CBR, C10, C11, C12,
9 C20, C21, C22;

10

11 int b;
12

13 FLA_Part_2x1(A, &AT,
14 &AB, 0, FLA_TOP);
15

16 FLA_Part_2x2(C, &CTL, &CTR,
17 &CBL, &CBR, 0, 0, FLA_TL);
18

19 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){
20

21 b = min(FLA_Obj_length(AB), nb_alg);
22

23 FLA_Repart_2x1_to_3x1(AT, &A0,
24 /* ** */ /* ** */
25 &A1,
26 AB, &A2, b, FLA_BOTTOM);
27

28 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,
29 /* ************* */ /* ******************** */
30 &C10, /**/ &C11, &C12,
31 CBL, /**/ CBR, &C20, /**/ &C21, &C22,
32 b, b, FLA_BR);
33

34 /*--*/
35

36 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
37 ONE, A2, A1, ONE, C21);
38

39 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
40 ONE, A1, ONE, C11);
41

42 /*--*/
43

44 FLA_Cont_with_3x1_to_2x1(&AT, A0,
45 A1,
46 /* ** */ /* ** */
47 &AB, A2, FLA_TOP);
48

49 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,
50 C10, C11, /**/ C12,
51 /* ************** */ /* ****************** */
52 &CBL, /**/ &CBR, C20, C21, /**/ C22,
53 FLA_TL);
54

55 }
56

57 return FLA_SUCCESS;
58 }

Figure 3: FLAME/C implementation of the algorithm in Figure 2.

1 int OMP_Syrk_blk(FLA_Obj A, FLA_Obj C, int nb_alg)
2 {
3 FLA_Obj AT, A0,
4 AB, A1,
5 A2;
6 FLA_Obj CTL, CTR, C00, C01, C02,
7 CBL, CBR, C10, C11, C12,
8 C20, C21, C22;
9 int b;

10

11 FLA_Part_2x1(A, &AT,
12 &AB, 0, FLA_TOP);
13 FLA_Part_2x2(C, &CTL, &CTR,
14 &CBL, &CBR, 0, 0, FLA_TL);
15

16 #pragma intel omp parallel taskq
17 {
18 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){
19 b = min(FLA_Obj_length(AB), nb_alg);
20

21 FLA_Repart_2x1_to_3x1(AT, &A0,
22 /* ** */ /* ** */
23 &A1,
24 AB, &A2, b, FLA_BOTTOM);
25 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,
26 /* ************* */ /* ******************** */
27 &C10, /**/ &C11, &C12,
28 CBL, /**/ CBR, &C20, /**/ &C21, &C22,
29 b, b, FLA_BR);
30 /*--*/
31 #pragma intel omp task captureprivate(C11, A1, A2, C21)
32 {
33 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A2, A1, ONE, C21);
34 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11);
35 } /* end of task */
36 /*--*/
37 FLA_Cont_with_3x1_to_2x1(&AT, A0,
38 A1,
39 /* ** */ /* ** */
40 &AB, A2, FLA_TOP);
41 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,
42 C10, C11, /**/ C12,
43 /* ************** */ /* ****************** */
44 &CBL, /**/ &CBR, C20, C21, /**/ C22,
45 FLA_TL);
46 }
47 } /* end of task queue */
48 return FLA_SUCCESS;
49 }

Figure 4: OpenMP implementation of the algorithm in Figure 2.

the algorithm is equivalent to an analysis of the code.
In addition, since the algorithm is derived from the loop-
invariant, the loop-invariant is the essence of the algo-
rithm. The PME describes the operation to be com-
puted and the loop-invariant describes the algorithm
being used. It follows that by analyzing the PME and
the loop-invariant, we analyze the code but at a higher
level of abstraction and with more information than tra-
ditional code presents to a traditional compiler.

In this section, we describe how an analysis of the
PME and the loop-invariant allows the a priori determi-
nation of the independence of iterations of a FLAME al-
gorithm. We assume throughout that the reader under-
stands the meaning of true dependence, anti-dependence
and output dependence as described in the compiler lit-
erature.

4.1 Relating the PME, loop-invariant, and
dependences

Recall that the PME is a specification of the opera-
tions in terms of partitioned operands. It tells us how
data from different parts of the input matrices are used
to compute the different submatrices of the output ma-
trix. By studying the flow of data in the PME, we are
essentially performing data dependence analysis on the
PME. In addition, because the thick lines both indicate
movement through the matrix and partition the ma-
trix into submatrices, a dependence between submatri-
ces could potentially be a dependence across iterations.
In order to determine whether a dependence between
submatrices is a dependence between loops, we have to
study the loop invariant.

A loop-invariant is a description of a partial result to-
wards the computation described by the PME. In par-
ticular, it states which part of the matrix has been com-
puted and which part will be computed later. A loop-
invariant, by definition, must be true at the start of
every iteration. Therefore, any submatrix of the out-
put matrix that has a computed value must have been
computed in previous iterations and any submatrix that
still contains the original value must be updated in fu-
ture iterations. Therefore, if a dependence between two
submatrices is such that one submatrix has a computed
value and the other will be updated in future iterations,
then we know that that dependence occurs between it-
erations. Furthermore, if the loop-invariant is such that
there exists one submatrix with an partial result, we
know that there exists a dependence between iterations.
This is because the same matrix was partially updated
in previous iterations but will have to be updated again
in future iterations.

Consider a PME for the operation, C = AAT + Ĉ,
given below:

CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ABAT

B + ĈBR

!
Notice that in order to compute CTL, only data from
ĈTL and AT are needed. Therefore, we can conclude
that CTL does not depend on any other submatrices of
C being computed first. A similar analysis of the other

submatrices of C shows that the values in ĈTL and the
result of CTL are not needed in the computation of the
other submatrices. This indicates that the submatrices
of C can be computed independently and in any order.

For the SYRK example: (1) The thick lines are sep-
arators that divides the submatrices of C into two dis-
joint sets, those that were computed in previous itera-
tions and those to be computed in future iterations. (2)
The loop-invariant describes which submatrices of C be-
long to which of the two sets. (3) Since the submatrices
can be computed independently, we know that no result
of previous iterations are needed to compute the result
of future iterations. For this example we can therefore
conclude that the iterations must be independent.

4.2 Conditions necessary for independent
iterations

Now, let us attempt to generalize the above analysis,
for a typical operation C := op(A,C) where A repre-
sents all matrices whose values are read but not written
to. Due to the lack of space, we will only show general
results for the case where there is one output matrix
and the matrix is partitioned as follows:

C →

�
CTL CTR

CBL CBR

�
.

How matrix A is partitioned is not important for this
analysis since it will not change in value. Since the out-
put matrix is partitioned into four quadrants, it follows
that the PME and loop-invariant each must have four
quadrants as well. Let the PME and loop-invariant for
the operation be�

CTL ≡ PMETL CTR ≡ PMETR

CBL ≡ PMEBL CBR ≡ PMEBR

�
and�

CTL ≡ INVTL CTR ≡ INVTR

CBL ≡ INVBL CBR ≡ INVBR

�
where PMEX and INVY are mathematical functions de-
fined on matrices and X, Y ∈ {TL, TR, BL, BR}, re-
spectively. PMEX has the general form

PMEX(A, ĈTL, . . . , ĈBR).
In addition, let REMX be a mathematical function

such that

PMEX ≡ REMX(INVX)

, in other words, REMX represents the remaining com-
putation to be performed on quadrant X.

We begin our generalization with some definitions.
Definition 1. The state of a quadrant X, denoted

σ(X), can be catagorized into

1. Fully Updated. σ(X) is fully updated if and only
if PMEX ≡ INVX and REMX is the identity func-
tion.

2. Partially Updated. σ(X) is partially updated if

PMEX 6= INVX and INVX 6= ĈX .

3. Not Updated. σ(X) is not updated if INVX ≡ ĈX

and REMX is not the identity function.

Since every algorithm derived using the FLAME ap-
proach has a corresponding loop-invariant, we need to

know what properties of the loop-invariant are necessary
and sufficient in order to conclude that the derived al-
gorithm has independent iterations. We start with two
lemmas, stating properties a loop-invariant must pos-
sess in order to derive an algorithm with independent
iterations.

Lemma 1. If an algorithm derived using the FLAME
approach has independent iterations, each quadrant in
the loop-invariant must either be fully updated or not
updated.

Proof: A proof by contradiction is used. Assume that
quadrant X in the loop invariant is partially updated.
By definition, INVX was computed in previous itera-
tions and REMX must be performed on INVX in future
iterations in order compute PMEX . Therefore, the iter-
ations cannot be independent. Q.E.D. �

Lemma 2. If an algorithm derived using the FLAME
approach has independent iterations and there exists a
dependence between quadrants X and Y in the PME,
then quadrants X and Y in the loop-invariant must ei-
ther both be fully updated or both be not updated.

Proof: Assume that an algorithm has independent it-
erations and there exists a dependence between quad-
rants X and Y in the PME. In addition, assume that
σ(X) 6= σ(Y). Without loss of generality assume that
the dependence between X and Y is such that X has
to be computed before Y . Using Lemma 1, we can con-
clude that σ(X) is fully updated while σ(Y) is not up-
dated. This implies that quadrant X was computed in
previous iterations while quadrant Y is to be computed
in future iterations. Since there is a dependence between
X and Y , it follows that there must be a dependence
between previous and future iterations. Therefore, the
algorithm cannot have independent iterations and thus
we have a contradiction. Q.E.D. �

Theorem 1. An algorithm derived from a feasible
loop-invariant will have independent iterations if and
only if the loop-invariant possesses the following prop-
erties

1. Every quadrant in the loop-invariant must either
be fully updated or not updated.

2. If there exists a dependence between quadrants X
and Y in the PME, then quadrants X and Y in the
loop-invariant must either both be fully updated or
both be not updated.

Proof: Lemmas 1 and 2 show that both properties are
necessary. We now show that these properties are suf-
ficient to show the independence of iterations. Assume
that an algorithm and its associated loop-invariant have
the two properties but there exists a dependence be-
tween iterations. We employ proof by contradition to
show that true dependence, anti-dependence and output
dependence cannot exist.

True Dependence: Assume that the de-
pendence between iterations is a true depen-
dence. Let X and Y be dependent such that

the result of X is required to compute the
result of Y . Since the true dependence oc-
curs across iterations, X must be computed
in previous iterations while Y must be com-
puted in future iterations. This implies that
σ(X) is fully updated whereas σ(Y) is not
updated. This contradicts the property that
if two submatrices are dependent then they
have to be in the same state. Therefore,
there cannot be a true dependence between
iterations.

Anti-Dependence: Assume that the de-
pendence between iterations is an
anti-dependence. In a typical iteration, sub-
matrix X is updated with the original value
in another submatrix Y . Since the
anti-dependence is across iterations, it must
follow that submatrix Y is updated in some
iteration in the future. Therefore, we can
conclude that at the end of the current iter-
ation, σ(X) is fully updated whereas σ(Y) is
not updated. This contradicts the property
that if two submatrices are dependent then
they have to be in the same state. Therefore,
there cannot be an anti-dependence between
iterations.

Output Dependence: Assume that there
exists an output dependence between itera-
tions. By definition, a submatrix, X, is writ-
ten with a certain value in one iteration and
another value is stored in the X in future it-
erations. This correspond to the σ(X) being
partially updated. Since the loop-invariant
can only have quadrants that are either fully
updated or not updated, it follows that there
are not output dependence between itera-
tions.

Since there cannot be true dependence,
anti-dependence and output dependence across itera-
tions, then it follows that the iterations must be inde-
pendent. Therefore, we have proved that the two prop-
erties are sufficient to show that the derived algorithm
has independent iterations. Q.E.D. �
4.3 (Non-)existence of algorithms with in-

dependent iterations
Given that a data dependence analysis of the PME is

the first step in determining dependences between sub-
matrices of the PME, we show how performing data
dependence analysis on the PME allows us to a priori
determine the (non-)existance of algorithms.

Again, we start with a definition.
Definition 2. Two sets of submatrices, S0 and S1,

are said to be independent if

• S0 ∩ S1 = ∅

• For any X ∈ S0 and Y ∈ S1, there exists no de-
pendence between X and Y .

Theorem 2. If the submatrices of a PME cannot be
divided into two or more independent sets of submatri-
ces, then every algorithm whose loop-invariant is ob-
tained by removing sub-expressions from the PME will
have dependent iterations.

Proof: We again prove this with a proof by contradi-
tion. Assume that the submatrices of the PME cannot
be divided into two or more independent sets of sub-
matrices. In addition, assume that there exists a loop-
invariant that is obtained by removing sub-expressions
from the PME but the corresponding algorithm has in-
dependent iterations. We want to show that such an
algorithm cannot exist.

Since the algorithm has independent iterations, The-
orem 1 allows us to conclude that the loop-invariant has
the property that submatrices that have a dependence
between them must be of the same state. Since the PME
cannot be divided into two independent sets, then there
exists dependences between the four quadrants. There-
fore, all four quadrants of the loop-invariant must be in
the same state. This implies that either all four quad-
rants of the loop invariant are fully updated or not up-
dated. In both cases, the loop-invariant is infeasible and
thus the algorithm with independent iterations cannot
exist. Q.E.D. �

An example of an operation whose PME cannot be
separated into two independent sets of submatrices is
the solution to the triangular Sylvester equation, a com-
monly encountered problem in Control Theory [9]. Con-
sider the equation AX + XB == C where A, B and C
are input matrices such that A and B are triangular ma-
trices and X is the output matrix. If A and B are both
lower triangular matrix and we partition all matrices as
follow:

A

�
ATL 0

ABL ABR

�
, B

�
BTL 0

BBL BBR

�
,

C

�
CTL CTR

CBL CBR

�
, and X

�
XTL XTR

XBL XBR

�
,

we obtain the PME in Figure 5.
Notice that XBL is required to compute XTL and

XBR while XTL and XBR are needed to compute XTR.
Therefore, it is not possible to split the submatrices of X
into two independent sets. Thus, Theorem 2 allows us
to conclude that no iterative algorithm that solves the
triangular Sylvester equation can be parallelized with
the mechanism as described in the previous section.

4.4 Another example
Let us now discuss a slightly more complex example

than the SYRK operation. Let L and U be a lower
triangular matrix and an upper triangular matrix re-
spectively. Consider the operation U := UL. Letting Û
denote the original contents of U and partitioning

L→

�
LTL 0

LBL LBL

�
, and U →

�
UTL UTR

0 UBR

�
,

the PME for this operation is given by
UTL ≡ ÛTLLTL + ÛTRLBL UTR ≡ ÛTRLBR

UBL ≡ ÛBRLBL UBR ≡ ÛBRLBR

!
.

Notice that ÛTR is required to compute the top two
quadrants while ÛBR is required to compute the bot-
tom two quadrants. This means that there are anti-
dependences between quadrants on the same row. How-
ever, the rows are independent. By separating the quad-
rants of the PME into {TL, TR} and {BL, BR}, we
have separated the quadrants into two independent sets.
More importantly, there are no other ways of separat-
ing the PME into two independent sets. Therefore, we
know that there could be algorithms with independent
iterations that compute U := UL. A list of feasible
loop invariants to compute U := UL is shown in Fig-
ure 6. As theory predicts, only algorithms that compute
U row-wise have independent iterations.

5. PERFORMANCE
We re-emphasize that this is not a paper about per-

formance. As such, we do not compare the performance
obtained against other implementations. Nonetheless,
we report performance to show that good performance
can be achieved easily. Performance for a 4 CPU In-
tel Itanium2(R) (1.5GHz) server with a peak perfor-
mance of 6 GFLOPS per processor, for a total peak
of 24 GFLOPS, is reported. The Intel C compiler was
used, since it supports the task queue construct that are
proposed for OpenMP 3.0. Double precision (64 bits)
arithmetic was used in all computation. The implemen-
tations were linked to the BLAS libraries by Kazushige
Goto [4]. A block size of 104, known to yield good per-
formance from the general matrix-matrix multiplication
routine (DGEMM) in Goto’s BLAS, was used in our exper-
iments. For C ∈ Rm×m and A ∈ Rm×k the operation
count for computing C := AAT + C (lower triangular
part only) is taken to equal m2k floating point oper-
ations (flops). We report the rate of computation as
GLOPS = m2k/(time in sec.) ∗ 10−9.

Blocked algorithms for all four loop-invariants given
in Fig. 1 were implemented using FLAME/C. The calls
FLA Gemm and FLA Syrk were implemented as wrappers
to the BLAS routines DGEMM and DSYRK, respec-
tively.

The performance results are shown in Figure 7. The
top of the graph correspond to the theoretical peak per-
formance of the machine. Notice that for all four algo-
rithms, we obtained an approximately linear speed-up
as we increase the number of threads to that of the
number of processors on the system. The performance
behavior of the different implementations is quite dif-
ferent. It is interesting to note that the algorithms
corresponding to loop-invariants 1 and 4 are the same
loop, but executed in reverse order. In [7], the authors
show that the variations in behavior across variants can
be explained by the scheduling properties inherent in
OpenMP task queues. The algorithms corresponding
to loop-invariants 2 and 3 are similarly identical but for

�
XTL ≡ Ω(ATL, BTL, CTL −ATRXBL) XTR ≡ Ω(ATL, BBR, CTR − ATRXBR −XTLBTR)

XBL ≡ Ω(ABR, BTL, CBL) XBR ≡ Ω(ABR, BBR, CBR −XBLBTR)

�
where X ≡ Ω(A, B, C) represents the solution to AX + XB == C.

Figure 5: PME for the triangular Sylvester equation where A and B are lower triangular matrices.

Loop Invariant Independent Type of
Iterations? Dependence

UTL ≡ ÛTLLTL UTR ≡ ÛTR

UBL ≡ ÛBL ≡ 0 UBR ≡ ÛBR

!
No Output

UTL ≡ ÛTLLTL + ÛTRLBL UTR ≡ ÛTR

UBL ≡ ÛBR ≡ 0 UBR ≡ ÛBR

!
No Anti

UTL ≡ ÛTLLTL + ÛTRLBL UTR ≡ ÛTRLBR

UBL ≡ ÛBL ≡ 0 UBR ≡ ÛBR

!
Yes -N.A.-

UTL ≡ ÛTLLTL UTR ≡ ÛTR

UBL ≡ ÛBRLBL UBR ≡ ÛBR

!
No Output & Anti

UTL ≡ ÛTLLTL + ÛTRLBL UTR ≡ ÛTR

UBL ≡ ÛBRLBL UBR ≡ ÛBR

!
No Anti

UTL ≡ ÛTLLTL + ÛTRLBL UTR ≡ ÛTRLBR

UBL ≡ ÛBRLBL UBR ≡ ÛBR

!
No Anti

UTL ≡ ÛTL UTR ≡ ÛTR

UBL ≡ ÛBRLBL UBR ≡ ÛBRLBR

!
Yes -N.A.-

UTL ≡ ÛTRLBL UTR ≡ ÛTR

UBL ≡ ÛBRLBL UBR ≡ ÛBRLBR

!
No Output & Anti

UTL ≡ ÛTRLBL UTR ≡ ÛTRLBR

UBL ≡ ÛBLLBL UBR ≡ ÛBRLBR

!
No Output

Figure 6: Feasible loop-invariants for the operation U := UL

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

loop-invariant 1 loop-invariant 2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

loop-invariant 3 loop-invariant 4

Figure 7: Performance Graphs for algorithms derived from different loop invariants.

the order of the loop. The lower performance attained
by algorithms corresponding to loop-invariants 3 and 4
as compared to those with loop-invariants 2 and 1 is ei-
ther due to the implementation of dgemm or due to false
sharing of data. For additional details and performance
results, we refer the reader to [7].

6. CONCLUSION AND FUTURE DIREC-
TIONS

In this paper, we described how implementations of
dense linear algebra algorithms for SMP systems can
be systematically obtained. The use of the FLAME ap-
proach allows one to derive provably correct dense lin-
ear algebra algorithms from a high level of specification.
Task queues enable code to be parallelized without the
use of an explicit loop index. We discussed conditions
for which the PME and loop-invariants must have in
order to derive algorithms with independent iterations.
By applying dependence analysis on the PME, we can

determine a priori if the operation can be parallelized.
The FLAME approach to deriving and implementing

linear algebra operations have been shown to apply to
a large number of operations in linear algebra [5, 1].
We believe that both the implementation/parallelizing
process and the analysis of both the PME and loop-
invariants can be similarly applied to algorithms derived
and implemented using the FLAME approach.

More can be done through the analysis of the PME
and the loop-invariants. Consider the two loop-invariants

CTL ≡ AT AT

T + ĈTL ∗

CBL ≡ ABAT

T + ĈBL CBR ≡ ĈBR

!
and

CTL ≡ ĈTL ∗

CBL ≡ ĈBL CBR ≡ ABAT

B + ĈBR

!
,

which correspond to loop-invariants 2 and 3 in Fig. 1.
The loop-invariant on the left computes C column-wise,
starting from the left. The loop-invariant on the right
computes C in the reverse order, column-wise starting

from the right. In compiler terminology, the relation be-
tween the two corresponding algorithms is a loop trans-
formation called loop reversal. From the performance
graphs in Fig. 7, it is clear that the ability to choose
the correct direction in which to execute the loop can
greatly affect the performance of the resulting code. A
sufficient condition for loop reversal to be applied to a
loop is that the iterations of the loop are independent.
The ability to determine independent iterations from
the loop-invariant and PME allows us to view loop re-
versal as a function for mapping one loop-invariant to
another. We believe that other loop transformations,
such as loop fusion and fission, can be similarly related
to and performed on loop-invariants. The ability to ap-
ply loop transformations to loop-invariant allows us to
simplify the required analysis for performing the trans-
formation within the FLAME framework while leverag-
ing the knowledge from the compiler community so as
to pick the loop-invariant that should yield better per-
formance on a given machine. We are currently investi-
gating applying loop transformations to loop-invariants
instead of to code.

Further information
For additional information regarding the FLAME project,
visit

http://www.cs.utexas.edu/users/flame/.

Acknowledgments
The OpenMP task queue construct was brought to our
attention by Dr. Timothy Mattson (Intel). This was
the key insight that has allowed us to avoid the reintro-
duction of indices.

This research was partially sponsored by NSF grants
ACI-0305163 and CCF-0342369. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation

The 4 CPU Itanium2 (1.5 GHz) server on which the
experiments were conducted was generously donated to
our research by Hewlett-Packard and is administered by
UT-Austin’s Texas Advanced Computing Center. We
also thank Dr. Andrew Chapman and Thuan Cao (both
with NEC Solutions (America), Inc.) for their technical
advice.

We would like to thank our collaborators Paolo Bi-
entinesi, Thierry Joffrain, Dr. Kent Milfeld, and Prof.
Enrique Quintana-Ort́ı for their contributions to parts
of this work.

7. REFERENCES
[1] Bientinesi, P., Gunnels, J. A., Myers, M. E.,

Quintana-Ort́ı, E. S., and van de Geijn,

R. A. The science of deriving dense linear algebra
algorithms. ACM Transactions on Mathematical
Software 31, 1 (Mar. 2005).

[2] Bientinesi, P., Quintana-Ort́ı, E. S., and

van de Geijn, R. A. Representing linear algebra
algorithms in code: The FLAME application

programming interfaces. ACM Transactions on
Mathematical Software 31, 1 (Mar. 2005).

[3] Dongarra, J. J., Du Croz, J., Hammarling,

S., and Duff, I. A set of level 3 basic linear
algebra subprograms. ACM Transactions on
Mathematical Software 16 (1990), 1–28.

[4] Goto, K., 2004.

[5] Gunnels, J. A., Gustavson, F. G., Henry,

G. M., and van de Geijn, R. A. Flame: Formal
linear algebra methods environment. ACM
Transactions on Mathematical Software 27, 4
(2001), 422–455.

[6] Lim, A. W., and Lam, M. S. Maximizing
parallelism and minimizing synchronization with
affine partitions. Parallel Comput. 24, 3-4 (1998),
445–475.

[7] Low, T. M., Milfeld, K., van de Geijn, R.,

and van Zee, F. Parallelizing flame code with
openmp task queues. Tech. Rep. TR-2004-50, The
University of Texas at Austin, Department of
Computer Sciences, 2004.

[8] Moler, C., Little, J., and Bangert, S.

Pro-Matlab, User’s Guide. The Mathworks Inc.,
1987.

[9] Quintana-Ort́ı;, E. S., and van de Geijn,

R. A. Formal derivation of algorithms: The
triangular sylvester equation. ACM Trans. Math.
Softw. 29, 2 (2003), 218–243.

[10] Shah, S., Haab, G., Petersen, P., and

Throop, J. Flexible control structures for
parallelism in openmp. In First European
Workshop on OpenMP (2002).

[11] Shah, S., Haab, G., Peterson, P., and

Throop, J. Flexible control structures for
parallelism in OpenMP. In First European
Workshop on OpenMP (1999).

[12] Singhai, S., and McKinley, K. A
parameterized loop fusion algorithm for improving
parallelism andcache locality, 1997.

[13] Snir, M., Otto, S. W., Huss-Lederman, S.,

Walker, D. W., and Dongarra, J. MPI: The
Complete Reference. The MIT Press, 1996.

[14] van de Geijn, R. A. Using PLAPACK: Parallel
Linear Algebra Package. The MIT Press, 1997.

