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Abstract

In a previous PPoPP paper we showed how the FLAME method-
ology, combined with the SuperMatrix runtime system, resué
simple yet powerful solution for programming dense lindgebara
operations on multicore platforms. In this paper we providéher
evidence that this approach solves the programmabilitylpro
for this domain by targeting a more complex architecturen-co
posed of a multicore processor and multiple hardware aatels
(GPUs, Cell B.E., etc.), each with its own local memory, lesu
ing in a platform more reminiscent of a heterogeneous bisted-
memory system. In particular, we show that the FLAME program
ming model accommodates this new situation effortlesslyhabd
no significative change needs to be made to the codebasemdl c
plexity is hidden inside the SuperMatrix runtime schedyinech-
anism, which incorporates software implementations afidzed
cache/memory coherence techniques in computer archiéetiu
improve the performance. Our experimental evaluation on-a |
tel Xeon 8-core host linked to an NVIDIA Tesla S870 platform
with four GPUs delivers peak performances around 550 and 450
(single-precision) GFLOPS for the matrix-matrix produntighe
Cholesky factorization, respectively, which we believeb the
best performance numbers posted on this new architecture.

Categories and Subject Descriptors D.m [Softwaré: Miscella-
neous

General Terms Algorithms, Performance

Keywords GPUs, algorithms-by-blocks, dependency analysis,
dynamic scheduling, out-of-order execution

1. Introduction

The limitations of current VLSI technology and the desir¢réms-
form the ever-increasing number of transistors on a chipatéd
by Moore’s Law into faster computers has led most hardwane-ma
ufacturers to design multicore processors and/or speethlard-
ware accelerators [19]. In response, the computer sciesroenc-
nity is beginning to embrace (explicit) parallel programmas the
means to exploit the potential of the new architectures Htw
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to program these new architectures easily and efficientlyakey
that will determine their success or failure. Given thah@sctures
have recently bifurcated and no vendor can even predict déat
sign will dominate five to ten years from now, the design ofifiéx
programming solutions is as important as it ever has been.

Dense linear algebra has been traditionally used as a piogee
area to conduct research on the performance of new aralmiésct
and this continues with the recent advent of multicore pgsces
and hardware accelerators like GPUs and Cell B.E. The inadit
approach in this problem domain, inherited from the sohgio
adopted for shared-memory multiprocessors years agosésn
the use of multithreaded implementations of the BLAS [26 15].
Code for operations constructed in terms of the BLAS (e.g, fo
solving a linear system or a linear least-squares problatmaet all
the parallelism at the BLAS level. Thus, the intricaciesftit@ntly
utilizing the target architecture are hidden inside the Bl.And the
burden of its parallelization lies in the hands of a few ekpaith
a deep knowledge of the architecture. More recently, the MEA
PLASMA, and SMPSs projects [11, 12, 13, 31, 30, 32, 33, 9, 8, 4]
have advocated for a different approach, extracting thalledism
at a higher level, so that only a sequential tuned implentiemnta
of the BLAS is necessary and more parallelism is detected and
exploited. Cilk [27] is a precursor of these projects thdtesad
from not being able to deal with dependencies well. FLAME and
PLASMA both focus on dense linear algebra, with the former
working at a higher level of abstraction (much in the spifit o
object-oriented programming), while the target domainSMPSs
is more general.

In the last years, specialized hardware accelerators ssich a
graphics processors (GPUs), Field Programmable Gate #\(Fi3-
GAs), and the Cell B.E. have also attracted the interesteftidt
velopers of dense linear algebra libraries [25, 24, 18, 20337].
Squeezing these architectures for performance is regeiddielf as
a task of complexity similar to that of developing a highiynéad
implementation of the BLAS for a sequential processor, Wiyp-
ically requires very low-level coding.

The next evolutionary step has been the construction and use
of systems with multiple accelerators: NVIDIA offers nodeith
multiple Tesla processors (GPUSs) in the Tesla series which ¢
be connected via PCI-Express to a workstation and AMD/ATI
has recently built a similar system, IBM Cell B.E. processare
currently available in the form of blades or PCI-Expresstaator
boards, and ClearSpeed PCI-Express boards are furnistied® wi
CSX600 processors. The natural question that arises gidhisis
how to program these multi-accelerator platforms.

For systems with multiple GPUs, a possibility explored ii][3
is to distribute the data among the video memory of the GPUs
and code in a message-passing style similar to that of therids



ScalLAPACK and PLAPACK [14, 36]. We identify two hurdles for in [37]), and measuring the time to transfer the data in both
this approach: cases, a super-linear speed-up of 5.51 is obtained for the
¢ While the state-of-the-art numerical methods have notgéan largest problem size.
following this approach will require a complete rewrite efge Overall, a (sin o
. X i . X " , gle-precision) peak performance of 460
linear algebra libraries (alike the redesign of LAPACK farp GFLOPS is attained on the Tesla platform for a more elabo-

allel distributed-memory architectures that was done & th ; : it :
” rate matrix operation, the Cholesky factorization, witnco
ScaLAPACK and PLAPACK projects). Therefore, a large pro- plex data dependencies.

gramming effort and a considerable amount of funding will be

necessary to cover a functionality like that of LAPACK. Note The rest of the paper is structured as follows. Section 2 em-
that coding at such low level can be quite complex and experts Ploys the Cholesky factorization of a dense matrix to offer a
are in short supply. brief overview of FLAME, the key to easy development of high-

performance dense linear algebra libraries that undediigsap-
proach for multi-accelerator platforms. Section 3 deswibow
the tools in FLAME accommodate for the parallel execution of
dense linear algebra codes on these platforms almostle§sigt.
More elaborate techniques are presented in Section 4 &geith
their corresponding performance results. Finally, a fenctiding
remarks summarize the results in Section 5.

The product that is obtained as a result of this style of ogr
ming will likely exhibit a parallelism similar to that of lifaries
based on multithreaded implementations of the BLAS and far
from that demonstrated by the dynamic scheduling techsique
in the FLAME, PLASMA, and SMPSs projects. While look-
ahead techniques [34] can increase the scalability of tiis s
tion to a certain extent, they do so at the cost of a much added
complexity.

Our approach in this context is fundamentally differentpta-
vifousft;\jvapers [1|1, 13, 13,h3]a 3(;), 3%, 33(}, we gavefalq overview 2. TheFLAME Approach to Developing Dense
of software tools and methods developed as part of the FLAME : : :

project, and we show how, when applied to a platform with mul- Linear AlgebraLibraries

tiple cores/processors, they provide an out-of-the-bdutiem that Following [10], in this paper we will consider the Choleslacfor-
attains high performance almost effortlessly. The keyiliemain- ization of ann x n symmetric positive definite matriA to illustrate
taining a separation of concern between the code and tancjgt a our approach. In this operation, the matrix is decompostxtire
tecture by leaving the parallel execution of the operatiorthie productA = LL”, whereL is then x n lower triangular Cholesky
hands of a runtime system. The advantages of this approach ar factor. (Alternatively,A can be decomposed ds= U7 U, with U
twofold: being upper triangular.) In traditional algorithms fordfiactoriza-

e When a new platform appears, itis only the runtime systemn tha tion, L overwrites the lower triangular part of while the strictly
needs to be adapted. The routines in the library, which tteflec upper triangular part remains unmodified. Here, we dendseath
the numerical algorithms, do not need to be modified. A:={L\A} = CHOL(A).

Key elements of FLAME are the high-level notation for ex-
pressing algorithms for dense and banded linear algebratiqes,
the formal derivation methodology to obtain provably cotral-
gorithms, and the high-level application programming rifatees
(APIs) to transform the algorithms into codes. FLASH and Su-
perMatrix are also important components of FLAME that addre
storage of matrices by blocks and automatic decomposifi¢in-o
memory multiprocessor. This architecture model is repriese €2 @lgebra codes into tasks and dynamic scheduling of thske
tive of a platform consisting of workstation connected tdtinu to multlthreadgd archltectures .(ba5|callly, SMP and moiléqro-
ple NVIDIA or AMD/ATI GPUs, IBM Cell B.E. blades, Clear- cessors). In this section, We briefly review these elements.
Speed boards, etc.

We give a practical demonstration that the FLAME program- 2.1 FLAME: Formal Linear Algebra Methods Environment
ming model easily accommodates for this generic multi-acator

e The parallelism is orchestrated by a runtime system which ca
be adapted to exploit different architectures.
While still focused on th@rogrammabilityof the solution, this
paper makes the following new contributions:
¢ We target a fundamentally different architecture, coimgjsof
a multicore processor connected to multiple hardware accel
ators, which features properties of an heterogenous lulisdl-

4 : s A o The fundamental innovation that enabled FLAME is the notati
architecture, while not requiring a significant modificatiof for expressing dense and banded linear algebra algoriffigige 1
the contents of the library. (left) shows a blocked algorithm for computing the Cholefdg-
We describe how we tailor the runtime system for this generic torization using the FLAME notation.
multi-accelerator architecture by incorporating softevam- The formal derivation methodology consists of a seriesefist
plementations of cache/memory coherence techniques fromwhich, when systematically applied, yield families of aigfums
SMP platforms. Altogether, these techniques provide a soft (multiple algorithmic variants) for computing an operatif21,
ware distributed-shared memory (DSM) layer, which allows 20, 6]. The significance of this for scientific computing isth
to view the multi-accelerator architecture as a shared-ongm  often different algorithmic variants deliver higher perfance on
multiprocessor. Our experimental results show that thegiee different platforms and/or problem sizes [7, 29]. This dation of
of this layer does not decrease performance for large prable  algorithms has also been made mechanical [5].
The FLAME/C API for the C programming language captures
the notation in which we express our algorithms. Using thid,A
) o the blocked algorithm on the left of Figure 1 can be transémm
* A single-precision peak performance of 550 GFLOPS (1 into the C code on the right of that figure. Note the close resem
GFLOPS =10" floating-point arithmetic operations, or  plance between algorithm and code. As indentation playsran i
flops, per second) is attained for the matrix-matrix prod- porting role in making the FLAME/C code look like the algbuit,
uct using four G80 processors. Compared with the best im- \ve recommend the use of a high-level mechanical tool like the

plementation of the matrix-matrix product on a single G80 Spark webpagel{ttp://www.cs.utexas.edu/users/flame/
GPU (that of CUBLAS 2.0, based on the implementation spark/) which automatically yields a code skeleton.

e We report high performance on an NVIDIA Tesla multi-GPU
platform with four G80 processors:



Algorithm: A := CHOL_BLK_VAR1(A)

Partition A —

Aty ATR)

Apr|ABR
where Arr is0 x 0

while m(Aryr) < m(A) do
Determine block size b
Repartition

Ago | Ao1 | Aoz

A A
(A_TLIALR) — | Ao A11|A12
BLI1<BR Ao | A1 | A2z

where Aj1isb x b

)

FLA_Error FLA_Chol_blk_varl( FLA_Obj A, int nb_alg )

{
FLA_Obj ATL, ATR, A0O, AO1,
ABL, ABR, A10, A11,
A20, A21,
int b;
FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR,

while ( FLA_Obj_length( ATL ) <
b = min( FLA_Obj_length(ABR),
FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR,
/% rkokkkkkokkokkkok ok / /*

&A00,

A02,
A12,
A22;

0, 0, FLA_TL );

FLA_Obj_length( A ) ) {
nb_alg );

/*x/ &AO1, &AO2,

&A10,
ABL, /**/ ABR, &A20,

/*

*/
/*x/ &A11, &A12,

/**/ &A21, &A22, b, b, FLA_BR );

FLA_Chol_unb_vari( Al1 );

*/

FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

Aqq = {L\A}11 = CHOL_.UNB(A11)
A21 = Lo1 = A21Lf1T
Agy 1= Agg — Lo1 LT, = Agp — A1 AT

/

FLA:TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A21 );

FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21, FLA_ONE, A22 )

Continue with

Ago [ Ao1 | Aoz
<3TL 3TR) — | Aro|A11]A12
BLI<BR Azo | A21 | A2z

endwhile

}
return

}

[* rkckkkokskokokkkkokokk ok /
&ABL, /*%/ &ABR,

/

FLA_Cont_with_3x3_to_2x2(
&ATL, /**/ &ATR,

A00, AO1, /*x/ AO2,

A10, A11, /*x/ A12,
/% sokskokskokskokskokskokskokskokskok ok /

A20, A21, /*x/ A22, FLA_TL );

FLA_SUCCESS;

Figure 1. Blocked algorithm for computing the Cholesky factorizatiteft) and the corresponding FLAME/C implementation [ty

2.2 Storage-by-blocksusing FLASH

Algorithms-by-blockg17] view matrices as collections of sub-
matrices and express their computation in terms of thesmaub
trix blocks. Algorithms are then written as before, excepthw
scalar operations replaced by operations on the blockboAgth
a number of solutions have been proposed to solve this prob-
lem [22, 35, 38], none of these have yielded a consistentadeth
ology that allows the development of high-performancealilas
with functionality that rivals those of LAPACK or FLAME. The
problem is primarily one oprogrammability

Our approach to the problem views the matrix as a matrix of
smaller matrices using the FLASH API. This view thus yields
a matrix hierarchy, potentially with multiple levels. Coder
an algorithm-by-blocks for the Cholesky factorizationngsithe
FLASH API is given in Figure 2 (left). It may seem that the
complexity of the algorithm is merely hidden in the routines
FLASH Trsm andFLASH_Syrk. The abbreviated implementation of
an algorithm-by-blocks for the former is given in Figure Bfit)
while the latter routine has a similar implementation. Thader
can see here that many of the details of the FLASH implemen-
tation have been buried within the FLASH-aware FLAME object
definition.

2.3 SuperMatrix runtime system

SuperMatrix extracts the parallelism at a high level of edugion,
decomposing the operation into tasks, identifying the ddpa-
cies among these, scheduling them for execution when redby (
operands available/dependencies fulfilled), and mappasgst to
execution units (cores/accelerators) taking into accthmttarget
platform. All of this is done without exposing any of the dita
of the parallelization to the application programmer. Thecess
of this approach has been previously reported in a numbea-of p
pers [11, 12, 13, 31, 30, 32, 33].

Further details on the operation of SuperMatrix will be sHu
trated in the next two sections as the strategy to adapt intalé-
accelerator platform is exposed.

3. Adapting FLAME to Platformswith Multiple
Accelerators

Much work on NVIDIA G80 graphics processors and the IBM Cell
B.E. view these accelerators as multicore architectur&s 23]
and exploit the parallelism at this level. Our approach fiedént

in that we view one of these accelerators as the equivaleat of
single core, for which a tuned “serial” implementation gi€sific
kernels of the level 3) BLAS is available; our analog of a ricaite
processor is then a system with multiple accelerators. \&etore
exploit parallelism at two levels: at a high level, the prese of
multiple accelerators (G80 processors or Cell B.E.) is eskid by
SuperMatrix. At the low level, parallelism within the 128 ero-
cores of a G80 or the 8 SPUs of a single Cell B.E. is extracted by
the BLAS. We hereafter do not pursue further this second leive
parallelism and assume the existence of a tuned implen@mtait
the BLAS.

Our generic multi-accelerator platform consists of a wtaks
tion, possibly (but not necessarily) with a multicore CPUn<
nected to multiple hardware accelerators through a fastdan-
nect. Processors in the accelerator boards are passivergkethat
simply wait to be ordered what to do. The workstation RAM (sim
ply RAM from now on) and the memory in the accelerator boards
are independent and no hardware memory coherence mechianism
in place (though having one would certainly benefit our appho
as will be reported in the experiments). Communication keetw
the CPU and the accelerators is done via explicit data cdgges
tween memories. Communication between two acceleratorgys
possible through the RAM and is handled by the CPU. This abistr
model is general enough to accommodate a workstation ctethec
to a multi-GPU platform or containing multiple boards witkelC
B.E. or ClearSpeed processors.

The SuperMatrix runtime computes the Cholesky factoriza-
tion by executing the algorithm-by-blocks in Figure 2 (Jeft two
stages, both executed at run time. During d@helysis stagea sin-
gle thread “symbolically executes” the algorithm code, instead
of computing operations immediately as they are encoutetre
simply annotates these in a queue of pending tasks. Thisshapp



FLA_Error FLASH_Chol_by_blocks_varl( FLA_Obj A )

{
FLA_Obj ATL, ATR,
ABL, ABR,

A00, AO1, AO2,
A10, A11, A12,
A20, A21, A22;
FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );
while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {
FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR,
/% kskskskokskokskokskokokok ok /

&A00, /**/ &AO1, &A02,

/* */

&A10, /**/ &A11l, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR );

/ /

void FLASH_Trsm_rltn( FLA_Obj alpha, FLA_Obj L,
FLA_Obj B )
/* Special case with mode parameters
FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
)

Assumption: L consists of one block and

B consists of a column of blocks */
{
FLA_Obj BT, BO,
BB, B1,
B2;
FLA_Part_2x1( B, &BT,
4BB, 0, FLA_TOP );

while ( FLA_Obj_length( BT ) < FLA_Obj_length( B ) ) {

FLASH_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21,
FLA_ONE, A22 )
/ /
FLA_Cont_with_3x3_to_2x2(
&ATL, /**/ ZATR,

A00, AO1, /*x/ AO2,
A10, A11, /*x/ A12,
/% skokokskokskokokokokskokokokokokok ok k /
A20, A21, /*x/ A22,

/% ksskskokskokskokskokskokokok ok /
&ABL, /**/ &ABR,

} }
return FLA_SUCCESS;
¥

FLA_Chol_unb_var1( FLASH_MATRIX_AT( A11 ) ); FLA_Repart_2x1_to_3x1( BT, &BO,
FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR, /x xk% %/ /% K% %/
FLA_TRANSPOSE, FLA_NONUNIT_DIAG, &B1,
FLA_ONE, Ail1, BB, B2, 1, FLA_BOTTOM );
A21 ); / /

FLA_TL ); }

FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
alpha, FLASH_MATRIX_AT( L ),
FLASH_MATRIX_AT( B1 ) );
/ /

FLA_Cont_with_3x1_to_2x1( &BT, BO,
B1,
/% xk %/ /* *x %/
&BB, B2, FLA_TOP );

Figure2. FLASH implementation of the Cholesky factorization and ¢beresponding triangular system solve.

inside the calls t€LA_Chol unb_varil, FLA Trsm, FLA_Syrk, and
FLA_Gemm encountered in the routin@8ASH_Chol by _blocks_varl,
FLASH_Trsm, andFLASH_Syrk. As operations are encountered in
the code, tasks are enqueued, dependencies are identifibd, a
DAG (directed acyclic graph) that contains all the depenEn
among operations of the overall problem is constructed.|lWis-i
trate the outcome of this first stage, the execution of théyaisa
when the code in Figure 2 is used to factorize 3he 3 blocked
matrix

z§00 f§01 f?oz
A — 410 411 {112 ) (1)
Az Ao Aao

results in the “DAG” implicitly contained in Figure 3.

Once the DAG is constructed, tliispatch stageeommences.
In the SuperMatrix runtime for multithreaded architecyrille
threads monitor the queue of pending tasks till they find & tas
ready for execution (that is, an operation with all operaadssil-
able), compute it, and upon completion, update the depegdan
formation in the queue. It is the part of the runtime systespoa-
sible for the execution of this second stage that we tailonfolti-
accelerator platforms as described next, while the parange of
the analysis remains unmodified.

Specifically, in ourbasic implementatiorwe run as many
threads in the CPU as accelerators are present in the syateem
a thread encounters a ready task, it copies the data assbuidah
the operation to the memory of the accelerator, orders ibhoaite
the operation using the appropriate BLAS kernel, and texaghe
results back to RAM. We are exposing here a hybrid model of ex-
ecution where the CPU is responsible for scheduling taskketo
accelerators while tracking dependencies, and the aatetsiper-
form the actual computations. In this hybrid model, tasks #re
considered not suitable for execution in the acceleratoe,(é.g.,
to their low complexity or the lack of the appropriate BLAS kel)

Operation/Result In Infout
1. Ago := CHOL(Ago) Aoor/
2. A1g 1= A1pTRIL(A00) ™" ||A0o A10v/
3. Agg 1= Az TRIL(A00) ™" ||A0o Ao/
4. A11 := An—A10A7, A1o A1/
5. Ag1 := Ag1—A20 AT, Ag0|A10 JA21 v/
6. Agg := Aga—A0 AT, A2 Ag2+/
7. A11 := CHOL(A17) A11
8. Ag1 == A1 TRIL(A11) " ||A1 Ao
9. Agg 1= Aga—A21 AT} A1 Ao
10. Agg := CHOL(A29) Aoo

Figure 3. An illustration of the DAG resulting from the execu-
tion of the SuperMatrix analysis stage for the Choleskydact
ization of a3 x 3 matrix of blocks in (1) using the algorithm-
by-blocksFLASH_Chol_by_blocks_varl. The “\/"-marks denote

those operands that are initially available (i.e., thoserapds that

are not dependent upon other operations).

can be executed in the CPU. (Hybrid CPU/GPU computation has
been previously explored in [2, 3, 10, 37].) Given that thgana
computational cost is performed by the accelerators irsithieme,
the existence of multiple cores in the CPU, though advisableot
necessary.

Obviously, this basic implementation incurs an undesgaigyh
amount of data transfers between RAM and the memories of the
accelerators so that, unless the cost of communicatiorgigjitae,



it will surely attain a low practical performance (at thisimio we
encourage the reader to have a quick glimpse at the linecldlael
“Basic implementation” in Figure 4). In the following semti we
improve the mechanism by including software cache and mgmor
coherence techniques to reduce the number of transfers.

4. Improvingthe Performance
4.1 Cacheand memory coherence
Standard policies in computer architecture to maintaincibteer-

ence between data in the cache of a processor and the main mem-

ory arewrite-through (writes to data are immediately propagated
to main memory) andvrite-back(data in the main memory is up-
dated only when the cache line where the modified data lie-is re
placed) [23]. On shared-memory multiprocessors, politiesain-
tain coherence among the caches of the processovgideeupdate
(writes to data by one of the processors are immediatelygyaied

to the copies in the caches of the remaining processors)vatet

invalidate(writes to data by one of the processors invalidate copies

of that cache line in the remaining processors) [23].
These policies all aim at reducing the number of data trassfe

between the cache of the processors and the main memory. Now,

at a high level of abstraction, a shared-memory multiprezess
similar to a workstation connected to multiple accelesat&ach
one of the accelerators is the equivalent of one processir wi
the memory of the accelerator playing the role of the pramess

cache. The workstation RAM is then the analog of the shared-6

memory in the multiprocessor. It is not surprising then thatcan
employ software implementations of standard coherencieips!
to reduce the number of data transfers between the memohg of t
accelerators and the RAM of the workstation.

4.2 Application to the multi-accelerator platform

The target platform used in the experiments was an NVIDIAdes
S870 computing system with four NVIDIA G80 GPUs and 6
GBytes of DDR3 memory (1.5 GBytes per GPU), which exhibits
a theoretical peak performance close to 1400 GFLOPS inesingl
precision. The Tesla system is connected to a workstatitmtwb
Intel Xeon QuadCore E5405 processors executing at 2.0 Gtz wi
9 GBytes of DDR2 RAM. The Intel 5400 chipset provides two PCI-
Express Genz2 interfaces, for a peak bandwidth of 48 Gbitsree
on each interface, to connect with the Tesla. NVIDIA CUBLAS
(version 2.0) built on top of the CUDA API (version 2.0) tolget
with NVIDIA driver (171.05) were used in our tests. MKL 1010.
was employed for all computations performed in the Intel Xeo
cores. Single precision was employed in all experiments.
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Figure 4. Performance of blocked algorithms for the matrix-

matrix product (top) and the Cholesky factorization (botiaising

variants A, B, C, and D of the runtime system and the four G80

processors of the Tesla S870.
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When reporting the rate of computation, we consider the cost

of the matrix-matrix product and the Cholesky factorizatto be
the standar@n® andn®/3 flops, respectively, for square matrices

of ordern. The GFLOPS rate is computed as the number of flops

divided byt x 10~°, wheret equals the elapsed time in seconds.

Figure5. Cyclic 2-D mapping of the blocks in the lower triangular
part of a4 x 4 blocked mapping to the four G80 processarsy,
G0, Go1, andGi;.

The cost of all data transfers between RAM and GPU memories is

included in the timings.

The top and bottom plots in Figure 4 respectively report tre p
formance of a blocked implementation of the matrix-matnigdg
uct and the blocked algorithm for the Cholesky factorizatio
Figure 2 (right), using several variants of the SuperMatuixtime
system and all four G80 processors of the Tesla. Unlesswither
stated, the enhancements described next are incremeritadtsa
variant includes a new strategy plus those of all previowesoAl-
though we describe the differences between variants usoggiyn
examples from the Cholesky factorization, the same holdsh®
matrix-matrix product. Four variants are evaluated in thar:

A. Basicimplementation: This variant corresponds to the imple-
mentation of the runtime system described in Section 3.én th

matrix-matrix product all operations are performed in tH&0G
processors. For the Cholesky factorization, the diagoloakis

are factorized by the Xeon cores of the CPU while all remajnin
computations (matrix-matrix products, symmetric rankip-
dates, and triangular system solves) are performed in tle G8
processors. FLASH provides transparent storage-by-blémk
the data matrix with one level of hierarchy. The block size is
adjusted experimentally.

B. 2-D + write-through: In order to improve data locality (and
therefore reduce the costly data transfers between the rgemo
of the GPUs), workload is distributed following a cyclic 2-
D mapping of the data matrix to 2 x 2 logical grid of the



G80s; see Figure 5. (bidimensional workload distributiothie
context of shared-memory multiprocessors has been prayiou
investigated in [28].) In this scheme all operations thampate

results which overwrite a given block are mapped to the same

G80 processor. Thus, e.g., in the Cholesky factorizati@n th
updatesflgl = 12121 — AQOA?@ and[lm = AmTRIL(Au)iT
are both performed id7o;. Blocks are thus classified from the
viewpoint of a G80 processor into proprietary (ownedvritten

by it; “owner-computes” rule) and non-proprietary.

Initially all data blocks reside in the RAM and the memory of

the GPUs is empty. When a task is to be computed in a G80

processor, blocks which are not already there are copidukto t
GPU memory. Proprietary blocks remain in that memory for
the rest of the execution of the algorithm while non-projarig

blocks are discarded as soon as the operation is completed. A

write-through policy is implemented in software to maintai

the coherence between the proprietary blocks in the memory

of the GPU and the RAM so that any update of a proprietary
block is immediately propagated to the RAM. There is no need

to maintain the coherence between the memory of the GPUs
and the RAM for non-proprietary blocks as these are read-

only blocks. Following the previous example for the Cholesk
factorization, when the task which performs the updaie :=
Ag1 — Az ATy is to be computed aBo1, blocks As1, Aso,
and A,y are copied to the memory of this GPU; the update
is computed and the new contents 4§, are propagated to
RAM. Block A»; then remains in the GPU memory while the
contents ofdsy and Ay are discarded. Latter, whefls;
AxnTRIL(A1) " is to be computed, onlyl;; is copied to the
GPU memory asis; is already there. Once this second update
is computed, following the write-through policy the updhte
contents ofd,; are sent back to RAM and; is discarded.

Other workload distributions (block row-wise, block colom
wise and cyclic variants) are easily supported by the ruatim
system and, more important, are transparent to the devedépe
the algorithms. In our experiments, no major differencesewe
found for the matrix-matrix product and the Cholesky factor
ization between the performance of the (cyclic) 2-D workloa
distribution reported in the figure and those of cyclic bloow-
wise/column-wise layouts.

C. Cache + write-invalidate: The previous strategy reduces the
number of transfers from RAM to GPU memory of blocks that
are modified, but still produces a large amount of transférs o
read-only blocks. In this variant we implement a softwarehea
of read-only blocks in each GPU memory to maintain recently
used blocks. With this mechanism in place for the Cholesky
factorization, e.g., whet1o solves the linear systemso :
410TR|L(AOO)7T and 12130 = AgoTRIL(AQQ)iT, a copy of
Aqo is transferred from RAM to the cache in the GPU memory
before the first linear system is solved and remains theréaéor
solution of the second linear system, saving a second gansf
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Figure6. Performance of the algorithms-by-blocks for the matrix-

matrix product (top) and the Cholesky factorization (botiaising

four G80 processors, the implementation of the matrix-inatod-

uctin CUBLAS 2.0 on one G80 processor, and the implemenmtatio

of both operations in MKL 10.0.1 using all eight Xeon cores.

0

the memory of the GPUs and the RAM. Thus, blocks written
by a G80 processor are updated in the RAM only when a differ-
ent G80 (or the GPU) is to compute with them. (Software cache
for read-only blocks and the write-invalidate policy aril gt
place.)

When the execution of the complete algorithm is terminated,
the data matrix in the RAM must be updated with the contents
of the blocks that have been updated in the memory of the GPU.
In summary, the coherence policies and use of cache imple-
mented in variants B, C, and D all aim at reducing the number of

To complement the cache system, when a task which updatesdata transfers among the different memories present inyitera
a given block is completed, the thread in the CPU in charge of (minimize communication time) while the 2-D distributionnsues

its execution invalidates all read-only copies of that klocthe
memory of the “remaining” GPUs (write-invalidate policy).

The replacement policy, currently LRU (least recently used
first), and the number of blocks per cache can be easily mddifie
in the runtime system.

D. Write-back: The purpose now is to reduce the number of trans-
fers from the memory of the GPUs to RAM that occur when

a balanced distribution of the work load. A trace of the exiecu
reveals that, from variant A to D, (the number of) block tfens
from RAM to the memory of GPUs for the largest problem sizes is
reduced from 4096/32760 to 256/2431 for the matrix-matrodp
uct/Cholesky factorization, while the block transferstia bpposite
direction are reduced from 12288/11440 to 1280/819. Hezeafl
results will refer to variant D of the runtime system.

In Figure 6 we compare the performances of the algorithms-by

(proprietary) blocks are updated by the G80 processors. For plocks for the matrix-matrix product and Cholesky factatian

this, write-through is abandoned in favor of a write-back po
icy which allows inconsistencies between proprietary kéoa

with those of optimized implementations of these operation
current high-performance platforms:



e Algorithms-by-blocks on four G80 processors: Our algorithms-

by-blocks for the two operations, combined with variant D of

the runtime system, and executed on the Tesla platform using

the four G80 processors.

e Algorithms-by-blocks on a single G80 processor: Our
algorithms-by-blocks for the matrix-matrix product andoBsky
factorization executed on a single G80 processor of theaTesl|
platform.

e CUBLAS sgemm 0On a single G80 processor: Implementation
of this routine in CUBLAS 2.0 and executed on a single G80
processor. To be consistent with the previous two algosthm
the time to transfer the data from RAM to the memory of the
GPUs and retrieve the results is included.

e MKL sgemm/spotrf on two Intel Xeon QuadCore: Multi-
threaded MKL 10.0.1 implementation of the corresponding
BLAS/LAPACK routines executed on all eight cores of a work-
station with two Xeon Quad-Core processors (details giten a
the beginning of the section).

The results show that the Tesla S870 combined with the &lhoori
by-blocks offers a notable GFLOPS rate when compared wéth th
multicore architecture.

Figures 7 and 8 evaluate the scalability and report the speed
up of the algorithm-by-blocks. No bottlenecks are reveatethe
scalability experiment: the performance of the systemdiitean-
proves as the number of G80 processors is increased and larg
problem sizes report higher execution rates. The speea+epsal-
culated comparing the performance attained by the algosithy-
blocks using 2—4 G80 processors with that of executing sdme a
gorithm on a single G80 processor. For the largest problemndi
the matrix-matrix product, remarkable speed-ups of 1.&3l,2and
3.21 are attained using 2, 3, and 4 G80 processors. Compdited w
the implementation of the matrix-matrix product in CUBLA® 2
and including the time of data transfer between RAM and GRé#J, t
corresponding super-linear speed-ups are 3.14, 4.31,.8hdFor
the largest Cholesky factorization, the results show sjgsdof
1.83, 2.55, and 3.25 using respectively 2, 3, and 4 G80 psoces

5. Conclusions

In this paper we have shown how separation of concerns Ileads t
great flexibility while reducing complexity when portingpresen-
tative dense linear algebra algorithms to novel architestuBy
separating the API for coding algorithms-by-blocks, the pathe
runtime system that builds a DAG of operations and tracksléhe
pendencies, and the architecture-aware part of the rurgystem
that executes operations with blocks, different schedutiauris-
tics were shown to be easy to implement, allowing custoritinab
what otherwise would have been a hostile environment: astark
tion connected to a multi-GPU accelerator. The particuléicdity

of the setting is the fact that the local memory of the GPU is no
shared with the host making it necessary to carefully amettie
cost of data transfers.

While the experiments on the paper discuss specifically the
multi-GPU NVIDIA Tesla system, the techniques clearly asoa
applicable to a similar setting where a standard workgstaiso
connected via a fast network to multiple ClearSpeed bo#Bdd,
Cell B.E. accelerators, AMD/ATI GPUs, etc.

Remarkable rates of execution are demonstrated for théxmatr
matrix product and the Cholesky factorization operatiomifar
results have been obtained for other important BLAS opamatas
the solution of triangular linear systems and the symmeanidk+
update.
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Figure 7. Scalability of the algorithms-by-blocks for the matrix-
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1, 2, 3, and 4 G80 processors.

Additional information

For additional information on FLAME visitttp://www.cs.
utexas.edu/users/flame/.
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