
UPDATING AN LU FACTORIZATION AND ITS APPLICATION TOSCALABLE OUT-OF-CORE �THIERRY JOFFRAINy , ENRIQUE S. QUINTANA-ORT��z, AND ROBERT VAN DE GEIJNyAbstrat. How to ahieve a salable out-of-ore implementation of the LU fatorization whilemaintaining numerial stability akin to partial pivoting is a deades-old question. Here we use theterm salable to mean that performane is maintained as the matrix size grows well beyond available(in-ore) memory. We show how partitioning the matrix into tiles and restriting the permutationof rows to be between at most two suh tiles ahieve these goals. The resulting method enables thesolution of large-sale problems using limited omputational resoures and/or redues the ost of anarhiteture by reduing the amount of memory that needs to be purhased. An implementation usingthe Formal Linear Algebra Methods Environment (FLAME) Appliation Programming Interfae(API) is desribed. Performane experiments demonstrate high performane on an Intel Itanium2 rbased server.Key words. LU fatorization, Out-of-Core algorithms, linear systems, pivoting.AMS subjet lassi�ations. 65F05, 65Y10.1. Introdution. Numerial linear algebra is an area that is prone to onsumingvast amounts of omputer memory. When the data strutures that store the problemare too large to �t in the memory of the omputer, the solution is to rely on diskstorage. The reason is simple: disk spae is heaper and available in a larger quantity.Although suh additional storage on disk an be aessed via virtual memory, arefulmodi�ation of the algorithms is generally required to attain high performane. Suhstrategy leads to so-alled out-of-ore (OOC) algorithms.In this paper we onsider the solution of nonsymmetri dense linear systems viathe LU fatorization with pivoting. As the omputation of this fatorization is thereal hallenge, we do not disuss the solution of the resulting triangular systems.1.1. Target appliations. Pratial appliations arising in Boundary ElementMethods (BEM) often lead to very large dense linear systems. The idea there isthat by plaing the disretization on the boundary of a three-dimensional objet, thedegrees of freedom are restrited to a two-dimensional surfae. In ontrast, FiniteElement Methods (FEM) set degrees of freedom throughout the three dimensionalobjet. While the FEM methods result in large sparse matries, BEM methods resultin dense matries, with a muh smaller dimension. Here \smaller" is a relative term:problems with hundreds of thousands or even millions of degrees of freedom are notunommon [6, 8, 11℄, leading to linear systems of that order.For many of these appliations the goal is to optimize a feature of an objet. Forexample, BEM may be used to model the radar signature of an airplane. In an e�ortto minimize this signature, it may be neessary to optimize the shape of a ertainomponent of the airplane. If the degrees of freedom assoiated with this omponentare ordered last among all degrees of freedom, the linear system may present the�This paper expands on results reported in an earlier onferene paper [19℄.2Dept. of Computer Sienes, The University of Texas, Austin, TX 78712; phone: 512-4719720,fax: 512-4718885, fjoffrain,rdvgg�s.utexas.edu.3Dept. de Ingenier��a y Cienia de Computadores, Universidad Jaume I, 12071 Castell�on, Spain;phone: +34 964-728257, fax: +34 964-728486, quintana�i.uji.es.1

2 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNstruture � B CD E �� x1x2 � = � b1b2 � :(1.1)Now, as the shape of the omponent is modi�ed, it is only the matries C, D, and Ethat hange, together with the right-hand side of the equation. Sine the dimensionsof B are frequently muh larger than those of the remaining three matries, it beomesof interest to fatorize B only one, and to update the fatorization as C, D, and Ehange. We note here that a standard LU fatorization with partial pivoting does notprovide a onvenient solution to this problem, sine the rows to be swapped duringthe appliation of the permutations may not lie only within B.Remark: The methodology proposed in this paper applies to the problem statedin (1.1). It is the insights regarding this simpler problem that provide the key to a high-performane implementation of the salable OOC LU fatorization with pivoting.1.2. OOC LU fatorization. A ommonly used library for sequential omput-ers and onventional shared-memory parallel omputers sine the 1990s is the LinearAlgebra Pakage (LAPACK) [1℄. This pakage does not expliitly inlude OOC apa-bilities, although on mahines with virtual memory the library an be used to solveproblems larger than �t in-ore.Very large problems are typially solved on distributed-memory superomputers.Therefore reent papers on OOC solution of dense linear systems typially targetparallel omputers, on whih a version of LAPACK alled SaLAPACK [5℄ an beused. This extension of LAPACK does provide prototype OOC implementationsof some of the SaLAPACK routines, inluding solvers for general and symmetripositive de�nite linear systems using, respetively, the LU and Cholesky fatorizations,and solvers for linear least squares problems via the QR fatorization [7℄.A more thorough e�ort to add OOC apabilities to SaLAPACK was providedby SOLAR [27℄, a portable library for salable OOC linear algebra omputations.This library uses SaLAPACK routines for in-ore omputation, and also providesan input-ouput (I/O) layer that manages matrix I/O. SOLAR ahieves better I/Orates by allowing a di�erent storage sheme for matries on disk from that used in-ore by SaLAPACK. Impressive performane is reported for up to four nodes of anIBM SP-2. Lak of performane on a larger number of nodes is in part blamed onnonsalability of some of the in-ore parallel kernels used there.We developed the Parallel Linear Algebra Pakage (PLAPACK) in the mid-1990s [28℄ as an alternative to SaLAPACK. An OOC extension to PLAPACK,POOCLAPACK, was introdued shortly later. To date, that infrastruture has beenused for the parallel OOC implementation of tile-based Cholesky and QR fatoriza-tions [16, 15℄.It should be noted that the above desribed parallel OOC library e�orts are inaddition to a number of parallel OOC implementations of individual operations ormahine spei� libraries for dense linear systems reported in the literature [2, 22, 4,23, 24℄. For a omplete survey, see [26℄.1.3. OOC omputation and stability. The fundamental problem with theOOC LU fatorization is that in order to provide stability, partial pivoting has beentraditionally used with the algorithm. (Note however that LU fatorization withpartial pivoting is not a numerially stable algorithm [18℄; it is only pratie thattaught us to trust it.) If partial pivoting is used, when hoosing the row to be

SCALABLE OOC LU FACTORIZATION 3swapped, the entire olumn from whih it is hosen must have been updated up tothe same stage of the omputation. Moreover, so as to make aess to this olumninexpensive, the part of the olumn on and below the diagonal must be in memory.As a result, so-alled slab approahes have been adopted that proeed by bringingbloks of olumns of the matrix into memory at a time. However, these methods areinherently not salable: as the overall matrix problem grows, the row dimension ofthe slab inreases, and the number of olumns that an �t in memory dereases. Sinethe ratio between the omputation performed with a slab and the I/O required forthat omputation is proportional to the number of olumns in the slab, eventuallythe ost of I/O beomes signi�ant.Thus, it was widely reognized that working with so-alled (square) tiles waspreferable [26, 16, 15℄. As the overall matrix size inreases, the size of the tile broughtinto memory an be kept onstant, and thus also the ratio between the omputationand I/O overhead. The problem with this approah is that it stands in the wayof partial pivoting, sine all the tiles ontaining part of a olumn would have to bebrought into main memory. One solution to this has been to abandon partial pivotingand to pivot only within the tile on the diagonal, in the hope that this does not a�etthe auray of the solution. However, in general, this solution is not numeriallysatisfatory.1.4. A one-tile approah for the LU fatorization. Our own approah isdi�erent: In order to solve the problem stated in (1.1) we introdue the method ofinremental pivoting, whih maintains many of the bene�ts of partial pivoting. Theinsights we gain from studying this simpler problem result in a relatively simple, yetpowerful design of a salable OOC LU fatorization. The implementation of thisalgorithm delivers both salability and high-performane. It has been brought to ourattention that an unbloked algorithm similar to our algorithm was reported in [29℄.As the omputation of an OOC LU fatorization goes bak to the time whenmemories ould only hold a few Kilobytes or less, our approah provides a solution toa problem that dates bak to the early days of omputing.1.5. Overview. This paper expands on results reported in an earlier onferenepaper [19℄. It is organized as follows: In Setion 2 we review two algorithms foromputing the LU fatorization with partial pivoting. Next, in Setion 3, we disusshow to update an LU fatorization by onsidering the fatorization of a 2� 2 blokedmatrix. This study will help us to present a salable OOC algorithm for the LUfatorization with inremental pivoting in Setion 4. Numerial stability is disussedin Setion 5 and performane is reported in Setion 6. Conluding remarks are givenin the �nal setion.2. The LU fatorization with partial pivoting. Given an n � n matrix A,its LU fatorization with partial pivoting is given byPA = LU;(2.1)where P is a permutation matrix of order n, L is n � n lower triangular, and U isn� n upper triangular. We will denote the omputation of P , L, and U by[A; p℄ := [fLnUg; p℄ = LU(A);(2.2)where fLnUg is the matrix whose stritly lower and upper triangular parts equal Land U , respetively. Here we reognize that L has ones on the diagonal, whih neednot be stored, and that the fators L and U an be stored overwriting the originalontents of A. The permutation matrix is generally stored in a vetor p of n integers.

4 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNAlgorithm: [A; p℄ := [fLnUg; p℄ = LUunb(A)Partition A! � ATL ATRABL ABR � and p! � pTpB �where ATL is 0� 0 and pT has 0 elementswhile n(ATL) < n(A) doRepartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � pTpB �! p0�1p2 !where �11 and �1 are salarsLINPACK algorithm: LAPACK algorithm:Compute �1� �11 aT12a21 A22 � :=P (�1)� �11 aT12a21 A22 ��11 := �11 = �11 (no-op)aT12 := uT12 = aT12 (no-op)a21 := l21 = a21=�11A22 := A22 � l21uT12
Compute �1� aT10 �11 aT12A20 a21 A22 � :=P (�1)� aT10 �11 aT12A20 a21 A22 ��11 := �11 = �11 (no-op)aT12 := uT12 = aT12 (no-op)a21 := l21 = a21=�11A22 := A22 � l21uT12Continue with� ATL ATRABL ABR � A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � pTpB � p0�1p2 !endwhile Fig. 2.1. Unbloked algorithms for the LU fatorization.2.1. Unbloked right-looking LU fatorization. The LU fatorization isobtained by means of a triangularization proedure also known as Gaussian elimi-nation [12℄: A sequene of permutation matries P1; P2; : : : ; Pn and Gauss (or ele-mentary) transformation matries L1; L2; : : : ; Ln are omputed to redue matrix Ato upper triangular form (i.e., to redue the original matrix to U). Gauss transformsonly depart from the identity matrix in the subdiagonal elements of one of its olumnsand are trivial to invert (L�1i only di�ers from Li in the subdiagonal elements in theith olumn, whih have their signs inverted). It is the aumulation of the Gausstransforms that beomes L, with the peuliarity that the ith olumn of L equals theith olumn of Li.The omputations that need to be performed in the Gaussian elimination proe-dure an be organized in di�erent manners. Several variants of the LU fatorizationare identi�ed in [25, 13℄ whih di�er in the order the omputations are performed andwould produe the same numerial results if exat arithmeti was employed.Two algorithms used to ompute the LU fatorization of a matrix A are given inFig. 2.1. In the algorithm, n(�) stands for the number of olumns of a matrix; P (�1)is the permutation matrix onstruted by interhanging the �rst and the �1-th row ofthe identity matrix; and variables �11, uT12, and l21 are only introdued to relate theomputations to the various parts of L and U . We believe the rest of the notation to beintuitive. Both algorithms orrespond to what is usually known as the right-lookingvariant; that is, an algorithm whih, at a given stage, updates the urrent olumnof the matrix by means of a Gauss transform and then applies this transformationto the part of the matrix to the right of this olumn. However, they di�er in thepart of the matrix to whih the permutations are applied. The algorithm on the left

SCALABLE OOC LU FACTORIZATION 5Algorithm: [A; p℄ := [fLnUg; p℄ = LUblk(A)Partition A! � ATL ATRABL ABR � and p! � pTpB �where ATL is 0� 0 and pT has 0 elementswhile n(ATL) < n(A) doDetermine blok size bRepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 ! and � pTpB �! p0p1p2 !where A11 is b� b and p1 has b elementsh� A11A21 � ; p1i := h� fL11nU11gL21 � ; p1i = LU �� A11A21 �� % LAPACK algorithm� A12A22 � := P (p1)� A12A22 �A12 := U12 = L�111 A12 = trilu (A11)�1 A12A22 := A22 � L21U12 = A22 �A21A12Continue with� ATL ATRABL ABR � A00 A01 A02A10 A11 A12A20 A21 A22 ! and � pTpB � p0p1p2 !endwhileFig. 2.2. LINPACK bloked algorithm for the LU fatorization built upon an LAPACK panelfatorization.orresponds to the implementation available in LINPACK [10℄, whih omputes anLU fatorization of the formL�1n Pn � � �L�12 P2L�11 P1A = U:(2.3)Thus, the lower triangular matrix L is not expliitly available from this algorithm.Nevertheless, by permuting the rows of the Gauss transforms, the permutations ma-tries an be moved to the right, obtaining an LU fatorization of the formL̂�1n � � � L̂�12 L̂�11 Pn � � �P2P1A = L�1PA = U:(2.4)This is the idea behind the algorithm on the right of Fig. 2.1, whih orrespondsto an implementation that mimis the ode from LAPACK [1℄, and delivers an LUfatorization as de�ned in (2.2). Hereafter we will refer to the two implementationsin Fig. 2.1 as the LINPACK (unbloked) algorithm and the LAPACK (unbloked)algorithm.In ase A is m� n, with m > n, the two previous algorithms produe a \retan-gular" LU fatorization PA = LU , where P is m�m, L is m� n lower trapezoidal,and U is n� n. Matries L and U are also stored overwriting A.2.2. Bloked right-looking LU fatorization. It is well-known that high-performane an be ahieved in a portable fashion by asting algorithms in terms ofmatrix-matrix multipliation [20, 17, 21, 14℄. We next review how to do so for theLINPACK algorithm. The reason to prefer this approah over the one in LAPACKwill beome lear in Setion 3.A right-looking bloked algorithm for the LU fatorization that ombines theLINPACK and LAPACK algorithms is presented in Fig. 2.2. There, trilu (A11) de-notes the lower triangular matrix with ones on the diagonal and whose stritly lower

6 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJN
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

A11

A A A

A

A A A

A

00 01 02

12

222120

10

A11

A A A

A

A A A

A

00 01 02

12

222120

10

Fig. 2.3. Computational steps in the LINPACK bloked algorithm for the LU fatorizationbuilt upon an LAPACK panel fatorization. Top row, from left to right: Initial state; LAPACKLU fatorization of urrent panel; appliation of permutations. Bottom row, from left to right:A12 := U12 = L�111 A12; A22 := A22 � L21U12; �nal state.triangular part orresponds to that of A11. At eah iteration of the algorithm, theurrent panel of olumns, � A11A21 �, is fatored using the LAPACK algorithm. Then,the parts of A to the right of this panel are updated with respet to the LU fatorsof the urrent olumn panel. By using an LAPACK algorithm for the fatorizationof the urrent panel, all pivots omputed during the fatorization of that panel anbe applied to the remainder of the matrix. However, the pivots are only applied to� A12A22 � (but not to � A10A20 �), whih orresponds to the LINPACK manner of piv-oting the matrix. After that, U12 is omputed by solving the lower triangular systemwith multiple right-hand sides as A12 := U12 = L�111 A12. Finally, A22 is updated byA22 := A22 � L21U12. This proess is illustrated in Fig. 2.3.Consider hereafter that A is omposed of n = � � b olumns (that is, n is anexat multiple of the blok size, b). Then, the LINPACK bloked algorithm in Fig. 2.2omputes an LU fatorization of the form~L�1� ~P� � � � ~L�12 ~P2 ~L�11 ~P1A = U;(2.5)where ~Li and ~Pi are the fators obtained from the fatorization of the ith panel of A,omposed of b olumns, by means of the LAPACK algorithm.Remark: The LINPACK bloked algorithm an be easily onverted into an LA-PACK bloked algorithm by applying the permutations omputed during the fatoriza-tion of the urrent panel also to the bloks to the left of this panel, that is,� A10A20 � := P (p1)� A10A20 � :All these bloked algorithms attain high performane on modern arhitetureswith (multiple levels of) ahe memory by asting the bulk of the omputation interms of the matrix-matrix multipliation A22 := A22 � L21U12.

SCALABLE OOC LU FACTORIZATION 73. The LU fatorization with inremental pivoting. In this setion wedisuss how to ompute the LU fatorization of the matrix� B CD E �(3.1)in suh a way that the LU fatorization with partial pivoting of B,PB = LU;(3.2)an be reused if C, D, and/or E hange. For simpliity, we onsider all four submatri-es in (3.1) to be of size t� t, with t an exat multiple of the blok size b: t = � �b. Forreferene, fatoring the matrix in (3.1) using the standard LU fatorization with par-tial pivoting osts 23 (2t)3 = 163 t3 ops (oating-point arithmeti operations). In thisexpression (and any other following referred to omputational osts) we neglet thoseterms of lower-order omplexity, inluding the ost of pivoting the rows. Similarly,we will also ignore lower-order terms in storage requirements.We propose to employ the following proedure, onsisting of 5 steps, whih om-putes an LU fatorization with inremental pivoting of the matrix in (3.1):Step 1: Fator B. Compute the LU fatorization with partial pivotingPB = LU;(3.3)overwriting B with L and U .Step 2: Update C onsistently with the fatorization of B:C := L�1PC:(3.4)Step 3: Fator � UD �. Compute the LU fatorization with partial pivoting�P � UD � = � �L1�L2 � �U = �L �U:(3.5)Additional storage is required at this stage to store �L1 as U is stored in thearray for B, whih also ontains the lower triangular matrix L from the LUfatorization of the previous step. Matrix �U overwrites the triangular fatorU in B.Step 4: Update � CE � onsistently with the fatorization of � UD �. For thatpurpose, �rst apply the pivots generated in the previous step as� CE � := �P � CE � ;(3.6)and then ompute � CE � := � �L�11 CE � �L2(�L�11 C) � :(3.7)Step 5: Fator E. Finally, ompute the LU fatorization with partial pivotingP̂E = L̂Û ;(3.8)overwriting E with L̂ and Û .

8 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNOperation Cost (in ops)W/out exploiting LINPACK LAPACKstruture in U bloked bloked1: Fatorize B 23 t3 23 t3 23 t32: Update C t3 t3 t33: Fatorize � UD � 53 t3 t3 + 32 t2b t3 + 32 t2b4: Update � CE � 3t3 2t3 + tb2 3t35: Fatorize E 23 t3 23 t3 23 t3Total 7t3 163 t3 + 32 t2b+ tb2 193 t3 + 32 t2bTable 3.1Computational ost (in ops) of the di�erent approahes to ompute the LU fatorization ofthe matrix in (1.1).Let us now analyze the ost of the above proedure. A �rst, naive approahomputes the fatorization in Step 3 ignoring any zeroes below the diagonal of U .Correspondingly, the update in Step 4 does not take advantage of the speial strutureeither. This approah results in the osts stated in the olumn marked as \W/outexploiting struture in U" in Table 3.1, and requires 53 t3 extra ops ompared withthe LU fatorization with partial pivoting of (3.1). These additional ops orrespondto the fatorization of B in Step 1 and the following update of C in Step 2, whih arebasially \reomputed" during Steps 3 and 4. As disussed in Step 3, the proedurerequires additional storage for a lower triangular t� t matrix.The approah we desribe in the next two subsetions redues both the omputa-tional and storage osts by exploiting the upper triangular struture of U during theLU fatorization of � UD � and the orresponding update of � CE �.3.1. Exploiting struture in Step 3. A bloked algorithm that exploits theupper triangular struture of U is given in Fig. 3.1. The notation triu (�) there standsfor the upper triangular part of a matrix; thus, for example, triu (U11) := triu (G1)denotes that the upper triangular part of G1 is opied into the upper triangular part ofU11. At eah iteration of this algorithm, the panel of olumns onsisting of � U11D1 �is fatored using the LAPACK algorithm. Here we use the array G to store the blokson the diagonal (that is, L1) and thus ensure that the lower triangular fator L fromStep 1 is not destroyed. In total, this requires an extra storage apaity for � lowertriangular bloks of dimension b�b eah, whih is negligible if b� t. The subdiagonalblok L2 is stored overwriting the elements annihilated in D1.After the urrent panel is fatorized, the orresponding part of U and the re-maining olumns of D are updated with respet to the omputed LU fators. As inthe LINPACK bloked algorithm in Fig. 2.2, the LAPACK algorithm is used for thefatorization of the urrent panel, but the pivots are only applied to � U12D2 �. Afterthat, U12 is omputed by solving the lower triangular system U12 := L�11 U12, and D2is updated as D2 := D2 � L2U12. This proess is illustrated in Fig. 3.2.

SCALABLE OOC LU FACTORIZATION 9Algorithm: h� UD � ; G; pi := h� �L1n �U�L2 � ; G; pi = LUUDblk �� UD ��Partition U ! � UTL UTRUBL UBR �, D ! � DL DR �, G! � GTGB �, and p! � pTpB �where UTL is 0� 0, DL has 0 olumns, GT has 0 rows, and pT has 0 elementswhile n(UTL) < n(U) doDetermine blok size bRepartition� UTL UTRUBL UBR �! U00 U01 U02U10 U11 U12U20 U21 U22 !, � DL DR �! � D0 D1 D2 �,� GTGB �! G0G1G2 !, and � pTpB �! p0p1p2 !where U11 is b� b, D1 has b olumns, G1 has b rows, and p1 has b elementsG1 := triu (U11)h� G1D1 � ; p1i := h� fL1nU1gL2 � ; p1i = LU �� G1D1 �� % LAPACK algorithm� U12D2 � := P (p1)� U12D2 �U12 := L�11 U12 = trilu (G1)�1 U12D2 := D2 � L2U12 = D2 �D1U12triu (U11) := triu (G1)Continue with� UTL UTRUBL UBR � U00 U01 U02U10 U11 U12U20 U21 U22 !, � DL DR � � D0 D1 D2 �,� GTGB � G0G1G2 !, and � pTpB � p0p1p2 !endwhileFig. 3.1. LINPACK bloked LU fatorization of �UT ; DT �T built upon an LAPACK panelfatorization.The algorithm provides an LU fatorization of the form~L�1� ~P� � � � ~L�12 ~P2 ~L�11 ~P1 � UD � = � �U0 � ;(3.9)where ~Li and ~Pi orrespond to those fators produed from the fatorization of theith panel, omposed of the ith blok on the diagonal of U , of dimension b � b, andthe ith olumn blok of D, of dimension b� t.The ost of the algorithm is t3+ 23 t2b ops, whih orresponds to having onsideredU as a blok upper triangular matrix with bloks on the diagonal of dimension b� b.Therefore, if b � t the ost beomes t3 and 23 t3 ops are saved with respet to thenaive algorithm.Remark: Using the LAPACK bloked algorithm to ompute the LU fatorizationin Step 3 delivers the same ost for this step, that is, t3 + 23 t2b ops. However,let us review the pivoting applied in this algorithm. At a ertain iteration, after theLU fatorization of the urrent panel is omputed, the pivots have to be applied to� U10D0 � as well. Now, as U10 ontains part of the lower triangular fator L from the

10 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJN

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

U11

U U U

U

U

00 01 02

12

22

U11

U U U

U

U

00 01 02

12

22

C C C0 1 2

D D D0 1 2Fig. 3.2. Computational steps in the LINPACK bloked algorithm for the LU fatorization of�UT ; DT �T built upon an LAPACK panel fatorization. Top row, from left to right: Initial state;LAPACK LU fatorization of urrent panel; appliation of permutations. Bottom row, from left toright: U12 := L�11 U12; D2 := D2 � L2U12; �nal state.LU fatorization in Step 1, pivoting the rows in this blok and those in D0 requiresthe use of an additional t� t lower triangular matrix in order to preserve L.3.2. Revisiting the update in Step 4. Given � CE �, in this stage we needto update this matrix as� CE � := ~L�1� ~P� � � � ~L�12 ~P2 ~L�11 ~P1� CD � ;(3.10)where ~Li and ~Pi orrespond to those in (3.9). The algorithm for this purpose is givenin Fig. 3.3. The update of � C1E � performed in this algorithm is the same that wasapplied to � U12D2 � in Fig. 3.1 as in the operationsC1 := trilu (G1)�1 C1 andE := E �D1C1;(3.11)

SCALABLE OOC LU FACTORIZATION 11trilu (G1) orresponds to L1 and C1 stores L2.The ost of performing the update in this manner is 2t3 + tb2 ops, or 2t3 opsif b� t, saving thus t3 ops with respet to the naive approah.Remark: Applying the LAPACK algorithm in this step requires the same amountof omputations as the naive algorithm: the pivoting applied by the LAPACK algo-rithm in Step 3 destroys the struture of the lower triangular matrix, whih annot beeasily reovered for the update in this step.Remark: The algorithm desribed in this subsetion is the same that would beapplied to a right-hand side matrix � CE � when solving the lower triangular linearsystem resulting from the fatorization in (3.9).The omputational osts of the three approahes desribed in this setion, namely,the naive algorithm, the LINPACK bloked algorithm, and the LAPACK bloked al-gorithm are summarized in Table 3.1. Assuming b � t, the use of the LINPACKbloked approah for Steps 2 and 3 e�etively redues the ost of the proedure foromputing the LU fatorization with inremental pivoting to that of the LU fatoriza-tion with partial pivoting. The other two approahes, however, present a signi�antoverhead in the number of omputations. In addition, the LINPACK bloked algo-rithm only requires additional storage for � lower triangular matries of dimensionb�b eah, while the two other approahes need extra spae for a t� t lower triangularmatrix.3.3. Putting it all together. We now review one last time how it all �tstogether by onsidering Figs. 3.5 and 3.4. In Fig. 3.4 all the algorithms for Steps 1{4are ondensed into one algorithm. By exeuting only one of the boxes in the body ofthe loop, the indiated step is performed. Columns in Fig. 3.5 illustrate the individualSteps 1{4 from Setion 3.4. Out-of-Core LU fatorization. In this setion we �rst disuss traditionalslab algorithms for the LU fatorization. A simple analysis of the I/O ost shows thelak of salability of these methods in the problem size. We then show how the insightsfrom the previous setion an be used to implement a salable OOC LU fatorizationwith inremental pivoting for matries of arbitrary size.4.1. Slab approahes. As mentioned, onventional OOC algorithms proeedby bringing entire olumns of the matrix to be fatored into memory in order to allowpartial pivoting. This failitates both the searh for the pivot row and the swappingof rows.Consider a left-looking bloked algorithm for the LU fatorization with partialpivoting of an n� n matrix A partitioned asA = � A0 A1 A2 � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A ;(4.1)where A00, A11, and A22 are square bloks of order r, s, and n� s� r, respetively.During the urrent iteration of the left-looking algorithm, slab A1 (of width s) is �rstloaded into memory. The ost of this in terms of I/O operations (hereafter, iops),either loads or stores from the disk, is ns. Next, this slab is updated with respetto the Gauss transforms that were employed to introdue zeros in the subdiagonalentries of A0 (of width r). Loading the lower trapezoidal part of A0 into memoryrequires nl � l2=2 additional iops. In pratie, in order to allow the use of BLAS-3

12 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNAlgorithm: h� CE �i := UpdateCEblk �� CE � ; D; G; p�Partition C ! � CTCB �, D! � DL DR �, G! � GTGB �, and p! � pTpB �where DL has 0 olumns, CT and GT have 0 rows, and pT has 0 elementswhile n(DL) < n(D) doDetermine blok size bRepartition� CTCB �! C0C1C2 !, � DL DR �! � D0 D1 D2 �,� GTGB �! G0G1G2 !, and � pTpB �! p0p1p2 !where D1 has b olumns, C1 and G1 have b rows, and p1 has b elements� C1E � := P (p1)� C1E �C1 := trilu (G1)�1 C1E := E �D1C1Continue with� CTCB � C0C1C2 !, � DL DR � � D0 D1 D2 �,� GTGB � G0G1G2 !, and � pTpB � p0p1p2 !endwhileFig. 3.3. Update of �CT ; ET �T onsistent with the LINPACK bloked LU fatorization of�UT ; DT �T .operations, A0 is loaded into memory b olumns at a time, and as soon as eah oneof these olumns has been utilized, it is disarded from memory. Finally, � A11A21 � isfatorized, and A1 is written bak to disk. We refer to this algorithm as a one-slabapproah.In total, assuming that A is omposed of n=s slabs, this algorithm performsapproximatelyP(n=s)�1i=0 �ns+ nis� (is)2=2 + ns� � 2n2 + n (n=s)22 s� (n=s)33 s22= n33s + 2n2 iops(4.2)and 2=3n3 ops. Thus, the ratio of disk aess overhead to useful omputation isgiven by n3=(3s) + 2n22=3n3 � 12s;(4.3)showing that the performane we an expet from the algorithm improves with thewidth of the slab, s.Now, we note that there are memory onstraints: The memory of the system mustbe able to simultaneously hold two slabs, one of width s for the urrent panel A1, and

SCALABLE OOC LU FACTORIZATION 13Algorithm: [B; p℄ := LUblk(B) [C℄ := UpdateCblk(B; C; p)h� UD � ; G; qi := LUUDblk �� UD �� h� CE �i := UpdateCEblk (� CE � ; D; G; q)Partition X ! � XTL XTRXBL XBR �, X 2 fB;Ug, D! � DL DR �,Y ! � YTYB �, Y 2 fC;Gg, z ! � zTzB �, z 2 fp; qgwhere XTL is 0� 0, DL has 0 olumns, YT has 0 rows, and zT has 0 elementswhile n(XTL) < n(X) doDetermine blok size bRepartition� XTL XTRXBL XBR �! X00 X01 X02X10 X11 X12X20 X21 X22 !, X 2 fB;Ug,� DL DR �! � D0 D1 D2 �,� YTYB �! Y0Y1Y2 !, Y 2 fC;Gg, � zTzB �! z0z1z2 !, z 2 fp; qgwhere X11 is b� b, D1 has b olumns,Y1 has b rows, and z1 has b elementsStep 1:h� B11B21 � ; p1i := LU �� B11B21 ��(Note: B11 := fL11nU11g)� B12B22 � := P (p1)� B12B22 �B12 := L�111 B12B22 := B22 � B21B12
Step 2:(Note: B11 ontains fL11nU11g)� C1C2 � := P (p1)� C1C2 �C1 := L�111 C1C2 := C2 � B21C1Step 3:G1 := triu (U11)h� G1D1 � ; q1i := LU �� G1D1 ��(Note: G1 = fL1nU1g)� U12D2 � := P (q1)� U12D2 �U12 := L�11 U12D2 := D2 �D1U12triu (U11) := triu (G1)
Step 4:� C1E � := P (q1)� C1E �C1 := trilu (G1)�1 C1E := E �D1C1Continue with� XTL XTRXBL XBR � X00 X01 X02X10 X11 X12X20 X21 X22 !, X 2 fB;Ug,� DL DR � � D0 D1 D2 �,� YTYB � Y0Y1Y2 !, Y 2 fC;Gg, and � zTzB � z0z1z2 !, z 2 fp; qgendwhile Fig. 3.4. All the algorithms for Steps 1{4 ondensed into one algorithm.a seond one of width b for a blok of olumns from A0. Thus, if the total number ofitems that an be stored in memory is �xed at M , (s + b)n � M , or s � M=n � b,and the ratio of overhead to useful omputation is approximately12s � 12(M=n� b) :(4.4)

14 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJN1: Fator B 2: Update C 3: Fator �UD� 4: Update �CE�Step 1 Step 2 Step 3 Step 4
B C

D EG

B C

D EG

���
���
���
���

���
���
���
���

B C

D EG

B C

D EG? ? ? ?
���
���
���
���

���
���
���
���

B C

D EG

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

B C

D EG? ? ? ?
���
���
���
���

���
���
���
���

B C

D EG

���
���
���
���

���
���
���
���

B C

D EG

B C

D EG

B C

D EG? ? ? ?
���
���
���
���

���
���
���
���

��������
��������
��������
��������

��������
��������
��������
��������

B C

D EG

���
���
���
���

���
���
���
���

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

B C

D EG

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��
��
��
��

B C

D EG

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

��
��
��
��

��
��
��
��

B C

D EG? ? ? ?
��������
��������
��������
��������

��������
��������
��������
��������

B C

D EG

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

B C

D EG

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

B C

D EG

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

B C

D EG? ? ? ?
B C

D EG

B C

D EG

B C

D EG

B C

D EGFig. 3.5. An illustration of Steps 1{4.The onlusion is that, as the problem size n grows, the overhead inreases, ultimatelyleading to ineÆieny.Remark: A slab-based right-looking algorithm for the LU fatorization requires

SCALABLE OOC LU FACTORIZATION 15about twie as muh I/O as a left-looking one as, at eah iteration, a panel of theform � A11A21 � must be brought into memory, fatorized, and then � A12A22 � must beloaded into memory b olumns at a time, updated, and written bak to disk. It is theneed of writing bak the matrix that doubles the I/O ost of the algorithm.4.2. A one-tile OOC algorithm. Now, let us re-examine the proedure for LUfatorization with inremental pivoting of (3.1), where we assume that the ombinedmatrix of dimension 2t� 2t initially resides on disk.Step 1: Fator B. This step requires t2 iops for reading B from disk and t2 toeventually write it bak to disk.Step 2: Update C. After reading C from disk, at a ost of t2 iops, this matrix ispermuted as C := PC, and updated by bringing bloks of b olumns of thelower triangular part of B (whih ontains L) into memory one at a time.To explain this, onsider the blok of olumns �0T ; LT11; LT21�T , where L11is lower triangular of dimension b � b, and the onformal row partitioningC = �CT0 ; CT1 ; CT2 �T . Then, in this stage we need to perform the updatesC1 := L�111 C1 and C2 := C2 � L21C1. Aessing L in this manner requirest2=2 iops. At the end of this step, C is written bak to disk with a ost of t2iops.Step 3: Fator � UD �. After reading D from disk, with a ost of t2 iops, U andD are updated by bringing bloks of b rows of U into memory. Consider nowthe blok of rows (0; U11; U12), where U11 is upper triangular of dimensionb�b, and the onformal olumn partitioningD = (D0; D1; D2). During thisstage, � U11D1 � needs to be fatored and � U12D2 � is to be updated. Thisrequires a total of t2 iops (elements of U must be read and written bak).Then, D is written bak to disk at a ost of t2 iops.Step 4: Update � CE �. Here, E is �rst read from disk at a ost of t2 iops. Theupdate is then performed by bringing into memory a blokG1 of dimension b�b from G, a blokD1 onsisting of b rows fromD, and a blok C1 of b olumnsfrom C. These are used to apply the pivots, ompute C1 := trilu (G1)�1 C1,and �nally update E := E �D1C1. This requires approximately 3t2 iops (aselements of C must be read and written bak).Step 5: Fator E. Finally E, whih still resides in memory, is fatored and writtenbak to disk at a ost of t2 iops.Table 4.1 summarizes the number of iops for eah of these steps. In this approah,at most one tile of dimension t � t, and three bloks, of dimensions b� b, b� t, andt � b reside in memory at a given moment (see Step 4). Thus the lassi�ation as\one-tile".We next explain how to extend the one-tile fatorization of (3.1) to a matrix ofarbitrary size. For this purpose, onsider the n� n matrix A partitioned asA = � A0 A1 A2 � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A = 0� �A0�A1�A2 1A ;(4.5)where A00, A11, and A22 are square bloks of order n � t � r, t, and r = � � t,respetively. At a ertain stage of a right-looking algorithm the �rst blok of olumns,

16 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNA0, has already been fatorized and the �rst bloks of rows, �A0, has been updatedorrespondingly. During the next iteration the following tasks are performed in thealgorithm:1. First, the LU fatorization PA11 = LU is omputed.2. Consider A12 partitioned by olumns into � tiles of dimension t� t as A12 =(C0; C1; : : : ; C��1). Then, Cj , 0 � j < �, is updated with respet to the LUfatorization of A11; that is, Cj := L�1PCj .3. Similarly, let A21 = �DT0 ; DT1 ; : : : ; DT��1�T be a row partitioning of A21 intosquare tiles of order t. Eah one of the matries of the form �UT ; DTi �,0 � i < �, is then fatorized using the algorithm in Fig. 3.1 and overwritingthese bloks with the results.4. Finally, onsider A22 partitioned into � � � tiles of dimension t � t and letEi;j , 0 � i; j < �, denote the (i; j)th tile. At this stage we proeed to update� CjEi;j �, 0 � i; j < �, with respet to the fatorization of � UDi � using thealgorithm in Fig. 3.3.It an be shown that this algorithm performs approximately 2=3n3 ops. Also, assum-ing that the matrix is omposed of (n=t)�(n=t) tiles, it requires additional storage (ondisk) for approximately (n=t)2=2 � � = n2=(2tb) lower triangular bloks of dimensionb� b eah.Denoting by iopsSi the number of iops performed at Step i (see Table 4.1), theamount of I/O performed by the previous algorithm is given by(n=t)�1Xk=0 24CS1 + (n=t)�1Xj=k+1 CS2 + (n=t)�1Xi=k+1 24CS3 + (n=t)�1Xj=k+1 CS43535 � 43n3=t+ 194 n2 iops:The performane of this algorithm is therefore linked to the ratio4=3n3=t+ 19=4n22=3n3 � 2t ;(4.6)showing that larger values of t bene�t the performane.Let us analyze now the salability of the one-tile OOC algorithm. At most, thisalgorithm needs to hold in memory a tile of size t � t, a lower triangular blok ofdimension b�b, and two bloks with bt elements eah. Therefore, t and b must satisfyb2=2+2tb+ t2 �M , showing that the problem size n does not a�et the performaneof the one-tile algorithm.A left-looking one-tile OOC algorithm is also easily onstruted using the buildingbloks from the fatorization of (3.1). This algorithmwould perform the same amountof I/O operations as the right-looking one.5. Remarks on Numerial Stability. The one-tile OOC algorithm arries outa sequene of row permutations (orresponding to the appliation of pivots) whihare di�erent from those that would be performed in an LU fatorization with partialpivoting. Therefore, the numerial stability of this algorithm is also di�erent. In thissetion we provide some remarks on the stability of the one-tile OOC algorithm.The numerial (bakward) stability of an algorithm that omputes the LU fa-torization of a matrix A depends on the growth fator [18℄�gr = maxi;j;k j �(k)i;j jmaxi;j j �i;j j ;(5.1)

SCALABLE OOC LU FACTORIZATION 17Operation Cost (in iops)1: Fatorize B 2t22: Update C 2t2 + t2=23: Fatorize � UD � 3t24: Update � CE � 4t25: Fatorize E t2Total 252 t2Table 4.1I/O ost (in iops) of the di�erent steps to ompute the LU fatorization of the matrix in (3.1).where �i;j stands for the (i; j) entry of A, and �(k)i;j denotes the orresponding entryof A(k), the transformed matrix after the kth stage of the LU fatorization (that is,after having applied the �rst k Gauss transforms to it).The growth of (5.1) during the LU fatorization is basially determined by theproblem size and the pivoting strategy employed in the algorithm. Thus, for example,the growth fators of omplete, partial, and pairwise pivoting have been demonstratedto be bounded as � � n1=2(2 � 31=2 � � �n1=n�1), �p � 2n�1, and �w � 4n�1, respe-tively [9℄. (The bound for �w has not been demonstrated to be sharp, tough.) Thisshows that the LU fatorization ombined with either partial or pairwise pivotingannot be onsidered as a numerially bakward stable algorithm. Nevertheless, ma-tries yielding exponentially large element growth are extremely rare, and throughyears of pratie we have ome to trust partial pivoting: Extensive experimentationshave reported the fators to be invariably small, and statistial models experimentallyshowed that, on average, � � n1=2, while �p � n2=3, and �w � n (see the referenesin [18℄) inferring that, in pratie, partial/pairwise pivoting are both numerially sta-ble and pairwise pivoting an be expeted to numerially behave only slightly worsethan partial pivoting.The one-tile OOC algorithm for the LU fatorization desribed earlier employspartial pivoting within the diagonal tiles of the matrix (Step 1) and also when fator-izing matries of the form � UD � (Step 2). However, in doing so, we are applying abloked variant of pairwise pivoting between the diagonal tile and eah one of the or-responding subdiagonal tiles. Thus, we an expet an element growth for the one-tileOOC LU algorithm that is between those of partial and pairwise pivoting. In par-tiular, if the tile size equals the problem size (t = n) our algorithm stritly employspartial pivoting, while if t = 1 the algorithm employs pure pairwise pivoting. Nextwe elaborate an experiment that provides evidene in support of this observation.In Fig. 5.1 we report the element growths observed during the omputation ofthe LU fatorization of matries of dimensions n = 500, 1;000, and 1;500, usingpartial (t = n), inremental (1 < t < n), and pairwise pivoting (t = 1). The entriesof the matries are generated randomly, hosen from a uniform distribution in theinterval (0:0; 1:0). The experiment was arried out on an Intel Xeon proessor usingmatlab r 7.0.0 (ieee double-preision arithmeti). The results report the averageelement growth for 20 di�erent matries for eah matrix dimension. The �gure showsthat the growth fator of inremental pivoting is smaller than that of pairwise pivoting

18 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNand approximates that of partial pivoting as the tile size is inreased.

0 500 1000 1500
0

50

100

150

200

250
Stability of algorithms for LU factorization

Size of tile, t

M
ag

ni
tu

de
 o

f e
le

m
en

t g
ro

w
th

n=500
n=1,000
n=1,500

Fig. 5.1. Element growth in the LU fatorization using di�erent pivoting tehniques.For those who are not suÆiently satis�ed with the element growth of inrementalpivoting, we propose to perform a few re�nement iterations of the solution to Ax = bas this guarantees stability at a low omputational ost [18℄. We an ombine thisstrategy with an estimation of the bakward error kPA�LUk1 a posteriori, at a ostof O(n2) ops, to determine whether iterative re�nement is atually needed.6. Performane. While in theory a one-tile approah is ideal, in pratie itis bene�ial to implement the approah so that up to two full tiles are managed inmemory. The reason for this is that during the fatorization of � UD � and the updateof � CE � (Steps 2 and 4) bloks of rows of U and C, respetively, must be read fromdisk. Sine matries are typially stored in olumn-major order, this inurs too muhoverhead and it is thus bene�ial to bring U and C into memory in their entirety. Itis this two-tile approah that we have implemented. The implementation utilizes theFLAME APIs [3℄, whih allow the implementation to losely mirror the algorithmsas presented in this paper.Performane experiments were performed on a Intel Itanium2r (900 MHz) pro-essor based workstation with 8 Gbytes of memory and apable of attaining 3.6GFLOPS (109 ops per seond). For referene, the algorithm for the (in-ore) LUfatorization in LAPACK delivered 3.1 GFLOPS for a square matrix of order 5;200on this platform. No expliit overlapping is done in our algorithms.In Fig. 6.1 we show the performane of a sequential implementation using squaretiles of order t. An operation ount of 2=3n3 for the LU fatorization is used toompute the GFLOPS ratio. In other words, the extra omputation performed bythe algorithm is not ounted as useful operations, and therefore dereases the e�etiverate of omputation. The results show a remarkable salability of the one-tile OOCalgorithm whih is not a�eted by the matrix size. Performane rivals that of thein-ore LU fatorization.The graph is interpreted as follows: Square matries of size n� n were fatored.

SCALABLE OOC LU FACTORIZATION 19

0 1 2 3 4 5 6 7 8

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Intel Itanium2@900MHz with 8GBytes of RAM memory

Matrix dimension n

M
flo

ps

1× 8Gbytes

2× 8Gbytes

3× 8Gbytes

4× 8Gbytes

5× 8Gbytes

t = 1040 (8MB/tile)
t = 2080 (32MB/tile)
t = 4160 (128MB/tile)
t = 6240 (288MB/tile)
t = 8320 (512MB/tile)Fig. 6.1. Performane of the one-tile OOC LU fatorization algorithm with inremental pivoting.The dashed lines indiate multiples of available memory. We ran a number of ex-periments using tile sizes that were well below what ould be aommodated by theavailable memory. Even when less that 10% of the available memory was used, ex-ellent performane was attained. This hints at the fat that exellent performanean be attained even on systems with relatively little memory. We warn however thatopies of tiles likely remained in memory even after being written bak to disk, whihmay have a�eted (positively) the reported performane for small problems.7. Conlusions. We have demonstrated that a modi�ation of the standard in-ore right-looking LU fatorization algorithms, together with a unique tile-based ap-proah, results in a powerful new method for solving large, dense linear systems via theLU fatorization. In ombination with other researh of ours related to the Choleskyand QR fatorizations, this ompletes a suite of truly salable tile-based algorithmsfor OOC solution of dense linear systems and linear least-squares problems [15℄. Al-though the pivoting strategy had to be modi�ed, the proposed inremental pivotingstrategy appears to retain muh of the bene�ts of partial pivoting.In order to reate a prodution ode using these tehniques it would be highlyadvisable to add to the implementation iterative re�nement, monitor element growth,and provide a ondition number estimator sine, in pratie, as matries beome large,even slow element growth beomes a onern. The rule-of-thumb for LU fatorizationwith partial pivoting is that log10(n�(A)) digits of auray are lost, where �(A) isthe ondition number of the given matrix. We expet inremental pivoting to behaveonly slightly worse. Provided that at least some auray is retained in the solution,iterative re�nement an be used to improve it.The prototype implementation allows very large problems to be solved even on asingle CPU, although muh patiene must be exerised. The largest problem we ran(74;800� 74;800) required almost 26 hours to omplete. Thus, a natural next step isto reate SMP and distributed-memory parallel implementations of these odes.Aknowledgments. This researh was partially sponsored by NSF grants ACI-0203685, ACI-0305163 and CCF-0342369, and an equipment donation from Hewlett-Pakard. Primary support for this work ame from the Visiting Researher program

20 T. JOFFRAIN, E. S. QUINTANA-ORTI, R. VAN DE GEIJNof the Institute for Computational Engineering and Sienes (ICES) at UT-Austin.For further information on the one-tile OOC approah for the LU fatorization,visit http://www.s.utexas.edu/users/flame.REFERENCES[1℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. E. MKenney, S. Ostrouhov, and D. Sorensen, LAPACK Users' Guide,SIAM, Philadelphia, 1992.[2℄ G. A. Baker, Implementation of Parallel Proessing to Seleted Problems in Satellite Geodesy,PhD thesis, The University of Texas at Austin, 1998.[3℄ P. Bientinesi, E. S. Quintana-Ort��, and R. A. van de Geijn, Representing linear algebraalgorithms in ode: The FLAME APIs, ACM Trans. Math. Soft., 31 (2005), pp. 27{59.[4℄ J.-P. Brunet, P. Pederson, and S. L. Johnsson, Load-balaned LU and QR fator and solveroutines for salable proessors with salable I/O, in Proeedings of the 17th IMACS WorldCongress, Atlanta, Georgia, July 1994.[5℄ J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, Salapak: A salable linear algebralibrary for distributed memory onurrent omputers, in Proeedings of the Fourth Sym-posium on the Frontiers of Massively Parallel Computation, IEEE Comput. So. Press,1992, pp. 120{127.[6℄ T. Cwik, R. van de Geijn, and J. Patterson, The appliation of parallel omputation tointegral equation models of eletromagneti sattering, Journal of the Optial Soiety ofAmeria A, 11 (1994), pp. 1538{1545.[7℄ E. F. D'Azevedo and J. J. Dongarra, The design and implementation of the parallel out-of-ore salapak lu, qr, and holesky fatorization routines, LAPACK Working Note 118CS-97-247, University of Tennessee, Knoxville, Jan. 1997.[8℄ L. Demkowiz, A. Karafiat, and J. Oden, Solution of elasti sattering problems in linearaoustis using h-p boundary element method, Comp. Meths. Appl. Meh. Engrg, 101(1992), pp. 251{282.[9℄ J. Demmel, Trading o� parallelism and numerial stability, LAPACK Working Note 52 CS-92-179, University of Tennessee, 1992.[10℄ J. J. Dongarra, J. R. Bunh, C. B. Moler, and G. W. Stewart, LINPACK Users' Guide,SIAM, Philadelphia, 1979.[11℄ P. Geng, J. T. Oden, and R. van de Geijn, Massively parallel omputation for aoustialsattering problems using boundary element methods, Journal of Sound and Vibration, 191(1996), pp. 145{165.[12℄ G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins UniversityPress, Baltimore, 3nd ed., 1996.[13℄ J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, Flame: Formallinear algebra methods environment, ACM Trans. Math. Soft., 27 (2001), pp. 422{455.[14℄ J. A. Gunnels, G. M. Henry, and R. A. van de Geijn, A family of high-performane matrixmultipliation algorithms, in Computational Siene - ICCS 2001, Part I, V. N. Alexandrov,J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. K. Tan, eds., Leture Notes in ComputerSiene 2073, Springer-Verlag, 2001, pp. 51{60.[15℄ B. Gunter and R. van de Geijn, Parallel out-of-ore omputation and updating of the qrfatorization, ACM Trans. Math. Soft., (2005).[16℄ B. C. Gunter, W. C. Reiley, and R. A. van de Geijn, Parallel out-of-ore Cholesky andQR fatorizations with POOCLAPACK, in Proeedings of the 15th International Paralleland Distributed Proessing Symposium (IPDPS), IEEE Computer Soiety, 2001.[17℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling, Supersalar GEMM-based level 3 BLAS { the on-going evolution of a portable and high-performane library, inApplied Parallel Computing, Large Sale Sienti� and Industrial Problems, B. K. et al.,ed., Leture Notes in Computer Siene 1541, Springer-Verlag, 1998, pp. 207{215.[18℄ N. J. Higham, Auray and Stability of Numerial Algorithms, Soiety for Industrial andApplied Mathematis, Philadelphia, PA, USA, seond ed., 2002.[19℄ T. Joffrain, E. S. Quintana-Ort��, and R. A. van de Geijn, Rapid development of high-performane out-of-ore solvers for eletromagnetis, in PARA04. Submitted.[20℄ B. K�agstr�om, P. Ling, and C. V. Loan, Gemm-based level 3 blas: High-performane model,implementations and performane evaluation benhmark, LAPACK Working Note #107CS-95-315, Univ. of Tennessee, Nov. 1995.[21℄ , GEMM-based level 3 BLAS: High performane model implementations and performane

SCALABLE OOC LU FACTORIZATION 21evaluation benhmark, ACM Trans. Math. Soft., 24 (1998), pp. 268{302.[22℄ K. Klimkowski and R. van de Geijn, Anatomy of an out-of-ore dense linear solver, in Pro-eedings of the International Conferene on Parallel Proessing 1995, vol. III - Algorithmsand Appliations, 1995, pp. 29{33.[23℄ D. S. Sott, Out of ore dense solvers on Intel parallel superomputers, in Proeedings of theFourth Symposium on the Frontiers of Massively Parallel Computation, 1992, pp. 484{487.[24℄ , Parallel I/O and solving out-of-ore systems of linear equations, in Proeedings of the1993 DAGS/PC Symposium, Hanover, NH, June 1993, Dartmouth Institute for AdvanedGraduate Studies, pp. 123{130.[25℄ G. W. Stewart, Matrix Algorithms Volume 1: Basi Deompositions, SIAM, 1998.[26℄ S. Toledo, A survey of out-of-ore algorithms in numerial linear algebra, in DIMACS Seriesin Disrete Mathematis and Theoretial Computer Siene, 1999.[27℄ S. Toledo and F. G. Gustavson, The design and implementation of SOLAR, a portablelibrary for salable out-of-ore linear algebra omputation, in Proeedings of IOPADS '96,1996.[28℄ R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Pakage, The MIT Press,1997.[29℄ E. Yip, Fortran subroutines for Out-of-Core solutions of linear systems, Teh. Report CR-158142, NASA, 1979.

