
SuperMatrix: A Multithreaded Runtime Scheduling System for

Algorithms-by-Blocks

FLAME Working Note #25

Ernie Chan∗† Field G. Van Zee† Paolo Bientinesi‡ Enrique S. Quintana-Ort́ı§

Gregorio Quintana-Ort́ı§ Robert van de Geijn†

Abstract

This paper describes SuperMatrix, a runtime system
that parallelizes matrix operations for SMP and/or
multi-core architectures. We use this system to demon-
strate how code described at a high level of abstrac-
tion can achieve high performance on such architec-
tures while completely hiding the parallelism from the
library programmer. The key insight entails view-
ing matrices hierarchically, consisting of blocks that
serve as units of data where operations over those
blocks are treated as units of computation. The imple-
mentation transparently enqueues the required opera-
tions, internally tracking dependencies, and then ex-
ecutes the operations utilizing out-of-order execution
techniques inspired by superscalar microarchitectures.
This separation of concerns allows library developers to
implement algorithms without concerning themselves
with the parallelization aspect of the problem. Differ-
ent heuristics for scheduling operations can be imple-
mented in the runtime system independent of the code
that enqueues the operations. Results gathered on a 16
CPU ccNUMA Itanium2 server demonstrate excellent
performance.

1 Introduction

Architectures capable of simultaneously executing
many threads of computation will soon become com-
monplace. This fact has brought about a renewed in-
terest in studying how to intelligently schedule sub-
operations to expose maximum parallelism. Specifi-

∗E-mail: echan@cs.utexas.edu
†Department of Computer Sciences, The University of Texas

at Austin, Austin, TX 78712.
‡Department of Computer Science, Duke University, Durham,

NC 27708.
§Departamento de Ingenieŕıa y Ciencia de Computadores,

Universidad Jaume I, 12.071–Castellón, Spain.

cally, it is possible to schedule some computations ear-
lier, particularly those operations residing along the
critical path of execution, to allow more of their de-
pendent operations to execute in parallel. This insight
was recognized in the 1960s at the individual instruc-
tion level, which led to the adoption of out-of-order ex-
ecution in many computer microarchitectures [32]. For
the dense linear algebra operations on which we will
concentrate in this paper, many researchers in the early
days of distributed-memory computing recognized that
“compute-ahead” techniques could be used to improve
parallelism. However, the coding complexity required
of such an effort proved too great for these techniques
to gain wide acceptance. In fact, compute-ahead opti-
mizations are still absent from linear algebra packages
such as ScaLAPACK [12] and PLAPACK [34].

Recently, there has been a flurry of interest in re-
viving the idea of compute-ahead [1, 25, 31]. Several
efforts view the problem as a collection of operations
and dependencies that together form a directed acyclic
graph (DAG). One of the first to exploit this idea was
the Cilk runtime system, which parallelizes divide-and-
conquer algorithms rather effectively [26]. Workqueu-
ing [35], when allowed to be nested, achieves a similar
effect as Cilk and has been proposed as an extension
to OpenMP in form of the taskq pragma already sup-
ported by Intel compilers. The importance of handling
more complex dependencies is recognized in the find-
ings reported by the CellSs project [4], and we briefly
discuss this related work in Section 7. Other efforts to
apply these techniques to dense matrix computations
on the Cell processor [23] are also being pursued [24].

A number of insights gained from the FLAME
project allow us to propose, in our opinion, elegant so-
lutions to parallelizing dense and carefully structured
sparse linear algebra operations within multithreaded
environments. We begin by introducing a notation,
illustrated in Figure 1, for expressing linear algebra

1

Algorithm: A := chol blk(A) A := trinv blk(A) A := ttmm blk(A)

Partition A→
(

ATL ATR

? ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

(
ATL ATR

? ABR

)
→




A00 A01 A02

? A11 A12

? ? A22




where A11 is b× b

chol trinv ttmm

Variant 1:
A01 := A−T

00 A01

A11 := A11 −AT
01A01

A11 := chol(A11)

Variant 1:
A01 := A00A01

A01 := −A01A
−1
11

A11 := A−1
11

Variant 1:
A00 := A00 + A01A

T
01

A01 := A01A
T
11

A11 := A11A
T
11

Variant 2:
A11 := A11 −AT

01A01

A11 := chol(A11)
A12 := A12 −AT

01A02

A12 := A−T
11 A12

Variant 2:
A12 := A12A

−1
22

A12 := −A−1
11 A12

A11 := A−1
11

Variant 2:
A01 := A01A

T
11

A01 := A01 + A02A
T
12

A11 := A11A
T
11

A11 := A11 + A12A
T
12

Variant 3:
A11 := chol(A11)
A12 := A−T

11 A12

A22 := A22 −AT
12A12

Variant 3:
A12 := −A−1

11 A12

A02 := A02 + A01A12

A01 := A01A
−1
11

A11 := A−1
11

Variant 3:
A11 := A11A

T
11

A11 := A11 + A12A
T
12

A12 := A12A
T
22

Continue with(
ATL ATR

? ABR

)
←




A00 A01 A02

? A11 A12

? ? A22




endwhile

Figure 1: Blocked algorithms for Cholesky factorization, inversion of a triangular matrix, and triangular matrix
multiplication by its transpose.

algorithms. This notation closely resembles the dia-
grams that one would draw to illustrate how the algo-
rithm progresses through the matrices operands [19].
Furthermore, the notation enabled a systematic and
subsequently mechanical methodology for generating
families of loop-based algorithms given an operation’s
recursive mathematical definition [5, 6]. Algorithms
are implemented using the FLAME/C API [8], which
mirrors the notation used to express the algorithms,
thereby abstracting away most implementation de-
tails such as array indexing. We realized that since
the API encapsulates matrix data into typed objects,
hypermatrices matrices (matrices of matrices) could

easily be represented by allowing elements in a ma-
trix to refer to submatrices rather than only scalar
values [11, 13, 14, 21, 29]. This extension to the
FLAME/C API known as FLASH [27] greatly reduced
the effort required to code algorithms when matrices
were stored by blocks, even with multiple levels of hi-
erarchy [22, 33], instead of traditional row-major and
column-major orderings.1 Storing matrices by blocks
led to the observation that blocks and computation as-
sociated with each block could be viewed as basic units

1For a survey of more traditional approaches to expressing
and coding recursive algorithms when matrices are stored by
blocks, see [16].

2

of data and computation, respectively [2, 20]. This
abstraction allows us to apply superscalar scheduling
techniques on operations over blocks via the SuperMa-
trix runtime system.

The basic idea behind SuperMatrix was introduced
in [9], in which we use the Cholesky factorization as a
motivating example. Programmer productivity issues
and a demonstration that the system covers multiple
architectures was the topic of a second paper [10]. For
that paper, two of the coauthors implemented in one
weekend all cases and all algorithmic variants of an
important set of matrix-matrix operations, the level-3
Basic Linear Algebra Subprograms (BLAS) [15], and
showed impressive performance on a number of differ-
ent architectures. This current (third) paper makes the
following additional contributions:

• We show in more detail how the FLASH API fa-
cilitates careful layering of libraries and how the
interface allows SuperMatrix to be invoked trans-
parently by the library developer.

• We discuss the existence of anti-dependencies
within linear algebra operations and how Super-
Matrix resolves them.

• We illustrate how different algorithmic variants for
computing the same operation produce roughly
the same schedule with the application of the Su-
perMatrix runtime system.

• We use a much more complex operation, the inver-
sion of a symmetric positive definite (SPD) matrix,
to illustrate these issues.

Together, these contributions further the understand-
ing of the benefits of out-of-order execution through
algorithms-by-blocks.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe inversion of a symmetric positive
definite matrix, which we use as a motivating example
for the SuperMatrix runtime system in Section 3. We
discuss different types of dependencies in Section 4. In
Section 5 we show the effect of different algorithmic
variants when using SuperMatrix. Section 6 provides
performance results. We conclude the paper in Sec-
tion 7.

2 Inversion of a Symmetric Pos-
itive Definite Matrix

Let A ∈ Rn×n be an SPD matrix.2 The traditional ap-
proach to implement inversion of an SPD matrix (spd-
inv), e.g., as employed by LAPACK [3], is to compute:

(1) Cholesky factorization A → UT U (chol) where
U is an upper triangular matrix,

(2) inversion of a triangular matrix R := U−1

(trinv), and

(3) triangular matrix multiplication by its transpose
A−1 := RRT (ttmm).

If only the upper triangular part of A is originally
stored, each stage can overwrite that upper triangular
part of the matrix. In the remainder of this section
we briefly discuss these three operations (sweeps) sep-
arately.

For a more thorough discussion, we refer to [7] where
the inversion of an SPD matrix is used to illustrate
that the ideal choice of algorithm for a given operation
is greatly affected by the characteristics of the target
platform. The present paper uses the same operation
to illustrate issues related to algorithms-by-blocks and
out-of-order execution. We compare and contrast these
two papers in the conclusion.

It is well understood that in order to attain high
performance, matrix algorithms of this kind must be
cast in terms of blocked computations so that the bulk
of the computation is in matrix-matrix multiplication
(level-3 BLAS). In Figure 1 we give three blocked al-
gorithmic variants for each of the three sweeps. The
algorithms use what have become standard FLAME
notation. The thick and thin lines have semantic mean-
ing and capture how the algorithms move through the
matrices, exposing submatrices on which computation
occurs. Each algorithm overwrites the original ma-
trix A. All three algorithms are captured concisely in
one figure, easily allowing us to compare and contrast.
Thus, to understand what computation is performed
in the body of the loop by, e.g., blocked Variant 3
for Cholesky factorization, one looks under the column
marked chol in the row marked Variant 3, ignoring all
other operations.

A few comments are in order. In many of the op-
erations it is implicitly assumed that a matrix is up-
per triangular and/or only the upper triangular part
of a matrix is updated. For any operation of the form

2For the purpose of this discussion, A being SPD means that
all the Cholesky factorization algorithms execute to completion,
generating a unique nonsingular factor U .

3

chol trsm trsm trsm

syrk gemm gemm

syrk gemm

syrk

Figure 2: The tasks performed in the second iteration
of Cholesky factorization Variant 3 on a 5 × 5 matrix
of blocks.

Y := B−T Y it is implicitly assumed that B is upper
triangular and that Y is updated by the solution of
BT X = Y , also known as a triangular solve with mul-
tiple right-hand sides. A similar comment holds for
Y := Y B−1.

In [7] we show how appropriately chosen variants for
each of these three sweeps can be combined into a single
sweep algorithm by rearranging the order of computa-
tions. This rearrangement yields better load balance on
distributed-memory architectures. Since the SuperMa-
trix system rearranges operations automatically, there
is no need to discuss that in the current paper.

3 Algorithms-By-Blocks

The algorithms in Figure 1 move through the matrix,
exposing a new b × b submatrix A11 during each it-
eration. If the matrix is viewed as a matrix of b × b
submatices, each stored as blocks, then the algorithms
move through the matrix by exposing whole blocks.
In general, all operations that are performed can be
viewed as sub-operations (tasks) on blocks. For exam-
ple in the Cholesky factorization Variant 3:

• A11 := chol(A11) requires a Cholesky factoriza-
tion of the block A11.

• A12 := A−T
11 A12 requires independent triangular

solves with multiple right-hand sides (trsm) with
A11 and the blocks that comprise A12.

• A22 := A22−AT
12A12 requires each of the blocks on

or above the diagonal of A22 to be updated by a
matrix-matrix multiplication (gemm) for the off-
diagonal blocks and a symmetric rank-k update
(syrk) for the diagonal blocks.

®
­

©
ªchol

?
©©©¼

HHHj®
­

©
ªtrsm

»»»»»9 ½
½=

Z
Z~

®
­

©
ªtrsm

»»»»»9 Z
Z~

XXXXXz

®
­

©
ªtrsm

»»»»»9 ½
½=

XXXXXz®
­

©
ªsyrk

?

®
­

©
ªgemm

?

®
­

©
ªgemm

?

®
­

©
ªsyrk

?

®
­

©
ªgemm

?

®
­

©
ªsyrk

?

®
­

©
ªchol
@

@R

PPPPPPq®
­

©
ªtrsmPPPPPPq

XXXXXXXXXz

®
­

©
ªtrsmPPPPPPq

XXXXXXXXXz®
­

©
ªsyrk

?

®
­

©
ªgemm

?

®
­

©
ªsyrk

?

®
­

©
ªchol

HHHj®
­

©
ªtrsm

HHHj®
­

©
ªsyrk

?®
­

©
ªchol

Figure 3: The directed acyclic graph formed by the
dependencies of Cholesky factorization Variant 3 on a
4× 4 matrix of blocks.

We visualize these tasks performed in the second iter-
ation of Cholesky factorization Variant 3 on a 5 × 5
matrix of blocks in Figure 2. Next, we illustrate the
directed acyclic graph formed by the dependencies of
Cholesky factorization Variant 3 on a 4 × 4 matrix of
blocks in Figure 3. Note that the tasks depicted in Fig-
ure 2 correspond to the tasks in the first three levels of
the DAG in Figure 3.

In Figure 4 we show how the FLASH API for com-
puting over matrices stored by blocks allows the details
of the implementation to be hidden. A few comments
are due:

• The API is designed and the code is typeset so that
the implementation closely mirrors the algorithms
in Figure 1.

• The calls FLASH Chol, FLASH Trinv, and
FLASH Ttmm each enqueue a single task and
internally register their dependencies.

• The routines FLASH Trsm, FLASH Syrk,
FLASH Gemm, and FLASH Trmm are coded in
the same style of Figure 4. These routines
decompose themselves into their component tasks
which are all enqueued.

The details of enqueueing and the specification of de-
pendencies are determined when the aforementioned

4

FLA_Error FLASH_SPD_inv_u_op(int op, FLA_Obj A)
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Part_2x2(A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A))
{

FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR);

/*--*/
switch (op)
{
FLASH_Chol_op: /* Variant 3 */

FLASH_Chol(FLA_UPPER_TRIANGULAR, A11);
FLASH_Trsm(FLA_LEFT, FLA_UPPER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A12);

FLASH_Syrk(FLA_UPPER_TRIANGULAR, FLA_TRANSPOSE,
FLA_MINUS_ONE, A12, FLA_ONE, A22);

break;
FLASH_Trinv_op: /* Variant 3 */

FLASH_Trsm(FLA_LEFT, FLA_UPPER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_MINUS_ONE, A11, A12);

FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
FLA_ONE, A01, A12, FLA_ONE, A02);

FLASH_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A01);

FLASH_Trinv(FLA_UPPER_TRIANGULAR,
FLA_NONUNIT_DIAG, A11);

break;
FLASH_Ttmm_op: /* Variant 1 */

FLASH_Syrk(FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE,
FLA_ONE, A01, FLA_ONE, A00);

FLASH_Trmm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A01);

FLASH_Ttmm(FLA_UPPER_TRIANGULAR, A11);
break;

}
/*--*/

FLA_Cont_with_3x3_to_2x2(
&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,
/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL);

}
return FLA_SUCCESS;

}

Figure 4: SuperMatrix implementation of selected vari-
ants for all three operations required for inversion of a
symmetric positive definite matrix.

FLASH * routines are called.
The inversion of an SPD matrix may now be per-

formed with:

FLASH_SPD_inv_u_op(FLASH_Chol_op, A);
FLASH_SPD_inv_u_op(FLASH_Trinv_op, A);
FLASH_SPD_inv_u_op(FLASH_Ttmm_op, A);
FLASH_Queue_exec();

Stage Scheduled Tasks
1 chol
2 trsm trsm trsm trsm
3 syrk gemm syrk gemm
4 gemm syrk gemm gemm
5 gemm syrk chol trsm
6 trsm trsm trsm trsm
7 trsm trsm trinv syrk
8 gemm syrk gemm gemm
9 syrk ttmm chol trsm
10 trsm trsm trsm trsm
11 gemm gemm gemm syrk
12 gemm syrk trsm chol
13 trsm trsm trinv syrk
14 trsm gemm gemm gemm
15 gemm trmm syrk trsm
16 trsm ttmm chol trsm
17 syrk trinv gemm syrk
18 gemm gemm gemm trmm
19 trmm trsm trsm trsm
20 trsm trsm trsm trsm
21 ttmm syrk gemm syrk
22 trinv gemm gemm trinv
23 syrk syrk gemm syrk
24 trmm gemm trmm gemm
25 trmm syrk gemm gemm
26 ttmm gemm trmm trmm
27 syrk trmm
28 trmm
29 ttmm

Figure 5: Simulated SuperMatrix execution of inver-
sion of a symmetric positive definite matrix on a 5× 5
matrix of blocks using four threads. Each column rep-
resents the tasks executed on separate threads.

Once all tasks are enqueued, FLASH Queue exec trig-
gers the dependency analysis, which then allows the
SuperMatrix runtime system to execute tasks out-of-
order.

In Figure 5, we show the simulated SuperMatrix exe-
cution of spd-inv on a 5×5 matrix of blocks using four
threads. Each column represents tasks that execute on
separate threads. For illustration purposes, this sim-
ulation assumes that each thread performs lock-step
synchronization after executing a single task, which
we denote as a single stage. Even with this restric-
tive simulation, SuperMatrix achieves near-perfect load
balance among threads. Such high efficiency is possi-
ble because the SuperMatrix runtime system exposes
concurrency between the three component operations,

5

FLASH Chol(... , A11);

FLASH Trsm(... , A11, A12);

FLASH Syrk(... , A12, A22);

?

¡¡ªA
A

A
AAK

6

(a) Cholesky factorization

FLASH Trsm (... , A11, A12);

FLASH Gemm (... , A01, A12, A02);

FLASH Trsm (... , A11, A01);

FLASH Trinv(... , A11);

¥
¥
¥
¥
C
C
CCW ?

¡¡ª

?

?

@@R ¡¡ª

B
BB
£

££°

(b) Inversion of a triangular matrix

FLASH Syrk(... , A01, A00);

FLASH Trmm(... , A11, A01);

FLASH Ttmm(... , A11);
?

@@R

¢
¢
¢
¢¢̧ 6

(c) Triangular matrix multiplication by its transpose

Figure 6: Dependencies within the while loop of each
operation shown in Figure 4. The plain arrows denote
flow dependencies, and the arrows with a dash denote
anti-dependencies.

which is unattainable by only parallelizing the three
sweeps separately.

Figure 5 depicts a prime example of out-of-order
scheduling. Stage 21 contains a ttmm task correspond-
ing to a sub-operation normally found in the third
sweep. This ttmm task is scheduled to execute be-
fore a trinv task in Stage 22 that originated from the
second sweep.

4 Flow vs. Anti-Dependencies

With respect to its application of superscalar execution
techniques, SuperMatrix raises the level of abstraction
by treating sub-operations over submatrix blocks as the
fundamental unit of computation. Similar in concept
to instruction-level parallelism, dependencies between
tasks that read from and write to blocks determine
the potential for concurrency. When parallelizing lin-
ear algebra operations, it is natural to focus on flow
dependencies and ignore anti-dependencies.

A11

A22

A12

A11

A22

A12

A00 A01 A02

Iteration 1 Iteration 2

Figure 7: First two iterations of a FLAME algorithm
on a 5× 5 matrix of blocks.

Even though the SuperMatrix runtime system auto-
matically detects all three types of dependencies, we
take special care to detect these dependencies in algo-
rithms coded using the FLAME/C API for the illus-
trative elements of this section.

In all the level-3 BLAS operations, the last operand
is the only matrix that is overwritten by the opera-
tion whereas all preceeding operands are strictly in-
puts. LAPACK functions also follow this convention.
We leverage this feature of the interface when detecting
dependencies.

Figure 6 shows flow and anti-dependencies within the
three sweeps of spd-inv. The plain arrows denote flow
dependencies, and the arrows with a dash denote anti-
dependencies. Since all sub-operations in Figure 6 lie
within the while loop of Figure 4, we illustrate both
intra- and inter-iterational dependencies.

4.1 Flow dependencies

Flow dependencies, often referred to as “true” depen-
dencies, create situations where a block is read by one
task after it is written by a previous task (read-after-
write).

S1: A = B + C;
S2: D = A + E;

In this simple example, statement S1 must complete
execution and output the value of A before S2 can be-
gin.

Intra-iterational flow dependencies are easily
detectable in operations implemented using the
FLAME/C API since the same submatrix view is used
in multiple code locations. In Figure 6(a), A11 is first
written by FLASH Chol and then read by FLASH Trsm.

Inter-iterational flow dependencies can be more diffi-
cult to recognize systematically because different sub-
matrix views may reference the same block across mul-
tiple iterations. We show the blocks comprising differ-
ent views in the first two iterations of a typical FLAME

6

algorithm in Figure 7. The top left block of A22 be-
comes A11 in the next iteration, which leads us to the
flow dependency between FLASH Syrk and FLASH Chol
within the Cholesky factorization shown in Figure 6(a).

Though not shown, flow dependencies form self loops
on FLASH Syrk in Figure 6(a) and Figure 6(c). That
is to say, in the case of Cholesky factorization, the
FLASH Syrk from iteration i must complete before the
FLASH Syrk from iteration i + 1 may begin.

The DAG in Figure 3 corresponds to the dependen-
cies shown in Figure 6(a) where all the sub-operations
are decomposed into their component tasks when ex-
ecuted on a 4 × 4 matrix of blocks. We can view the
DAG as the dynamic loop rolling of tasks specified by
the implementation of Cholesky factorization in Fig-
ure 4.

Detecting dependencies within FLAME/C algo-
rithms can be laborious, as it requires complete knowl-
edge of matrix partitioning to determine exactly which
regions of the matrix are being referenced. However,
the FLASH extension to FLAME/C provides a dis-
tinct advantage by clearly delimiting the blocks refer-
enced by each submatrix view. Identifying dependen-
cies within algorithms coded using traditional indexing
would likely be difficult and error-prone, at best.

4.2 Anti-dependencies

Anti-dependencies occur when a task must read a block
before another task can write to the same block (write-
after-read).

S3: F = A + G;
S4: A = H + I;

Here, S3 must read the value of A before S4 overwrites
it.

In the operations examined in [9, 10], we only en-
countered flow dependencies. However, trinv and
ttmm exhibit both flow and anti-dependencies. Both
types of dependencies must be obeyed in order to cor-
rectly parallelize spd-inv.

As with flow dependencies, intra-iterational anti-
dependencies are straightforward to locate. A01 is read
by FLASH Syrk but then overwritten by FLASH Trmm in
Figure 6(c).

However, inter-iterational anti-dependencies can be
quite difficult to identify. In Figure 7, we can see that
the leftmost block of A12 becomes A01 in the next it-
eration. This example results in an anti-dependency
between FLASH Gemm and FLASH Trsm in Figure 6(b).

The SuperMatrix runtime system detects anti-
dependencies while tasks are being enqueued. For
each block, the runtime system maintains a temporary

queue that tracks which tasks must read the block’s
data. When the system detects that a task writes to the
block in question, all previously inspected tasks on the
temporary queue are marked with anti-dependencies.
The block’s temporary queue is cleared after the anti-
dependencies are recorded.

4.3 Output dependencies

Output dependencies, the final class of dependencies,
create situations where the result of one operation is
overwritten by the result of subsequent computation
(write-after-write).

S5: A = J + K;
S6: A = L + M;

In this example, S6 must be executed after S5 to ensure
that A contains the correct value.

No BLAS operation strictly overwrites a matrix
where writes to the matrix are performed without first
reading its contents since the last operand is always an
input/output operand. The only exception is the copy
operation implemented in FLAME via FLA Copy.

Even though copying rarely occurs in linear algebra
operations, the QR factorization is one such example
where a temporary matrix is used, thereby creating in-
stances of output dependencies. We have adapted the
SuperMatrix mechanism to compute the QR factoriza-
tion [30], but that topic is beyond the scope of this
paper.

5 Scheduling Different Algorith-
mic Variants

When linked to a serial BLAS implementation, differ-
ent algorithmic variants for computing a particular lin-
ear algebra operation often yield significantly different
performance results. The better performing algorithms
make efficient use of the architecture’s memory hier-
archy. When linking the same algorithms to multi-
threaded BLAS, the difference in performance is even
more pronounced.

5.1 Mulithreaded BLAS

We show the different problem instances of symmet-
ric rank-k update encountered in Cholesky factoriza-
tion Variant 1 and Variant 3 in Figure 8(a) and (b),
respectively, on a 4 × 4 matrix of blocks. The compu-
tation shown in Figure 8(a) takes the form of a gener-
alized blocked dot product, which does not parallelize
well. After decomposing this problem instance into its

7

A11 + = AT
01

A01

(a)

A22 + = AT
12

A12

(b)

Figure 8: Problem instances of symmetric rank-k up-
date encountered by Cholesky factorization Variant 1
in (a) and Variant 3 in (b) on a 4× 4 matrix of blocks.

component tasks, flow dependencies exist between ev-
ery task pair because each blocked sub-operation over-
writes the single output matrix block. By contrast, the
rank-k update in Figure 8(b) can be parallelized quite
easily. Here, each component task overwrites a sepa-
rate block of the output matrix, allowing each task to
execute independently. The bulk of the computation in
Cholesky factorization occurs in the symmetric rank-k
update, so implementations of Variant 3 usually attain
much higher performance than those of Variant 1.

Identifying algorithmic variants with subproblems
that parallelize well requires careful analysis. A poor
choice of algorithm can result in near-serial perfor-
mance even when linking to the best multithreaded
BLAS libraries.

5.2 SuperMatrix

SuperMatrix essentially performs a dynamic loop un-
rolling of all tasks executing on individual submatrix
blocks. We can view different algorithmic variants sim-
ply as permutations of subproblems. For example,
Cholesky factorization Variant 1 performs trsm fol-
lowed by syrk and then chol whereas Variant 3 rear-
ranges the order such that chol occurs at the top of
the loop. The problem instances of syrk shown in Fig-
ure 8 no longer exist in isolation but are decomposed
into their component tasks with dependencies between
tasks from other subproblems.

The differences between variants are limited to the

order in which subproblems are called and the sub-
matrix views that are referenced. The tasks executed
on each submatrix block remain the same since the de-
pendencies remain invariant across all algorithmic vari-
ants. As a result SuperMatrix produces nearly identi-
cal schedules regardless of the algorithmic variant being
used to implement an operation.

Performance may vary slightly among different al-
gorithmic variants implemented using SuperMatrix.
Tasks are enqueued onto a global task queue where
the dependencies that form the DAG are embedded
into the task structures. Even though different vari-
ants form similar DAGs, the order in which tasks ap-
pear in the task queue will vary drastically. As a result,
the order in which tasks are executed and therefore the
order in which their operands’ submatrix blocks are ref-
erenced will also vary. Several secondary effects such
as the level-2 cache performance may also affect the
overall performance of different algorithmic variants.

We intend to explore this topic more formally in a
future paper with the context of scheduling tasks in a
DAG.

6 Performance

In this section, we show that SuperMatrix yields a per-
formance improvement for each of the three sweeps.
We observe further performance improvements when
the three sweeps are combined and tasks are scheduled
out-of-order.

6.1 Target architecture

All experiments were performed on an SGI Altix 350
server using double-precision floating-point arithmetic.
This ccNUMA architecture consists of eight nodes,
each with two 1.5 GHz Intel Itanium2 processors, pro-
viding a total of 16 CPUs and a peak performance of
96 GFLOPs/sec. (96 × 109 floating point operations
per second). The nodes are connected via an SGI NU-
MAlink connection ring and collectively provide 32 GB
(32×230 bytes) of general-purpose physical RAM. The
OpenMP implementation provided by the Intel C Com-
piler served as the underlying threading mechanism
used by SuperMatrix. Performance was measured by
linking to two different high-performance implementa-
tions of the BLAS: the GotoBLAS 1.15 [17] and Intel
MKL 8.1 libraries.

6.2 Implementations

We report the performance (in GFLOPs/sec.) of three
different implementations for chol, trinv, ttmm, and

8

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

Matrix size

G
F

LO
P

s/
se

c.
Chol Itanium2 p=16

SuperMatrix + serial GotoBLAS
SuperMatrix + serial MKL
FLAME + multithreaded GotoBLAS
FLAME + multithreaded MKL
LAPACK + multithreaded GotoBLAS
LAPACK + multithreaded MKL

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

Matrix size

G
F

LO
P

s/
se

c.

Trinv Itanium2 p=16

SuperMatrix + serial GotoBLAS
SuperMatrix + serial MKL
FLAME + multithreaded GotoBLAS
FLAME + multithreaded MKL
LAPACK + multithreaded GotoBLAS
LAPACK + multithreaded MKL

(a) (b)

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

Matrix size

G
F

LO
P

s/
se

c.

Ttmm Itanium2 p=16

SuperMatrix + serial GotoBLAS
SuperMatrix + serial MKL
FLAME + multithreaded GotoBLAS
FLAME + multithreaded MKL
LAPACK + multithreaded GotoBLAS
LAPACK + multithreaded MKL

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

Matrix size

G
F

LO
P

s/
se

c.

SPD−inv Itanium2 p=16

SuperMatrix + serial GotoBLAS
SuperMatrix + serial MKL
FLAME + multithreaded GotoBLAS
FLAME + multithreaded MKL
LAPACK + multithreaded GotoBLAS
LAPACK + multithreaded MKL

(c) (d)

Figure 9: Performance on the Itanium2 machine using 16 CPUs linked with the GotoBLAS 1.15 and MKL 8.1
libraries.

spd-inv. An algorithmic block size of 192 was used for
all experiments.

• SuperMatrix + serial BLAS
The SuperMatrix implementation of each opera-
tion is given in Figure 4. For the execution of in-
dividual tasks on each thread, we linked to serial
BLAS libraries.

The results reflect our simplest SuperMatrix mech-
anism, which is explained in detail in [10]. We did
not use advanced scheduling techniques such as
data affinity described in [9].

• FLAME + multithreaded BLAS
The sequential implementations of FLA Chol,

FLA Trinv, and FLA Ttmm provided by libFLAME
1.0 are linked with multithreaded BLAS libraries.

libFLAME implements Variant 3 for chol, Vari-
ant 3 for trinv and Variant 1 for ttmm, which
are the same algorithms implemented with Super-
Matrix.

• LAPACK + multithreaded BLAS
We linked the sequential implementations of
dpotrf, dtrtri, dlaaum provided by LAPACK 3.0
with multithreaded BLAS libraries. We modified
the routines to use an algorithmic block size of 192
instead of the block sizes provided by LAPACK’s
ilaenv routine.

9

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

Matrix size

G
F

LO
P

s/
se

c.
Chol Itanium2 p=16 GotoBLAS

SuperMatrix Variant 1
SuperMatrix Variant 2
SuperMatrix Variant 3
FLAME Variant 1
FLAME Variant 2
FLAME Variant 3
LAPACK

Figure 10: Performance of all three variants for
Cholesky factorization on the Itanium2 machine using
16 CPUs linked with the GotoBLAS 1.15 library.

LAPACK implements Variant 2 for chol, Variant
1 for trinv and Variant 2 for ttmm.

We performed experiments computing with both
the upper and lower triangular parts of an SPD
matrix but only included the results for upper tri-
angular. The upper triangular results provided
the best performance from the LAPACK imple-
mentations whereas lower triangular results were
reported in [9, 10].

6.3 Results

Performance results when linking to the GotoBLAS
and MKL libraries are reported in Figure 9. Several
comments are in order:

• In this multithreaded setting, LAPACK imple-
ments sub-optimal algorithms for each of the three
sweeps. By simply choosing a different algorith-
mic variant, the corresponding experiments com-
bining FLAME with multithreaded BLAS provide
greater performance for each sweep.

• Since each implementation used a block size of 192,
experiments run with GotoBLAS and MKL gen-
erally yield similar performance curves with the
exception of ttmm in LAPACK, shown in Fig-
ure 9(c).

In [9] we tuned the block size for each problem
size and found that serial MKL outperformed Go-
toBLAS on small matrices, which are used heavily

in SuperMatrix, while multithreaded GotoBLAS
provided higher performance for large matrices.

In [10] we reported performance results across sev-
eral different computer architectures linked with
various vendors’ BLAS libraries. Notably, those
results demonstrated that GotoBLAS typically
provides the best performing serial and multi-
threaded BLAS implementation. The one excep-
tion to this observation is Intel’s MKL, which nar-
rowly but consistently outperforms GotoBLAS on
Itanium2 architectures.

• In order to attain high performance, BLAS li-
braries pack matrices into contiguous buffers to
obtain stride one access during execution [18].
For large matrices, this packing cost is amortized
over enough computation to minimize the overall
impact on performance. This cost is more visi-
ble when performing tasks over blocks, as occurs
in SuperMatrix. Making matters worse, many
blocks are accessed by several tasks, requiring
those blocks to be repeatedly packed and un-
packed.

In [28] the authors show how to avoid these redun-
dant packing operations in the context of general
matrix-matrix multiplication. We suspect these
techniques can be extended to SuperMatrix.

• SuperMatrix performance ramps up much faster
for all operations, especially for spd-inv in Fig-
ure 9(d). The asymptotic performance of the
best sequential implementations linked with mul-
tithreaded BLAS libraries matches SuperMatrix
since parallelism is abundant within subproblems
given sufficiently large problem sizes.

• These results reflect the simplest scheduling of
tasks within the SuperMatrix runtime system.
Current research investigates sorting the ready
and available tasks according to different heuris-
tics to reduce the latency of tasks on the critical
path of execution, resulting in better load bal-
ance. This sorting of tasks subsumes the con-
cept of compute-ahead [1, 25, 31]. Furthermore,
given the modular nature of SuperMatrix, these
advanced scheduling techniques are completely ab-
stracted away from the end-user.

Figure 10 shows results for every variant of Cholesky
factorization using SuperMatrix and FLAME linked
with serial and multithreaded GotoBLAS, respectively.
We can clearly see that LAPACK implements Variant
2, which demonstrates that the difference in perfor-
mance between libFLAME and LAPACK only lies with

10

the choice of algorithm. All three variants of Cholesky
factorization implemented using SuperMatrix share the
same performance signature, which provides empiri-
cal evidence of the principles explained in Section 5.
Even though it is not shown, we have similar results
for trinv and ttmm.

7 Conclusion

Using the FLASH extension to the FLAME/C API, li-
brary developers can write algorithms to compute lin-
ear algebra operations and leave the details of par-
allelization to the SuperMatrix runtime system. The
high-level abstractions used by SuperMatrix also allow
parallelism to be extracted across subroutine bound-
aries, a task that has proven intractable with conven-
tional methods.

Despite the difficulty in identifying different types of
dependencies, SuperMatrix implements and completely
abstracts this process from the user. Given any sequen-
tial algorithm for computing a linear algebra operation,
SuperMatrix can meet or exceed the performance of
almost any other algorithm implemented with multi-
threaded BLAS. This fact frees us from needing to find
a family of algorithms, which is often required in order
to identify the algorithm with the best possible perfor-
mance on specific target platforms.

Related work

In [7], all algorithms for each of the three sweeps of
spd-inv were enumerated, as shown in Figure 1, in or-
der to find the best performing algorithmic variant for
each sweep. The computation was then rearranged into
one sweep, which allowed the authors to apply manual
intra-iterational optimizations using PLAPACK [34].

The work in [7] was intended to derive parallelism
from the BLAS implementations with some further
optimizations applicable only for distributed-memory
architectures. By comparison, SuperMatrix runs on
shared-memory architectures and exposes parallelism
between BLAS subproblems and does so automatically
via dependency analysis.

CellSs [4] also applies the ideas of out-of-order execu-
tion for thread-level parallelism. The key difference be-
tween CellSs and SuperMatrix is the API for identify-
ing tasks. CellSs uses annotations, similar to the com-
piler directives in OpenMP, which are placed around
function calls to denote different tasks. A source-to-
source C compiler uses these annotations to insert code
that performs the dependency analysis and subsequent
out-of-order execution at runtime. The load balancing

of tasks can vary greatly according to the computa-
tional runtime of each function. On the other hand, the
computational runtime of each task in SuperMatrix is
bound to the size of each submatrix block created using
the FLASH API [27].

Another difference between the current project and
CellSs relates to the scheduling of tasks. CellSs uses
a scheduling method similar to work-stealing where
tasks are assigned to certain threads during the analy-
sis phase but can migrate between threads during exe-
cution. SuperMatrix employs a simpler concept with-
out sacrificing flexibility where idle threads dequeue
ready and available tasks from a global task queue.

Since SuperMatrix is highly portable, we also have
tentative plans to adapt it to the Cell processor.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.

Acknowledgments

We thank the other members of the FLAME team for
their support.

This research was partially sponsored by NSF grants
CCF–0540926 and CCF–0702714.

Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

References

[1] C. Addison, Y. Ren, and M. van Waveren.
OpenMP issues arising in the development of par-
allel BLAS and LAPACK libraries. Scientific Pro-
gramming, 11(2), 2003.

[2] R. C. Agarwal and F. G. Gustavson. Vector
and parallel algorithms for Cholesky factorization
on IBM 3090. In SC ’89: Proceedings of the
1989 ACM/IEEE Conference on Supercomputing,
pages 225–233, New York, NY, USA, 1989.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Black-
ford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen. LAPACK Users’ guide (third
ed.). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1999.

[4] Pieter Bellens, Josep M. Perez, Rosa M. Badia,
and Jesus Labarta. CellSs: A programming model

11

for the Cell BE architecture. In SC ’06: Proceed-
ings of the 2006 ACM/IEEE Conference on Super-
computing, pages 5–15, Tampa, FL, USA, Novem-
ber 2006.

[5] Paolo Bientinesi. Mechanical Derivation and Sys-
tematic Analysis of Correct Linear Algebra Algo-
rithms. PhD thesis, The University of Texas at
Austin, 2006.

[6] Paolo Bientinesi, John A. Gunnels, Margaret E.
Myers, Enrique S. Quintana-Ort́ı, and Robert A.
van de Geijn. The science of deriving dense linear
algebra algorithms. ACM Transactions on Math-
ematical Software, 31(1):1–26, March 2005.

[7] Paolo Bientinesi, Brian Gunter, and Robert van de
Geijn. Families of algorithms related to the inver-
sion of a symmetric positive definite matrix. ACM
Transactions on Mathematical Software. Submit-
ted.

[8] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and
Robert A. van de Geijn. Representing linear alge-
bra algorithms in code: The FLAME application
programming interfaces. ACM Transactions on
Mathematical Software, 31(1):27–59, March 2005.

[9] Ernie Chan, Enrique S. Quintana-Ort́ı, Gregorio
Quintana-Ort́ı, and Robert van de Geijn. Super-
Matrix out-of-order scheduling of matrix opera-
tions for SMP and multi-core architectures. In
SPAA ’07: Proceedings of the Nineteenth Annual
ACM Symposium on Parallelism in Algorithms
and Architectures, pages 116–125, San Diego, CA,
USA, June 2007.

[10] Ernie Chan, Field G. Van Zee, Enrique S.
Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and
Robert van de Geijn. Satisfying your dependen-
cies with SuperMatrix. In Proceedings of the 2007
IEEE International Conference on Cluster Com-
puting, Austin, TX, USA, September 2007.

[11] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and
M. Thottethodi. Recursive array layouts and fast
matrix multiplication. IEEE Transactions on Par-
allel and Distributed Systems, 13(11):1105–1123,
2002.

[12] J. Choi, J. J. Dongarra, R. Pozo, and D. W.
Walker. ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent com-
puters. In Proceedings of the Fourth Symposium
on the Frontiers of Massively Parallel Compu-
tation, pages 120–127. IEEE Computer Society
Press, 1992.

[13] Timothy Collins and James C. Browne. Ma-
trix++: An object-oriented environment for par-
allel high-performance matrix computations. In
Proceedings of the Hawaii International Confer-
ence on Systems and Software, 1995.

[14] Timothy Scott Collins. Efficient Matrix Compu-
tations through Hierarchical Type Specifications.
PhD thesis, The University of Texas at Austin,
1996.

[15] Jack J. Dongarra, Jeremy Du Croz, Sven Ham-
marling, and Iain Duff. A set of level 3 Basic Lin-
ear Algebra Subprograms. ACM Transactions on
Mathematical Software, 16(1):1–17, March 1990.

[16] Erik Elmroth, Fred Gustavson, Isak Jonsson, and
Bo Kagstrom. Recursive blocked algorithms and
hybrid data structures for dense matrix library
software. SIAM Review, 46(1):3–45, 2004.

[17] Kazushige Goto.
http://www.tacc.utexas.edu/resources/software.

[18] Kazushige Goto and Robert A. van de Geijn.
Anatomy of high-performance matrix multiplica-
tion. ACM Transactions on Mathematical Soft-
ware. To appear.

[19] John A. Gunnels, Fred G. Gustavson, Greg M.
Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment.
ACM Transactions on Mathematical Software,
27(4):422–455, December 2001.

[20] F. G. Gustavson, L. Karlsson, and B. Kagstrom.
Three algorithms on distributed memory using
packed storage. B. Kagstrom, E. Elmroth, edi-
tors, Computational Science – PARA ’06, Lec-
ture Notes in Computer Science. Springer-Verlag,
2007. To appear.

[21] Greg Henry. BLAS based on block data structures.
Theory Center Technical Report CTC92TR89,
Cornell University, February 1992.

[22] José Ramón Herrero. A framework for efficient ex-
ecution of matrix computations. PhD thesis, Poly-
technic University of Catalonia, Spain, 2006.

[23] James Kahle, Michael Day, Peter Hofstee, Charles
Johns, Theodore Maeurer, and David Shippy. In-
troduction to the Cell multiprocessor. IBM Jour-
nal of Research and Development, 49(4/5):589–
604, September 2005.

12

[24] Jakub Kurzak, Alfredo Buttari, and Jack Don-
garra. Solving systems of linear equations on
the Cell processor using Cholesky factorization.
Technical Report UT-CS-07-596, Innovative Com-
puting Laboratory, University of Tennesse, April
2007.

[25] Jakub Kurzak and Jack Dongarra. Implement-
ing linear algebra routines on multi-core proces-
sors with pipelining and a look ahead. LAPACK
Working Note 178 Technical Report UT-CS-06-
581, University of Tennessee, September 2006.

[26] Charles Leiserson and Aske Plaat. Programming
parallel applications in Cilk. SINEWS: SIAM
News, 31, 1998.

[27] Tze Meng Low and Robert van de Geijn. An
API for manipulating matrices stored by blocks.
FLAME Working Note #12 TR-2004-15, Depart-
ment of Computer Sciences, The University of
Texas at Austin, May 2004.

[28] Bryan Marker, Field G. Van Zee, Kazushige
Goto, Gregorio Quintana-Ort́ı, and Robert A. van
de Geijn Toward scalable matrix multiply on mul-
tithreaded architectures. In Euro-Par ’07: Pro-
ceedings of the Thirteenth International European
Conference on Parallel and Distributed Comput-
ing, Rennes, France, August 2007.

[29] N. Park, B. Hong, and V. K. Prasanna. Tiling,
block data layout, and memory hierarchy perfor-
mance. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(7):640–654, 2003.

[30] Gregorio Quintana-Ort́ı, Enrique S. Quintana-
Ort́ı, Ernie Chan, Robert A. van de Geijn, and
Field G. Van Zee. Scheduling of QR factoriza-
tion algorithms on SMP and multi-core architec-
tures. FLAME Working Note #24 TR-07-37, De-
partment of Computer Sciences, The University of
Texas at Austin, July 2007.

[31] Peter Strazdins. A comparison of lookahead and
algorithmic blocking techniques for parallel matrix
factorization. International Journal of Parallel
and Distributed Systems and Networks, 4(1):26–
35, June 2001.

[32] R. Tomasulo. An efficient algorithm for exploit-
ing multiple arithmetic units. IBM Journal of Re-
search and Development, 11(1), 1967.

[33] Vinod Valsalam and Anthony Skjellum. A
framework for high-performance matrix multipli-
cation based on hierarchical abstractions, algo-
rithms and optimized low-level kernels. Concur-
rency and Computation: Practice and Experience,
14(10):805–840, 2002.

[34] Robert A. van de Geijn. Using PLAPACK: Paral-
lel Linear Algebra Package. The MIT Press, 1997.

[35] Field G. Van Zee, Paolo Bientinesi, Tze Meng
Low, and Robert A. van de Geijn. Scalable par-
allelization of FLAME code via the workqueuing
model. ACM Transactions on Mathematical Soft-
ware. To appear.

13

