
Level-3 BLAS on the TI C6678 multi-core DSP

Murtaza Ali, Eric Stotzer
Texas Instruments

{mali,estotzer}@ti.com

Francisco D. Igual
Dept. Arquitectura de

Computadores y Automática
Univ. Complutense de Madrid

figual@fdi.ucm.es

Robert A. van de Geijn
Department of Computer Science

University of Texas at Austin
rvdg@cs.utexas.edu

Abstract

Digital Signal Processors (DSP) are commonly em-
ployed in embedded systems. The increase of process-
ing needs in cellular base-stations, radio controllers and
industrial/medical imaging systems, has led to the devel-
opment of multi-core DSPs as well as inclusion of float-
ing point operations while maintaining low power dissi-
pation. The eight-core DSP from Texas Instruments, code-
named TMS320C6678, provides a peak performance of 128
GFLOPS (single precision) and an effective 32 GFLOPS
(double precision) for only 10 watts. In this paper, we
present the first complete implementation and report per-
formance of the Level-3 Basic Linear Algebra Subprograms
(BLAS) routines for this DSP. These routines are first opti-
mized for single core and then parallelized over the different
cores using OpenMP constructs. The results show that we
can achieve about 8 single precision GFLOPS/watt and 2.2
double precision GFLOPS/watt for General Matrix-Matrix
multiplication (GEMM). The performance of the rest of the
Level-3 BLAS routines is within 90% of the corresponding
GEMM routines.

1 Introduction

Power efficiency has become an important factor in High
Performance Computing (HPC) applications. This has led
to an interest in programmable and/or reconfigurable plat-
forms including Graphics Processing Units (GPUs) and
Field Programmable Gate Array (FPGA) devices. In this
paper, we present an alternative low power architecture for
HPC, the TI C66x Digital Signal Processor (DSP) that is
widely used in embedded applications, focusing on the im-
plementation of the Level 3 BLAS. We discuss how, unlike
GPUs or FPGAs, standard techniques and plain C/C++ suf-
fice to attain high performance for low power.

High performance DSPs are commonly found in cellular
base-stations, radio network controllers, as well as indus-

trial and medical imaging systems. The processing com-
plexity of the algorithms used in these embedded systems
has been growing rapidly in recent years. DSPs have re-
sponded to this growth in various ways- by adding vector
instructions, by using multiple cores on the same device,
by adding floating point capabilities, cache based memory
hierarchy, etc. These features were added while maintain-
ing the low power requirement needed for embedded sys-
tems, and are of wide appeal for general-purpose HPC. The
most powerful DSP available in the market to date is the
TMS320C6678 (we will refer to this as simply C6678) from
Texas Instruments[10]. This device is based on the Key-
stone multi-core architecture, code named C66x. This par-
ticular device contains eight C66x cores, provides a com-
bined 128 single precision (SP) GFLOPS (billions of float-
ing point operations per second) and 32 double precision
(DP) GFLOPS and consumes 10W when the cores are run-
ning at 1 GHz. Unlike other power efficient compute plat-
forms like GPUs and FPGAs, DSPs can be used both as
an acceleration platform where part of the compute can be
off-loaded to DSPs or as a standalone system where whole
applications can run.

In the HPC arena, dense linear algebra plays an im-
portant role and is an important indicator of the potential
performance of novel architectures. Several high perfor-
mance linear algebra libraries are available that provide
scalable multi-core multi-device implementations. These
libraries cast much of their computations in calls to the
Basic Linear Algebra Subroutines specification (BLAS).
The Level-3 BLAS routines support matrix-matrix opera-
tions and are the most computationally intensive [2]. A
companion paper [5] provides early experience in imple-
menting the single precision General Matrix-Matrix multi-
plication (GEMM) operation on the C6678 and integration
of the routine into a modern dense linear algebra library,
namely the libflame library [11]. In this paper, we fo-
cus on the implementation and performance of the full set
of Level-3 BLAS routines, a first for a DSP. Based on sin-
gle core implementations, OpenMP is used to implement
multithreaded versions of these routines.



Figure 1. C66x DSP Core Block Diagram.

2 Overview of the C6678 DSP architecture

The C6678 DSP is an eight core high performance DSP
with both fixed and floating point capabilities [10]. It is
based on the C66x core described in more details later. The
overall eight core architecture also provides a rich set of
industry standard peripherals: PCIe interface to to commu-
nicate with a CPU host, Serial Rapid I/O (SRIO) running
at 20 Gbps to communicate between DSP devices, or Di-
rect memory Access (DMA) to transfer data between DDR3
memory and on-chip memory where the data transfer can be
hidden behind compute operations. The cores are capable
of running up to 1.25 GHz. However, for our analysis here,
we have analyzed a 1 GHz device dissipating 10 W power.

2.1 Core architecture and memory hierar-
chy

The C66x core architecture [9] based on very Long In-
struction Word (VLIW) architecture is shown in Figure 1.
The architecture takes advantage of several levels of paral-
lelism. The instruction level parallelism is due to the eight
functional units arranged in two sides. Each side has four
unique units: L, M, S and D units. The M units perform
multiplication operations. The D unit handles load/store
and address calculations. The other functionalities includ-
ing additions/subtractions, logical, branch and bitwise op-
erations are distributed between L and S units. This 8-way
VLIW machine can issue eight parallel instructions every
cycle. There are two sets of 32-bit registers for a total of 64
registers- one set connected to one side of units.

The instruction set includes Single Instruction Multiple
Data (SIMD) operating on up to 128-bit vectors, thereby,
allowing data level parallelism within the core. With two
sets of L, S and M units, the core is capable of carrying out

8 SP multiply-add operations in one cycle. In double preci-
sion, it can carry out 2 multiply-add operations in one cycle.
All floating point operations are IEEE754 compliant. With
eight such cores running at 1 GHz in the C6678 DSP, we
have 128 SP GFLOPS or 32 DP GFLOPS. The eight cores
allow the system to take advantage of thread level paral-
lelism by running different threads across different cores.

There are 32 KB of L1 program cache and 32 KB of
L1 data cache. In addition there is also 512 KB of L2
cache. These caches are dedicated to each core. The L1
data and L2 memory can be configured as RAM or cache or
part RAM/part cache. This provides additional capability of
handling memory and is exploited in our BLAS implemen-
tations. There is an additional 4096 KB of shared on chip
memory accessible by all cores (usually referred as MSMC
memory). The external 64 bit DDR3 memory interface runs
at 1600 MHz and also has ECC DRAM support.

2.2 Programming the DSP

TI’s DSPs run a lightweight real time native operating
system called SYS/BIOS. A C/C++ compiler is provided
as part of the development environment. The compiler is
C89/C++98 compliant and virtually every C89 code can
be ported with no additional effort. To improve the effi-
ciency of the generated code for each TI architecture, the
compiler provides optimization techniques in the form of
pragmas and intrinsic SIMD instructions to fully exploit
the core architecture and extract the all the potential perfor-
mance without resorting to assembly programming.

The compiler supports OpenMP 3.0 to allow rapid port-
ing of existing multi-threaded codes to multi-core DSP. The
compiler translates OpenMP into multi-threaded code with
calls to a custom runtime library built on top of SYS/BIOS
and inter-processor communication (IPC) protocols. The
OpenMP runtime performs the appropriate cache control
operations to maintain the consistency of the shared mem-
ory when required, but special precaution must be taken to
keep data coherency for shared variables, as no hardware
support for cache coherency across cores is provided.

3 Implementation of GEMM on a single core

Our GEMM implementation is structured much like the
implementation in the GotoBLAS library [3, 4]. The Goto-
BLAS is one of the most widely used and highly perform-
ing BLAS implementation available today. Here, we briefly
introduce the key aspects of our implementation. A more
detailed description of the mapping of the GotoBLAS ap-
proach to C6678 can be found at [5]. The GotoBLAS ap-
proach decomposes the GEMM into different layers, each
mapped to a different level in the memory hierarchy. The
decomposition also amortizes the data movement between



memory levels with computations, thereby, allowing near-
optimal performance. As the general strategies adopted
GEMM are the base for the rest of the BLAS-3 implemen-
tations, we review the main concepts underlying our GEMM
implementation.

3.1 Mapping into memory hierarchy

The basic GEMM performs the following operation,

C := αAB + βC

where A, B, and C are m × k, k × n, and m × n dense
matrices, respectively. These matrices are all assumed to
be resident in external DDR3 memory. The initial division
of the matrices into sub-blocks is illustrated in Figure 2.
First A and B are divided in column panels (of dimension
m× kpartition ) and row panels (of dimension kpartition ×
n) respectively. The matrix C is updated using low rank
panel-panel multiplications (GEPP). The panels of A are
further subdivided into blocks (of dimension mpartition ×
kpartition) and the corresponding row panel of C is updated
using block-panel multiplications (GEBP).

A0 A1 A2 B1

B2

B0

C

Ci B
^

A
^

bk

C1

C0

C2

A 0,p

A 1,p

A 2,p

^
B

GEMM

Partition in k dimension

Partition in m dimension

Partition in n dimension

GEPP

GEBP

GEBP

Inner
Kernel

4

8

4
8bk

+= *

c a b

Figure 2. Blocking of matrices to fit into inter-
nal memory for single precision GEMM. Â and
B̂ are the packed versions of the correspond-
ing blocks of A and B.

One such block is shown as matrix a in Figure 2. The
size of this sub-matrix is chosen so that it can fit into L2

RAM. We have used half of the L2 RAM available (256
KB) to store this sub-block of the A matrix. The panel of
B matrix which could be packed beforehand is also divided
into small blocks at this time. The size of the sub-panel b is
chosen to fit into L1 RAM. In our implementation, we have
chosen half of L1 (16 KB) as cache and the other half as L1
RAM. The latter memory is allocated to hold the block b.

3.2 Mapping into core architecture

The block a that has been brought into L2 RAM (with
some necessary packing to be described later) is further sub-
divided into smaller sub-blocks of sizemkernel×kpartition.
The block b, which now resides in L1 RAM (again after nec-
essary packing) is of size kpartition×nkernel. An optimized
kernel was developed to perform matrix-matrix multiplica-
tion update of a small block c of size mkernel × nkernel by
multiplying the sub-block of A of size mkernel× kpartition
residing in L2 RAM with the sub-block of B of size
kpartition × nkernel residing in L1 RAM. The choices of
mkernel and nkernel depend on the number of registers
available in the core. Figure 3 details these values for dif-
ferent data types used in our implementation.

The actual kernel implementation is done through a rank-
1 update of sub-block of C being computed by multiplying
one column (of sizemkernel×1) of the sub-block ofAwith
one row (of size 1×nkernel) of the sub-block ofB at a time
looping over kpartition times. This inner loop of the kernel
is optimized using intrinsic vector instructions to take the
best advantage of the C66x core architecture.

nkernel nkernel

+= *AC

B

m kernel

kpartition

Data type mkernel nkernel

single precision (s) 4 8
double precision (d) 2 4

single precision complex (c) 4 4
double precision complex (z) 1 1

Figure 3. Inner kernel partitions for the C66x
architecture.



L1

L2

DDR

DMA data move
CPU data move with packing
Linear CPU load

A B C

b

b

(384 Kb allocated
per core)

MSMC

Registers

a

a

Figure 4. Data movement strategy for GEMM.

3.3 Data movement and packing

We have developed a scheme to overlap data move-
ment with computations as much as possible, leveraging
the DMA capabilities of the DSP. Blocks of A and B are
first brought into on-chip shared memory from the external
DDR3 memory as illustrated in Figure 4. The shared mem-
ory is partitioned into 8 equal blocks of size 384 KB to be
used by each core. This way, each core can independently
manage its data movement through the shared RAM. This
data movement is the slowest and hence we employed DMA
to perform it. Note that DMA operates independently of the
CPU core and hence the CPU can continue performing op-
erations on already loaded data.

Once the per core assigned data is loaded in the shared
RAM and the CPU is exhausted operating on all the data
available in its L2 and L1 RAM, the CPU will move the
block of A brought into shared RAM to L2 RAM and the
block of B to L1 RAM with necessary packing. The pack-
ing required of A is illustrated in Figure 5. It basically
extracts sub-blocks of size mkernel × kpartition from the
block of A of size mpartition × kpartition already loaded
into shared RAM and put these sub-blocks in linear mem-
ory in L2 RAM. This allows the kernel to traverse the L2
memory linearly for best cache performance.

4 Extension to other Level-3 BLAS routines

It has long been observed that the other Level-3 BLAS
can be implemented in terms of GEMM [6]. We instead
follow the approach in [3] to extend the strategy proposed
for GEMM to the rest of Level-3 BLAS functions. In this
approach, most of the customization for performing vari-
ous Level-3 BLAS functions is kept in the data moving and

partitionk

A Packed A

kpartition

m

m

partition mpartition

kernel

Figure 5. Packing of A for use by the inner
kernel.

packing part of the operations. The GEMM kernel is mod-
ified only slightly to accommodate the requisite variations
as described below. Thus, only the main differences with
the approach taken for GEMM are illustrated in this section
for each one of the implemented routines.

Table 1 summarizes the Level-3 BLAS routines operat-
ing in real arithmetic and the flop count that will be used for
the experimental experiments in Section 6.

4.1 SYMM and HEMM

In SYMM operations, only the upper or lower part of the
matrix is referenced. Thus, there can be three cases when
the mpartition × kpartition block, a, of matrix A is brought
into on-chip shared memory (the following assumes that the
lower part of the matrix is to be referenced).

Case 1: Block a is to the left of the diagonal. The data
movements are exactly the same as GEMM.

Case 2: Block a is to the right of the diagonal. The valid
data for this case is in transposed location to the left of
the diagonal. Data movement is the same as GEMM for
transpose condition.

Case 3: The diagonal cuts through block a. In this case
part of the block is valid and part of it needs to be
read from the corresponding transpose locations. In
this two blocks of data will be brought in. During data
packing from shared memory to L2 memory, the re-
gion above the diagonal will be filled in.

Other then data movement and packing operations, there
is no specific change necessary in the GEMM kernel. The
kernel is used as is. Also note that any conjugate transpose
needed for the Hermitian function (HEMM) can be easily
performed during these data packing operations.

4.2 SYRK/HERK and SYR2K/HER2K

The operations of SYRK are very similar to GEMM where
the first matrix is A and the second matrix is AT . The only



Routine Operation Comments Flops

xGEMM C := α op(A) op(B) + βC op(X) = X,XT , XH , C is m× n 2mnk

xSYMM
C := αAB + βC

C is m× n, A = AT 2m2n
C := αBA+ βC 2mn2

xSYRK
C := αAAT + βC

C = CT is n× n n2k
C := αATA+ βC

xSYR2K
C := αABT + αBAT + βC

C = CT is n× n 2n2k
C := αATB + αBTA+ βC

xTRMM
C := α op(A)C op(A) = A,AT , AH , C is

m× n
nm2

C := α Cop(A) mn2

xTRSM
C := α op(A−1)C op(A) = A,AT , AH , C is

m× n
nm2

C := α Cop(A−1) mn2

Table 1. Functionality and number of floating point operations of the studied BLAS routines.

difference is that only the upper or the lower part of the ma-
trixC is computed. This is achieved by simple modification
of the GEBP loop by controlling the loop indices which will
only compute the part below or above the diagonal element.

The GEMM kernel computes a mkernel × nkernel sub-
block of C. A slight modification to the GEMM kernel is
done to allow writing only above or below any diagonal line
of this sub-block. This ensures that we do not overwrite any
portion of matrix C while computing sub-blocks on the di-
agonals. SYR2K is simply computed by carrying out SYRK-
like functions twice- first with A and BT and then with B
and AT . An equivalent approach has been adopted for Her-
mitian matrices (routines HERK and HER2K).

4.3 TRMM

In TRMM, the matrix A is upper or lower triangular. The
operations are performed in-place. Hence, the values are to
be computed for top down rows for upper triangular case
and bottom up for lower triangular case for case of left
multiplication. The GEBP is modified so that loop indices
only vary over non-zero data blocks that the kernel oper-
ates on. In this case also, we can have three cases when
the mpartition × kpartition block, a, of matrix A is brought
into on-chip shared memory (the following assumes that the
lower part of the matrix is to be referenced).

Case 1: Block a is to the left of the diagonal. The data
movements are exactly the same as GEMM.

Case 2: Block a is to the right of the diagonal. This case
should not occur since the GEBP loop indices will en-
sure this case is skipped.

Case 3: The diagonal cuts through block a. In this case we
still bring in the 2-D sub-block from memory. How-
ever, during data packing from shared memory to L2
memory, the region above the diagonal will be filled
with zero for each mkernel × mkernel sub-blocks on
the diagonal.

4.4 TRSM

In order to explain the TRSM, we refer to Figure 6. This
illustration assumes that the matrix A is lower triangular.
The operations are in-place, i.e., the elements of B will be
replaced by corresponding elements of A−1B as the com-
putation progresses. We focus on the update of the small
block b3 of size mkernel × nkernel. In our blocking ap-
proach to fit matrix blocks in internal memory, we load
blocks of A of size mpartition × kpartition to shared RAM.
These blocks are then moved to L2 RAM with necessary
data packing. In this particular illustration, two such blocks
of A (namely A1 and A2) are necessary to update b3. The
parts of A within these blocks that are needed for updating
b3 are a1, a2, and a3. a3 is themkernel×mkernel block that
is at the diagonal of the original matrix A and is also lower
triangular. The corresponding sub-blocks in the matrix B
are b1 and b2. Note that these sub-blocks will already have
the corresponding values A−1B (referred to as b′1 and b′2)
before they are used to update b3. The updated values of b3
can now be computed as

b′3 = a−13 (b3 − a2b2 − a1b′1).

In this illustration, b3 will be updated in two iterations.
First, when the block A1 is loaded to L2 RAM, the update
is a simple GEMM operation

b3 = −a1b′1.

This case thus uses the data packing and internal kernel as
typical GEMM. The second update occurs when the second
block A2 is loaded to L2 RAM. In this case, we first need
GEMM operations

b3 = b3 − a2b′2,

followed by a matrix multiplication

b′3 = a−13 b3.

A GEMM kernel is modified to create an ad-hoc TRSM
kernel which performs the GEMM update followed by the



2b
’

1b
’

3b

2b
’

1b
’

3b
’

1a 2a 3a

nkernel

m

kpartition

A A1 2

kernel

AB B

Figure 6. Updating TRSM using GEMM.

matrix multiplication. This kernel assumes that the inverse
of the lower triangular block a3 is already available in the
block A2. When this block is moved from shared RAM
to L2 RAM, the portion of data corresponding to the sub-
block a2 will be packed in a similar fashion to that used for
GEMM. In addition, the mkernel × mkernel blocks on the
diagonal will be inverted. Note that since this block is lower
triangular, the inverse is also lower triangular.

5 Multi-threading using OpenMP

The single core optimized routines described in previ-
ous sections are parallelized across multiple cores using an
OpenMP-based multi-threading scheme. Each thread is as-
signed to one core of the DSP. The output matrix is divided
into non-overlapping regions as follows:

• For TRMM and TRSM, the output matrix is divided into
non-overlapping vertical strips. In this scenario, each
thread will use the whole matrix A but will only need
to use the corresponding vertical strip of B assigned to
the particular thread. This division allows each thread
to produce output independent of others.

• For all other routines, the output matrix is divided into
non-overlapping horizontal strips. In this scenario,
each core will use the whole matrix B and will only
use the corresponding horizontal strip ofA assigned to
it. This is the preferred division over vertical strips as
is done with TRMM and TRSM, since the performance
improves with larger values of k assigned to each core.

In all the above cases, the horizontal/vertical strips are
chosen so that the computational load in each core is ap-
proximately the same. We note the constraints that need to
be maintained while blocking the output matrices to each
thread. The number of rows assigned to an output block be-
ing operated on by a thread needs to be multiple of the size
of the cache line (128 bytes for this architecture). This is
to ensure that multiple cores operate on independent cache
lines as there is no hardware cache coherency mechanism.
Then number of columns assigned to an output block needs
to be multiple of nkernel. There is no restriction on k.

6 Experimental results

6.1 Hardware setup

Our experimental evaluation is carried out using a
TMDXEVM6678LE evaluation module (EVM) that in-
cludes an on-board C6678 processor running at 1 GHz. The
board has 512 MB of DDR3 RAM memory. Our tests have
been developed on top of SYS/BIOS. Experimental results
are reported in terms of GFLOPS for increasing problem
sizes, using square matrices. For a detailed flop count of
each BLAS routine, see Table 1.

The evaluation of a new full BLAS implementation is a
thorough task. In this section, we report a selected subset of
results that are representative of the rest of the library per-
formance and behavior on both single and multiple cores.

6.2 Single core performance

Figure 7 reports the performance attained by our opti-
mized routines for single and double precision operating in
real (top plot) and complex (bottom plot) arithmetic.

The results show that our implementation achieves a
peak performance of 10.3 GFLOPS for single precision
GEMM and 2.8 GFLOPS for double precision, and 10.9 and
2.4 GFLOPS for complex GEMM. The rest of the routines
are within 90% of the corresponding GEMM operations. Our
GEMM performance is about 64% of peak for single preci-
sion and about 70% of peak for double precision. The per-
formance loss is mainly dictated by the caching mechanism
in the DSP, not as aggressive as that of general-purpose ar-
chitectures like Intel x86. We have identified several factors
related to this in the implementation of GEMM:

• Cache misses occur at every kernel call when a new set
of sub-block of matrix A is needed.

• Loop overhead and loading and saving of entries of C
in the inner kernel.

• Overhead in data movement across different layers
(DMA and memcpy) and data packing.

The 2D DMA mechanism dictates some restrictions re-
garding the maximum stride allowed for sub-blocks of ma-
trices. For large matrices this limit is reached, and it is nec-
essary to switch to memcpy-like data copies. This effect
is evident for complex matrices, in which the stride doubles
that of real matrices, but we have observed similar overhead
for bigger real matrices than those shown in the figures. Al-
ternate approaches using the flexibility that DMA engine
provides are currently being investigated to remove this re-
striction larger matrices and attain a homogeneous behavior.

There are two main reasons for the difference of perfor-
mances between GEMM and the rest of routines:



0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

G
F
L
O
P
S

Problem size

Real BLAS-3 C66x - One core - 1Ghz

SGEMM

SSYMM

SSYRK

SSYR2K

STRMM

STRSM

DGEMM

DSYMM

DSYRK

DSYR2K

DTRMM

DTRSM

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

G
F
L
O
P
S

Problem size

Complex BLAS-3 C66x - One core - 1Ghz

CGEMM
CSYMM
CSYRK
CSYR2K
CTRMM
CTRSM
ZGEMM
ZSYMM
ZSYRK
ZSYR2K
ZTRMM
ZTRSM

Figure 7. Performance of the single-core
BLAS-3 implementation. Top: real arithmetic.
Bottom: complex arithmetic.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000

G
F
L
O
P
S

Problem size

Real BLAS-3 C66x - Eight cores - 1Ghz

SGEMM
SSYMM
SSYRK
SSYR2K
STRMM
STRSM
DGEMM
DSYMM
DSYRK
DSYR2K
DTRMM
DTRSM

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000

G
F
L
O
P
S

Problem size

Complex BLAS-3 C66x - Eight cores - 1Ghz

CGEMM
CSYMM
CSYRK
CSYR2K
CTRMM
CTRSM
ZGEMM
ZSYMM
ZSYRK
ZSYR2K
ZTRMM
ZTRSM

Figure 8. Performance of the multi-core
BLAS-3 implementation. Top: real arithmetic.
Bottom: complex arithmetic.



• The additional data re-arrangements needed in these
routines. This is especially pronounced for TRSM,
where the inversion requires division operations.
TRSM also requires maintaining data coherency among
various layers of the memory hierarchy.

• The processing is most efficient when the internal ker-
nel is looping over largest possible values for k, i.e.,
kpartition. For triangular matrices, the actual number
of loop iterations will be less than kpartition (in some
cases much less) for diagonal blocks.

6.3 Multi-core performance

Figure 8 reports the performance of the implementa-
tions running on the 8 cores of the DSP. The parallel
BLAS implementation on 8 cores achieves a peak perfor-
mance of 79.4 GFLOPS for single precision GEMM and 21
GFLOPS for double precision real GEMM, and 86.6 and
19.4 GFLOPS for complex GEMM. As for the single-core
version, the rest of the routines are within 90% of the cor-
responding GEMM operations. The behavior for big matri-
ces is directly inherited from the sequential implementation.
Regarding the attained speedup of the parallel version, com-
paring the single precision implementation on 8 cores with
the sequential version, the attained speedup values vary be-
tween 7.5× for GEMM to 6.6× for TRSM.

Considering 10 W as the power dissipated by the chip,
our implementation attains a peak GFLOP/Watt ratio of
roughly 8 GLOPS/Watt for single precision GEMM and 2.1
GFLOPS/Watt for double precision. As of today, and spe-
cially for single precision, this is one of the most effi-
cient BLAS implementation. Moreover, DSP can be seen
as standalone processors, without the need of an attached
host. This increases the appeal of the architecture for highly
efficiency-demanding environments and applications.

7 Conclusion and future work

We have presented results for a complete, highly-tuned
Level-3 BLAS for a multi-core DSP. This implementation
achieves 8 single precision GFLOPS/W and 2.2 double pre-
cision GFLOPS/W for GEMM operations. The rest of the
BLAS 3 routines achieve within 90% of this GEMM perfor-
mance. These results appear to be among the best achieved
performance per watt numbers for current HPC platforms.
This implementation is the first Level-3 BLAS implemen-
tation targeting a DSP, and will form the basis for efficient
implementations of LAPACK [1] and libflame.

So far we have only presented results for performance
on a single DSP multicore processor. Future developments
will target cards with many DSP chips, which are expected
to have four to eight such devices, and multiple cards at-
tached to a host following a multi-accelerator paradigm. We

are currently working on supporting the Message-Passing
Interface (MPI) [8] on the C6678 device to allow standard
communication across devices and to map distributed mem-
ory dense linear algebra libraries, such as Elemental [7], to
it. At the DSP level, the necessity of a tuned BLAS library
like the one presented in this paper that exploits efficiently
the potential of the chip is fundamental to such efforts.

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-
mel, J. J. Dongarra, J. D. Croz, S. Hammarling, A. Green-
baum, A. McKenney, and D. Sorensen. LAPACK Users’
Guide (third ed.). Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1999.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A
set of level 3 basic linear algebra subprograms. ACM Trans.
Math. Soft., 16(1):1–17, March 1990.

[3] K. Goto and R. van de Geijn. High-performance imple-
mentation of the level-3 BLAS. ACM Trans. Math. Softw.,
35(1):1–14, 2008.

[4] K. Goto and R. A. van de Geijn. Anatomy of a high-
performance matrix multiplication. ACM Trans. Math. Soft.,
34(3), 2008.

[5] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz, and
R. van de Geijn. Unleashing DSPs for general-purpose HPC.
FLAME Working Note #61. Technical Report TR-12-02,
The University of Texas at Austin, Department of Computer
Sciences, February 2012.

[6] B. Kågström, P. Ling, and C. V. Loan. GEMM-based level 3
BLAS: High performance model implementations and per-
formance evaluation benchmark. ACM Trans. Math. Soft.,
24(3):268–302, 1998.

[7] J. Poulson, B. Marker, and R. van de Geijn. Elemental: A
new framework for distributed memory dense matrix com-
putations. FLAME Working Note #44. Technical Report
TR-10-20, The University of Texas at Austin, Department
of Computer Sciences, June 2010.

[8] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The Complete Reference. The MIT Press,
1996.

[9] TMS320C66x DSP CPU and In-
struction Set Reference Guide.
http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf,
November 2010. Texas Instruments Literature Number:
SPRUGH7.

[10] TMS320C6678 Multicore Fixed and
Floating-Point Digital Signal Processor.
http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf,
February 2012. Texas Instruments Literature Number:
SPRS691C.

[11] F. G. Van Zee, E. Chan, R. A. van de Geijn, E. S. Quintana-
Ortı́, and G. Quintana-Ortı́. The libflame library for dense
matrix computations. Computing in Science and Engineer-
ing, 11:56–63, 2009.


	Introduction
	Overview of the C6678 DSP architecture
	Core architecture and memory hierarchy
	Programming the DSP

	Implementation of gemm on a single core
	Mapping into memory hierarchy
	Mapping into core architecture
	Data movement and packing

	Extension to other Level-3 BLAS routines
	symm and hemm
	syrk/herk and syr2k/her2k
	trmm
	trsm

	Multi-threading using OpenMP
	Experimental results
	Hardware setup
	Single core performance
	Multi-core performance

	Conclusion and future work

