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We present high-performance algorithms for up-and-downdating a Cholesky factor or QR factor-
ization. The method uses Householder-like transformations, sometimes called hyperbolic House-

holder transformations, that are accumulated so that most computation can be cast in terms of
high-performance matrix-matrix operations. The resulting algorithms can then be used as build-

ing blocks for an algorithm-by-blocks that allows computation to be conveniently scheduled to

multithreaded architectures like multicore processors. Performance is shown to be similar to that
achieved by a blocked QR factorization via Householder transformations.
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1. INTRODUCTION

Consider the Linear Least-Squares problem that, given a matrix A ∈ Cm×n with
linearly independent columns and y ∈ Cm, computes x ∈ Cn that minimizes ‖Ax−
y‖2. This problem is typically solved via one of two methods:

Method of Normal Equations: Solve AHAx = AHy by computing the Cholesky
factor of AHA, upper triangular matrix R, followed by forward and backward sub-
stitution to solve RHRx = AHy.

QR factorization (via Householder transformations): Compute the QR fac-
torization A = QR where Q is an orthogonal m × n matrix and R is an upper
triangular n× n matrix. Solve Rx = QHy.

In this paper, we concern ourselves with the following prototypical scenario: Let
rows of the appended system

(
A y

)
represent observations that have been taken,

for example, over time. These observations can be partitioned into three groups:
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(
A y

)
=

 B b

C c

D d

 where the Cholesky factor corresponding to

(
B

D

)
has already

been computed: BHB+DHD = RHR. Now, the rows of D represent old data that
we would like to remove while the rows of C represent new data that we would like
to add to the Linear Least-Squares problem. Thus, we would like to compute the

Cholesky factor corresponding to

(
B

C

)
leveraging the already computed R. The

right-hand side has to be updated correspondingly, which is discussed in Section 6.
In [Stewart and Stewart 1998] hyperbolic Householder transformations are re-

viewed for this problem and analyzed both from an algorithmic and numerical
stability point of view. In that paper, references to the literature can also be found.
The present paper builds on the insights in that paper and combines it with insights
from other papers [Bischof and Van Loan 1987; Schreiber and Van Loan 1989; Jof-
frain et al. 2006; Walker 1988; Puglisi 1992; Yan and Chung 1997; Sun 1996] that
focus on aggregrating multiple Householder-like transformations into a block trans-
formation. The contribution of the present paper is a practical high-performance
algorithm for up- and/or downdating that can be implemented as a library routine
using the level-3 BLAS [Dongarra et al. 1990].

The remainder of the paper is structured as follows. In Section 2 we discuss a
family of Householder-like transformations and how to accumulate them into a block
transformation. Updating and downdating are discussed separately in Sections 3
and 4, respectively, and then combined in Section 5 in which a blocked algorithm
is also given. How to use an up- and/or downdated system to solve the new Linear
Least-Squares problem is discussed in Section 6. A brief overview of the algorithm-
by-blocks concept is given in Section 7. Performance is reported in Section 8 and
concluding remarks can be found in the final section.

2. A FAMILY OF HOUSEHOLDER TRANSFORMATIONS

In the following discussion, we will let Σ ∈ Rn×n with Σ = diag(1,±1, · · · ,±1) so
that ΣΣ = I.1 Such a matrix is referred to as a signature matrix. We make the
choice that the first diagonal element equals one so as to simplify our discussion.
Then, by design, Σe0 = e0, where e0 is the first column of the identity matrix.

Theorem 1. Let w ∈ Cn and τ = wHΣw/2 6= 0. Then

(I − 1
τ

ΣwwH)Σ(I − 1
τ

ΣwwH)H = Σ.

Proof: Under the assumptions of the theorem

(I − 1
τ

ΣwwH)Σ(I − 1
τ

ΣwwH)H = Σ− 2
1
τ

ΣwwHΣ +
2
τ

ΣwwHΣ = Σ.

endofproof

1Here, diag(σ0, σ1, · · · , σn−1) returns a diagonal matrix whose entries are σ0, σ1, · · · , σn−1.
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When Σ = I the (I− 1
τΣwwH) in the above theorem is the traditional Householder

transformation or reflector. If Σ =

(
I 0
0 −I

)
it is referred to as a hyperbolic

Householder Transformation.
Theorem 2. Let x ∈ Cn, χ0 = eT0 x be its first element, λ be chosen such that

|λ|2 = xHΣx and λ̄χ0(= χ̄0λ) is real, w = x + λe0, and τ = wHΣw
2 6= 0. Then

(I − 1
τΣwwH)Hx = −λe0.

Proof: Under the assumptions of the theorem

2wHΣx
wHΣw

=
2(x+ λe0)HΣx

(x+ λe0)HΣ(x+ λe0)
=

2(xHΣx+ λ̄χ0)
xHΣx+ 2λ̄χ0 + |λ|2

= 1

and

(I − 1
τ

ΣwwH)Hx = x− 1
τ
wwHΣx = x− 2wHΣx

wHΣw
(x+ λe0) = −λe0.

endofproof
Corollary 3. In Thm. 2, if χ0 is real, then λ = ±

√
xHΣx.

The Cholesky factor R that is being updated and/or downdated often has real
diagonal elements, each of which takes the form of χ0 in the vector x of Theorem
2. The vector w can be normalized by dividing by a nonzero scalar, in which case
the following steps provide a robust way of computing w and λ so that w has a unit
first element:

—λ := sign(χ0)
√
xHΣx. w := x+ λe0. (Note: the choice of the sign means that λ

and χ0 have the same sign, thus avoiding catastrophic cancellation that can lead
to unnecessary numerical inaccuracy).

—If ω0 = eT0 w equals zero, then w := e0 else w := w/ω0. (This step normalizes w
so that it has a unit first element.)

Definition 4. Let x ∈ Cn be such that xHΣx 6= 0. We define the function2

[χ̃0, w1, τ ] := GeneralHouse (Σ, χ0, x1)

so that
(
I − 1

τΣwwH
)H

x = χ̃0e0, where x =
(
χ0

x1

)
, w =

(
1
w1

)
, and τ = wHΣw

2 .

Theorem 5. Let the matrix Wk−1 ∈ Cn×k have linearly independent columns.
Partition Wk−1 by columns as

Wk−1 =
(
w0 w1 · · · wk−1

)
and let τi 6= 0, 0 ≤ i < k. Then for 0 ≤ j < k there exists a j× j nonsingular upper
triangular matrix Tj−1 such that(

I − 1
τ0

Σw0w
H
0

)
· · ·
(
I − 1

τj−1
Σwj−1w

H
j−1

)
=
(
I − ΣWj−1T

−1
j−1W

H
j−1

)
2Throughout this paper we will present functions which take the form [output-list] :=

Func (input-list). In this syntax, the function Func takes the values in input-list as input ar-

guments and outputs the values in output-list. Later on, when we show algorithms which use
these functions, some parameters may appear in both the input-list and output-list, which indi-

cates that the value is read and then overwritten.
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The matrices Tj are given by the recurrence T0 = τ0 and Tj =
(
Tj−1 WH

j−1Σwj
0 τj

)
for 1 ≤ j < k.
Proof: Proof by induction on j.
Base case. j = 0: Trivially true.
Inductive step. Induction Hypothesis (I.H.): Assume that(

I − 1
τ0

Σw0w
H
0

)
· · ·
(
I − 1

τj−1
Σwj−1w

H
j−1

)
= I − ΣWj−1T

−1
j−1W

H
j−1.

We need to show that(
I − 1

τ0
Σw0w

H
0

)
· · ·
(
I − 1

τj−1
Σwj−1w

H
j−1

)(
I − 1

τj
ΣwjwHj

)
= I−ΣWjT

−1
j WH

j .

But(
I − 1

τ0
Σw0w

H
0

)
· · ·
(
I − 1

τj
ΣwjwHj

)
=
(
I − ΣWj−1T

−1
j−1W

H
j−1

)(
I −

ΣwjwHj
τj

)

= I − Σ
(
Wj−1 wj

)( T−1
j−1 −T

−1
j−1W

H
j−1Σwj/τj

0 1/τj

)(
Wj−1 wj

)H
= I − Σ

(
Wj−1 wj

)( Tj−1 WH
j−1Σwj

0 τj

)−1 (
Wj−1 wj

)H = I − ΣWjT
−1
j WH

j .

By the Principle of Mathematical Induction the desired result holds.
endofproof

Theorem 6. Let W ∈ Cn×k be a matrix with linearly independent columns such
that WHΣW has nonzero diagonal elements. Then there exists a unique non-
singular upper triangular matrix with real diagonal elements T ∈ Ck×k such that
(I − ΣWT−1WH)Σ(I − ΣWT−1WH)H = Σ. This matrix T satisfies T + TH =
WHΣW so that T = striu(WHΣW ) + 1

2diag(WHΣW ).3

Proof: Theorem 5 provides a proof of existence. (The wi and τi’s in that theorem
equal the columns of W and diagonal elements of WTΣW , respectively.) Now,

Σ = (I − ΣWT−1WH)Σ(I − ΣWT−1WH)H

= Σ− ΣWT−1WHΣ− ΣWT−HWHΣ + ΣWT−1WHΣWT−HWHΣ

so that 0 = ΣW (T−1 + T−H − T−1WHΣWT−H)WHΣ. Since ΣW is nonsingular
we find that 0 = T−1 + T−H − T−1WHΣWT−H from which we conclude that
TH + T = WHΣW .

Because T is upper triangular and has real valued diagonal elements, T =
striu(WHΣW ) + 1

2diag(WHΣW ). endofproof

3Note that striu(A) returns a matrix consisting of the strictly upper triangular part of A with
zeros elsewhere. Also, in this context, diag(A) returns the matrix consisting of the diagonal of A

with zeros elsewhere.
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3. UPDATING

Let us consider A =

(
B

C

)
with AHA = BHB + CHC = R̃HR̃, where R̃ is the

Cholesky factor of AHA. Here we will assume that A has linearly independent
columns. The question is whether, if we know that the Cholesky factor of BHB
is R, we can cheaply compute the Cholesky factor of AHA. This is known as the
updating problem. We know that R̃HR̃ = AHA = BHB + CHC = RHR + CHC.

We also know that if B = QR is a QR factorization of B and

(
R

C

)
= Q̂R̂, then

A =

(
B

C

)
=

(
QR

C

)
=

(
Q 0
0 I

)(
R

C

)
=

(
Q 0
0 I

)
Q̂R̂ = Q̌R̂

so that A = Q̌R̂ is a QR factorization of A. Because of the uniqueness of the
QR factorization (modulo signs), R̂ = R̃. This then provides us with the desired
Cholesky factor. We conclude that to compute R̃ it suffices to compute the QR

factorization of

(
R

C

)
.

A stable way for computing the QR factorization of

(
R

C

)
relies on Householder

transformations: given matrix

(
R

C

)
where R is an n× n upper triangular matrix

and C ∈ CmC×n, we would like to compute {H0, · · · , Hn−1} so that

HH
n−1 · · ·HH

0

(
R

C

)
=

(
R̃

0

)
and HH

j = Hj = I − 1
τj
uju

H
j with τj = uHj uj/2.

We recognize this as the special case of the Generalized Householder Transformation
where Σ = I, in other words, the classical Householder Transformation.

Definition 7. Let x =
(
χ0

x1

)
∈ Cn with χ0 ∈ R be such that ‖x‖2 6= 0. We

define the function

[χ̃0, u1, τ ] := House (χ0, x1)

so that

((
1 0
0 I

)
− 1
τ

(
1
u1

)(
1
u1

)H)(
χ0

x1

)
=
(
χ̂0

0

)
, where τ = 1+uH

1 u1
2 .

Given the function House, we now wish to construct an algorithm that, given
the Cholesky factor R of AHA, computes the Cholesky factor of AHA+CHC. Here
is the basic idea: Assume that the computation has progressed so that the matrices
contain (

R

C

)
=


R00 r01 R02

0 ρ rT12

0 0 R22

0 c1 C2

 .
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Algorithm: [R,C, t] := UpDate unb(R,C, t)

Partition R→
 
RTL RTR

0 RBR

!
, C →

`
CL CR

´
, t→

 
tT

tB

!
where RTL is 0× 0, CL has 0 columns, tT has 0 elements

while m(RTL) < m(R) do
Repartition 

RTL RTR

0 RBR

!
→

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
tT

tB

!
→

0@ t0

τ1
t2

1A,`
CL CR

´
→
`
C0 c1 C2

´
where ρ11 and τ1 are scalars, and c1 has 1 column

[ρ11, c1, τ1] := House (ρ11, c1)ˆ
rT
12, C2

˜
:= ApplyHouse

`
τ1, c1, rT

12, C2

´
Continue with 

RTL RTR

0 RBR

!
←

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
tT

tB

!
←

0@ t0
τ1

t2

1A,`
CL CR

´
←
`
C0 c1 C2

´
endwhile

Fig. 1. Unblocked algorithm for updating.

In the current step of the algorithm, a Householder transformation is computed
and applied so that

I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 I

− 1
τ


0
1
0
u1




0
1
0
u1


H


R00 r01 R02

0 ρ rT12

0 0 R22

0 c1 C2

 =


R00 r01 R02

0 ρ̃ r̃T12

0 0 R22

0 0 C̃2

 .

Since the Householder transformation associated with u1 is formulated to annihilate
the vector c1, the algorithm may simply set c1 to zero (or, more practically, it may
overwrite c1 with u1 to reduce storage). However, we must then use τ and u1

to apply the Householder transformation to rT12 and C2. Let us define a function
ApplyHouse which serves this purpose:[

r̃T12, C̃2

]
:= ApplyHouse

(
τ1, u1, r

T
12, C2

)
.

An algorithm based on these steps is given in Figure 1.

4. DOWNDATING

Now, let us consider the alternative problem where A =

(
B

D

)
with AHA =

BHB + DHD = RHR, where D ∈ CmD×n and R ∈ Cn×n is the Cholesky factor
of AHA. The new question becomes how to compute the Cholesky factor of BHB
from R and D. This is known as the downdating problem. Let us call the desired
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Cholesky factor R̃. We know that

R̃HR̃ = BHB = RHR−DHD =

(
R

D

)H (
In 0
0 −ImD

)(
R

D

)
In the remainder of this section, we will define

Σn,m =

(
In 0
0 −Im

)
.

The goal is going to be to compute a sequence of transformations,
{S0, S1, · · · ,Sn−1} such that

SjΣn,mD
SHj = Σn,mD

and

BHB =

(
R

D

)H (
In 0
0 −ImD

)(
R

D

)

=

(
R

D

)H
S0 · · ·Sn−1Σn,mD

SHn−1 · · ·SH0

(
R

D

)

=

(
R̃

0

)H
Σn,mD

(
R̃

0

)
= R̃HR̃

In other words, given matrix

(
R

D

)
where R is an n× n upper triangular matrix,

we would like to compute {S0, · · · , Sn−1} so that SHn−1 · · ·SH0

(
R

D

)
=

(
R̃

0

)
and

SjΣn,mD
Sj = ΣHn,mD

.

Definition 8. Let x =
(
χ0

x1

)
∈ Cn with χ0 ∈ R be such that xHΣ1,n−1x =

|χ0|2 − xH1 x1 6= 0. We define the function

[χ̃0, v1, τ ] := HHouse (χ0, x1)

so that

((
1 0
0 I

)
− 1
τ

(
1 0
0 −I

)(
1
v1

)(
1
v1

)H)(
χ0

x1

)
=
(
χ̂0

0

)
, where τ =

1−vH
1 v1
2 .

We recognize this as the special case of the Generalized Householder Transformation
where Σ = Σ1,n−1. This special case is referred to as a hyperbolic Householder
Transformation in the literature.

Given the function HHouse, we now wish to construct an algorithm that, given
the Cholesky factor R of AHA, computes the Cholesky factor of AHA − DHD.
Here is the basic idea: Assume that the computation has progressed so that the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm: [R,D, t] := DownDate unb(R,D, t)

Partition R→
 
RTL RTR

0 RBR

!
, D →

`
DL DR

´
, t→

 
tT

tB

!
where RTL is 0× 0, DL has 0 columns, tT has 0 elements

while m(RTL) < m(R) do
Repartition 

RTL RTR

0 RBR

!
→

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
tT

tB

!
→

0@ t0

τ1
t2

1A,`
DL DR

´
→
`
D0 d1 D2

´
where ρ11 and τ1 are scalars, and d1 has 1 column

[ρ11, d1, τ1] := HHouse (ρ11, d1)ˆ
rT
12, D2

˜
:= ApplyHHouse

`
τ, d1, rT

12, D2

´
Continue with 

RTL RTR

0 RBR

!
←

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
tT

tB

!
←

0@ t0
τ1

t2

1A,`
DL DR

´
←
`
D0 d1 D2

´
endwhile

Fig. 2. Unblocked algorithm for downdating.

matrices contain

(
R

D

)
=


R00 r01 R02

0 ρ rT12

0 0 R22

0 d1 D2

 .

In the current step of the algorithm, a hyperbolic Householder Transformation is
computed and applied so that


I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 I

− 1
τ


I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 −I




0
1
0
v1




0
1
0
v1


H

H 
R00 r01 R02

0 ρ rT12

0 0 R22

0 d1 D2



=


R00 r01 R02

0 ρ̃ r̃T12

0 0 R22

0 0 D̃2

 .

The hyperbolic Householder transformation associated with vector v1 annihilates
d1, and thus the algorithm may simply set d1 to zero (or, more practically, it may
overwrite d1 with v1 to reduce storage). We must then use τ and v1 to apply the
hyperbolic Householder transformation to rT12 and D2. Let us define the function
ApplyHHouse for this purpose:[

r̃T12, D̃2

]
:= ApplyHHouse

(
τ1, v1, r

T
12, D2

)
.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



High-Performance Up-and-Downdating · 9

An algorithm based on these steps is given in Figure 2.

5. UP-AND-DOWNDATING

Finally, let us consider the general problem where A =

 B

C

D

 with AHA = BHB+

CHC + DHD, where C ∈ CmC×n, D ∈ CmD×n. Let R ∈ Cn×n be the Cholesky
factor of BHB +DHD. The final question becomes how to compute the Cholesky
factor of BHB+CHC, R̃, from R, C, andD. Clearly, one can do so by first updating
and then downdating, or vise versa. We will develop an algorithm that does so in
one step rather than two. We will call this the up-and-downdating problem.

We know that

R̃HR̃ = BHB + CHC

= RHR+ CHC −DHD

=

 R

C

D


H  In 0 0

0 ImC
0

0 0 −ImD


 R

C

D

 .

In the remainder of this section, we will define

Σn,m,k =

 In 0 0
0 Im 0
0 0 −Ik

 .

The goal is going to be to compute a sequence of transformations,
{G0, G1, · · · , Gn−1} such that

GjΣn,mC ,mD
GHj = Σn,mC ,mD

and

BHB + CHC =

 R

C

D


H  In 0 0

0 ImC
0

0 0 −ImD


 R

C

D



=

 R

C

D


H

G0 · · ·Gn−1

 In 0 0
0 ImC

0
0 0 −ImD

GHn−1 · · ·GH0

 R

C

D


=

(
R̃

0

)H  In 0 0
0 ImC

0
0 0 −ImD

( R̃

0

)
= R̃HR̃

In other words, given matrix

 R

C

D

 where R is an n× n upper triangular matrix,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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we would like to compute {G0, · · · , Gn−1} so that

GHn−1 · · ·GH0

 R

C

D

 =

 R̃

0
0


and

GHj

 In 0 0
0 ImC

0
0 0 −ImD

Gj =

 In 0 0
0 ImC

0
0 0 −ImD

 .

Definition 9. Let x =

 χ0

x1

y1

 with χ0 ∈ R, x1 ∈ CmC and y1 ∈ CmD be such

that xHΣ1,mC ,mD
x = |χ0|2 + xH1 x1 − yH1 y1 6= 0. We define the function

[χ̃0, u1, v1, τ ] := UDHouse (χ0, x1, y1)

so that
 1 0 0

0 ImC
0

0 0 ImD

− 1
τ

 1 0 0
0 ImC

0
0 0 −ImD

 1
u1

v1

 1
u1

v1

H

 χ0

x1

y1

 =

 χ̂0

0
0

 ,

where τ = 1+uH
1 u1−vH

1 v1
2 .

We recognize this as the special case of the Generalized Householder Transformation
where Σ = Σn,mC ,mD

.
Given the function UDHouse, we now wish to construct an algorithm that,

given the Cholesky factor R of BHB + DHD, computes the Cholesky factor of
BHB+CHC. Here is the basic idea: Assume that the computation has progressed
so that the matrices contain

 R

C

D

 =


R00 r01 R02

0 ρ11 rT12

0 0 R22

0 c1 C2

0 d1 D2

 .

In the current step of the algorithm, an up-and-downdating Householder Transfor-
mation is computed and applied so that


I 0 0 0 0
0 1 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

−
1
τ


I 0 0 0 0
0 1 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 −I




0
1
0
u1

v1




0
1
0
u1

v1



H



R00 r01 R02

0 ρ11 rT12

0 0 R22

0 c1 C2

0 d1 D2


ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm: [R,C,D, T ] := UpAndDownDate unb(R,C,D, T )

Partition R→
 
RTL RTR

0 RBR

!
, T →

 
TTL TTR

0 TBR

!
,

C →
`
CL CR

´
, D →

`
DL DR

´
where RTL and TTL are 0× 0, CL and DL have 0 columns

while m(RTL) < m(R) do

Repartition 
RTL RTR

0 RBR

!
→

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
TTL TTR

0 TBR

!
→

0@ T00 t01 T02

0 τ11 tT12
0 0 T22

1A ,`
CL CR

´
→
`
C0 c1 C2

´
,
`
DL DR

´
→
`
D0 d1 D2

´
where ρ11 and τ11 are scalars, c1 and d1 are columns

[ρ11, c1, d1, τ11] := UDHouse (ρ11, c1, d1)ˆ
rT
12, C2, D2

˜
:= ApplyUDHouse

`
τ11, c1, d1, rT

12, C2, D2

´
Continue with 

RTL RTR

0 RBR

!
←

0@ R00 r01 R02

0 ρ11 rT
12

0 0 R22

1A,

 
TTL TTR

0 TBR

!
←

0@ T00 t01 T02

0 τ11 tT12
0 0 T22

1A ,`
CL CR

´
←
`
C0 c1 C2

´
,
`
DL DR

´
←
`
D0 d1 D2

´
endwhile

Fig. 3. Unblocked algorithm for up-and-downdating.

Algorithm: [R,C,D, T ] := UpAndDownDate blk(R,C,D, T )

Partition R→
 
RTL RTR

0 RBR

!
, C →

`
CL CR

´
, D →

`
DL DR

´
, T →

`
TL TR

´
where RTL and TL are 0× 0, CL and DL have 0 columns

while m(RTL) < m(R) do

Determine block size b

Repartition 
RTL RTR

0 RBR

!
→

0@ R00 R01 R02

0 R11 R12

0 0 R22

1A,
`
TL TR

´
→
`
T0 T1 T2

´
,`

CL CR

´
→
`
C0 C1 C2

´
,
`
DL DR

´
→
`
D0 D1 D2

´
where R11 and T1 are b× b , C1 and D1 have b columns

[R11, C1, D1, T1] := UpAndDownDate unb (R11, C1, D1, T1)

[R12, C2, D2] := ApplyBlkUDHouse (T1, C1, D1, R12, C2, D2)

Continue with 
RTL RTR

0 RBR

!
←

0@ R00 R01 R02

0 R11 R12

0 0 R22

1A,
`
TL TR

´
←
`
T0 T1 T2

´
,`

CL CR

´
←
`
C0 C1 C2

´
,
`
DL DR

´
←
`
D0 D1 D2

´
endwhile

Fig. 4. Blocked algorithm for up-and-downdating.
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=


R00 r01 R02

0 ρ̃11 r̃T12

0 0 R22

0 0 C̃2

0 0 D̃2

 .

The up-and-downdating Householder transformation annihilates c1 and d1, and
thus the algorithm may simply set these vectors to zero (or, more practically, it
may overwrite c1 and d1 with u1 and v1, respectively, to reduce storage). We must
then use τ , u1, and v1 to apply the up-and-downdating Householder transformation
to rT12, C2, and D2. Let us define the function ApplyUDHouse for this purpose:[

r̃T12, C̃2, D̃2

]
:= ApplyUDHouse

(
τ1, u1, v1, r

T
12, C2, D2

)
.

An algorithm based on these steps is given in Figure 3.
Note that in the previous two sections, we only discuss and illustrate unblocked

algorithms. We now move to discuss a blocked algorithm for up-and-downdating,
which is given in Figure 4. In this algorithm, the statement

[R12, C2, D2] := ApplyBlkUDHouse (T1, C1, D1, R12, C2, D2)

performs the update R̃12

C̃2

D̃2

 :=


 I 0 0

0 I 0
0 0 I

−
 I 0 0

0 I 0
0 0 −I


 I

C1

D1

T−T1

 I

C1

D1


H

 R12

C2

D2


where T1 = striu(I+CH1 C1−DH

1 D1) + 1
2diag(I+CH1 C1−DH

1 D1). The submatrix
T1 may be computed via the following steps45:

T1 := triu(I + CH1 C1 −DH
1 D1)

T1 := ScaleDiagonal
(

1
2
, T1

)
where the ScaleDiagonal operation scales the diagonal of the second argument
by the first argument. With T1 computed, we may perform the update as follows:

W := T−H1 (R12 + CH1 C2 +DH
1 D2) R̃12

C̃2

D̃2

 :=

 R12

C2

D2

−
 I

C1

−D1

W

This blocked algorithm captures the blocked algorithms for updating and downdat-
ing, since D or C can be taken to be “empty”.

4In practice, we find it most convenient to compute T1 within the unblocked algorithm for up-

and-downdating, UpAndDownDate Unb. Note that we omit this step from the algorithm shown

in Figure 3 and instead only show the storing of the τ values along the diagonal of T1.
5Note that triu(A) returns a matrix consisting of the upper triangular part of A with zeros

elsewhere.
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6. SOLVING A SYSTEM

Consider the matrices B ∈ mB × n, C ∈ mC × n, and D ∈ mD × n. The up-
and-downdating problem starts with a matrix R such that BHB + CHC = RHR.
Where does this come from? Typically, it comes from solving the linear least-
squares problem

min
x

∥∥∥∥( BD
)
x−

(
bB
bD

)∥∥∥∥ .
There are two standard ways of solving this problem: normal equations and QR
factorization (via Householder transformations). Since we are using Generalized
Householder transformations to updowndate, we restrict ourselves to the case where
the original R came from (the equivalent of) a QR factorization.

So, we assume that we have computed (the equivalent of) the QR factorization(
B
D

)
= QR

and then solved

Rx = QH
(
bB
bD

)
= bBD.

Now, after the updowndate step, what one is interested in is solving

min
x̃

∥∥∥∥( BC
)
x̃−

(
bB
bC

)∥∥∥∥
which could be solved via the QR factorization(

B
C

)
= Q̃R̃

and then solved

R̃x̃ = Q̃H
(
bB
bC

)
= bBC .

Now, we have computed up-and-downdating Householder transformations Gj so
that  R̃

0
0

 = GHn−1 · · ·GH0

 R

C

D


Note that  bBC

b̃C

b̃D

 = GHn−1 · · ·GH0

 bBD

bC

bD

 .

Thus, applying the block up-and-downdating Householder transformations from
the left will up-and-downdate bBD into bBC . This computation may be performed
via the same ApplyBlkUDHouse operation described in the previous section and
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used in Figure 4:[
R̃, C̃, D̃, T̃

]
:= UpAndDownDate Blk (R,C,D, T )[

bBC , b̃C , b̃D

]
:= ApplyBlkUDHouse

(
T̃ , C̃, D̃, bBD, bC , bD

)
At this point, R and bBD have been up-and-downdated to R̃ and bBC , respectively,
and so a new solution to the system may be computed by solving

R̃x̃ = bBC .

7. AN ALGORITHM-BY-BLOCKS

As part of the FLAME project, we have developed and reported on algorithm-by-
blocks for various linear algebra operations and how to schedule them to distributed
memory as well as multithreaded parallel architectures. An algorithm-by-blocks
views a matrix as a collection of submatrices (blocks), possibly hierarchically. Each
block becomes a unit of data and each computation with a block becomes a unit of
computation.

—In [Quintana-Ort́ı and van de Geijn 2008; Gunter and van de Geijn 2005] we
give algorithms-by-tiles for out-of-core LU and QR factorization. A tile is a
block that corresponds to a unit for I/O. By modifying the pivoting strategy for
LU factorization and the computation of Householder transformations for QR
factorization, the computation can be cast in terms of operations with blocks
while only increasing the operation count by a lower order term.

—In [Chan et al. 2007] a runtime system, SuperMatrix, for scheduling algorithm-
by-blocks to multiple threads is introduced. Implementations of algorithms-by-
blocks utilizing this runtime system are discussed in a large number of conference
papers and summarized in a journal paper [Quintana-Ort́ı et al. 2009]. The idea
is that the algorithm-by-blocks generates a Directed Acyclic Graph (DAG) of
operations and dependencies which are then scheduled for execution by threads
at runtime.

The effort focuses on solving the programmability problem: algorithms are coded
in a style that closely resembles the algorithms in the figures in this paper. The
algorithm-by-blocks is coded in a very similar style. By separating the generation
of the DAG by the algorithm from the scheduling of that DAG, the library routine
needs not change when the scheduling policy is modified.

Details of the algorithm-by-blocks for up-and-downdating are essentially iden-
tical to those of the updating algorithm-by-tiles in [Gunter and van de Geijn
2005] and the QR factorization algorithm-by-blocks scheduled with SuperMatrix
in [Quintana-Ort́ı et al. 2008] or PLASMA in [Buttari et al. 2008], except that
minor modifications are made when computing with the matrix that is removed as
part of the downdating. Thus, we don’t give further details here and merely report
performance, in the next section.

8. PERFORMANCE

In this section, we provide performance results for various implementations of the
up-and-downdating algorithm, including a high-performance algorithm-by-blocks.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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All experiments were performed using double-precision floating-point arithmetic
on a Dell PowerEdge R900 server consisting of four Intel “Dunnington” six-core
processors, providing a total of 24 cores with a combined peak performance of 255
GFLOPs (255×109 floating-point operations per second) with 96 GBytes of shared
main memory. Performance experiments were gathered under the GNU/Linux
2.6.18 operating system. Source code was compiled by the Intel C/C++ Compiler,
version 11.1.

In addition to reporting performance for the up-and-downdating operation, for
comparison we also provide performance data for QR factorization via the UT
transform, as the two operations are closely related. We report performance for the
following implementations in Figures 5 and 6:

—uddut. A sequential implementation of the blocked algorithm for the up-and-
downdating operation shown in Figure 4.

—qrut. A sequential implementation of a blocked algorithm for a QR factorization
via the UT transform [Joffrain et al. 2006].

—uddutabb. A multithreaded implementation of an algorithm-by-blocks for the
up-and-downdating operation.

—qrutabb. A multithreaded implementation of an algorithm-by-blocks for a QR
factorization via the UT transform [Quintana-Ort́ı et al. 2007].

—sequential dgeqrf. A sequential implementation of the LAPACK QR factoriza-
tion routine.

—multithreaded dgeqrf. A multithreaded implementation of the LAPACK QR
factorization routine.

These implementations were timed in two ways: linked to a sequential build of
GotoBLAS2 1.10 and linked to sequential build of Intel’s MKL 10.2.2. The dgeqrf
implementations, likewise, were obtained from both GotoBLAS2 1.10 and MKL
10.2.2. Parallelism was obtained from the uddutabb and qrutabb via the Super-
Matrix runtime system [Chan et al. 2007; Chan et al. 2007]. For completeness, we
also report performance of the netlib implementation of dgeqrf (modified to use a
larger block size) when linked to multithreaded GotoBLAS and MKL.

Performance results are computed using an operation count of 2n2(mC + mD)
for the up-and-downdate operation and 2n2(m − n

3 ) for a QR factorization. This
counts useful operations, ignoring extra operations that are performed so that the
blocked algorithms can cast computation in terms of matrix-matrix multiplication.
The y-axes of the graphs are scaled to indicate the peak performance for the number
of cores utilized.

Matrix dimensions for QR factorization were carefully chosen so that the floating-
point operation count would closely resemble that of the up-and-downdating op-
eration. Specifically, since we performed up-and-downdating experiments where
mC = mD = n, we chose the matrix dimensions for QR factorization to be m = 3n.

In Figure 5 (top) we report the performance of the blocked algorithms using a sin-
gle core, choosing the block size equal to 64. The rates of computation achieved by
the up-and-downdating algorithms is better than those achieved by the QR factor-
ization because more computation is cast in terms of matrix-matrix multiplication.
Timings for the same blocked algorithms, in addition to netlib dgeqrf linked to
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Fig. 5. Performance of sequential and multithreaded implementations of the up-and-downdating

operation. Top: Sequential up-and-downdating implementations compared to various sequential
QR factorizations, using an algorithmic block size of 64. Bottom: Blocked algorithm for up-and-

downdating linked to multithreaded BLAS compared to various multithreaded QR factorizations,
with an algorithm block size of 256. Multithreaded performance was gathered on a 24 core system
using 24 threads. QR factorization experiments were performed on m×n matrices where m = 3n

while up-and-downdating experiments reflect mC = mD = n. Note that legend entries are sorted

according to performance at largest problem size.
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Fig. 6. Multithreaded algorithm-by-blocks for up-and-downdating compared to various multi-

threaded QR factorizations, including the multithreaded QR factorization in MKL. Algorithmic

and storage block sizes are chosen to equal 64 and 256, respectively, in the top graph and 32
and 128 in the bottom graph. Performance was gathered on a 24 core system using 24 threads.
QR factorization experiments were performed on m × n matrices where m = 3n while up-and-

downdating experiments reflect mC = mD = n. Note that legend entries are sorted according to
performance at largest problem size.
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multithreaded BLAS, using 24 cores and an algorithmic block size of 256 are given
in Figure 5 (bottom). We note that while MKL’s dgeqrf achieves very good per-
formance, our implementation of the QR factorization and the up-and-downdating
algorithm does not when linked to MKL’s multithreaded BLAS. This is likely due
to how the matrix-matrix multiplication (dgemm) is parallelized. When linked to
GotoBLAS2, the performance is much improved, although still well below peak and
still lagging behind the modified netlib implementation of dgeqrf.

In Figure 6 we report the performance of the algorithms-by-blocks. The ability to
store matrices by blocks combined with a run-time system that schedules operations
to threads greatly improves performance. When the storage block size (bstore)
and algorithmic block size (balg) are relatively large, ramp-up is slow while the
asymptotic performance is better.

9. CONCLUSION

In this paper, we have presented unblocked and blocked algorithms for the up-
and/or downdating problem. It has been shown that blocked algorithms can be
easily formulated and that high performance can be achieved.
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