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Implementing high-performance complex matrix multiplication via the
1m method

FIELD G. VAN ZEE, The University of Texas at Austin

In this article, we continue exploring the topic of so-called induced methods for implementing complex
matrix multiplication. Previous work investigated two approaches for computing matrix products in the

complex domain using only a real matrix multiplication kernel. However, algorithms based on the more

generally applicable of the two methods—the 4M method—lead to implementations that, for various reasons,
often underperform their real domain benchmarks. To overcome these limitations, we derive a superior 1M
method for expressing complex matrix multiplication, one which addresses virtually all of the shortcomings
inherent in 4M. Our derivation also naturally exposes a symmetry that allows the method to perform well

when updating either column- or row-stored matrices. Applying the method to two general algorithms

for matrix multiplication yields a family of algorithmic variants, each with a unique set of circumstantial
affinities. Further analysis suggests 1M will match or exceed the performance of a real matrix multiplication

based on the same kernel, especially for certain rank-k updates. Implementations are developed within

the BLIS framework, which facilitates their extension to all level-3 operations. Testing on a recent Intel
microarchitecture confirms that the 1M method yields performance that is competitive with solutions based

on conventionally implemented complex kernels.
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1. INTRODUCTION
Dense matrix multiplication—the foundation of many dense linear algebra
operations—is now ubiquitous within scientific and numerical computing applica-
tions. For three decades, libraries that provide the Basic Linear Algebra Subprograms
(BLAS) [Dongarra et al. 1990] have exported common interfaces to specific implemen-
tations of matrix multiplication and related functionality. However, before a user can
employ these highly-tuned functions, a library developer with knowledge of the target
hardware must first implement the operations in question.
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0:2 F. Van Zee

Some projects seek to provide ready-made solutions while others focus on streamlin-
ing the development process so that third parties may rapidly instantiate dense linear
algebra functionality on existing and new hardware [OpenBLAS 2012; Whaley et al.
2000; Van Zee and van de Geijn 2015]. In either case, the basic formula is the same:
a developer carefully writes a small computational kernel, usually in assembly (or a
low-level, assembly-like) language, which is then inserted into a larger infrastructure
of portable code. Within dense linear algebra (DLA) library development circles, it is
taken for granted that one matrix multiplication kernel is needed for each floating-
point precision and domain to be supported. Thus, to support all four combinations of
the single- and double-precision in the real and complex domains, four kernels must
be authored to enable a complete set of matrix multiplication implementations.

Many real-world applications, high-performance benchmarks, and pedagogical set-
tings rely only on computation in the real domain. Thus, providing support for real
matrix multiplication is understandably a priority. However, DLA—and by proxy, ma-
trix multiplication—in the complex domain is essential for many fields and applica-
tions, in part because of complex numbers’ unique ability to encode both the phase and
magnitude of a wave.

Unfortunately, those who seek to provide support for complex matrix operations
must wrestle with additional challenges. Namely, most modern hardware lacks ma-
chine instructions for directly computing complex arithmetic on complex numbers. In-
stead, the library developer, or kernel author, must orchestrate computation on the
real and imaginary components explicitly in order to implement multiplication and
addition on complex scalars, which in many cases proves to be a more difficult pro-
gramming task than in the real domain. Futhermore, for maintainers of BLAS, and
BLAS-like library frameworks such as BLIS, supporting complex matrix multiplica-
tion doubles the number of assembly-coded matrix kernels that must be maintained.
In other words, life would be simpler for DLA library developers if complex matrix
multiplication was not necessary.

Of course, complex matrix multiplication will always be necessary. But what if com-
plex matrix multiplication kernels were found to be unnecessary? To certain actors,
particularly DLA library developers, such a finding would carry non-trivial conse-
quence.

Recent work investigates whether (and to what degree of effectiveness) real domain
matrix multiplication kernels can be repurposed and leveraged toward the implemen-
tation of complex matrix multiplication [Van Zee and Smith 2017].

The authors develop a new class of algorithms that implement these so-called “in-
duced methods” for matrix multiplication in the complex domain. Instead of relying
on an assembly-coded complex kernel, as a conventional implementation would, these
algorithms express complex matrix multiplication only in terms of real domain primi-
tives.1

We consider this article a companion and follow-up to this previous work, to which
we will often refer [Van Zee and Smith 2017]. For this reason, and for the sake of
brevity, we omit much of the typical review of the literature on dense matrix multi-
plication, which we provide in aforementioned article. We also assume the reader has
a basic understanding of the background provided by this previous article, either be-
cause he or she has already read the piece, or because he or she naturally possesses
this familiarity independent of our work. Of course, we will review and summarize a

1In [Van Zee and Smith 2017], the authors use the term “primitive” to refer to a functional abstraction that
implements a single real matrix multiplication. Such primitives are often not general purpose, and may
come with significant prerequisites to facilitate their use.
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reasonable amount of content specific to that article here, as needed, in order to prop-
erly set the stage for our present discussion.

1.1. Contributions
This article makes the following contributions:

— It introduces a new induced method—the 1M method—that relies upon only a sin-
gle real matrix multiplication. As with the previous article, we introduce a family
of algorithms and analyize issues germane to their high-performance implementa-
tions, including workspace, packing formats, cache behavior, multithreadability, and
programming effort. A detailed review shows how 1M avoids virtually all of the chal-
lenges observed of the 4M method.

— It promotes code reuse and portability by continuing the previous article’s focus on
solutions which may be cast in terms of real matrix multiplication kernels. Such
solutions have clear implications for developer productivity, as they allow kernel pro-
grammers to focus their efforts on fewer and simpler kernels.

— It builds on the theme of the BLIS framework as a productivity multiplier [Van Zee
and van de Geijn 2015], further demonstrating how complex matrix multiplication
may be implemented with relatively minor modifications to the source code, and in
such a way that results in immediate instantiation of complex implementations for
all level-3 BLAS-like operations.

— It demonstrates performance of 1M implementations that is not only superior to the
previous effort based on the 4M method, but also competitive with solutions based on
complex matrix kernels.

— It serves as a reference guide to the 1M implementations for complex matrix mul-
tiplication found within the BLIS framework, which is available to the community
under an open source software license.2

We belive that these contributions are consequential because the 1M method ef-
fectively obviates the previous state-of-the-art established via the 4M method. Fur-
thermore, we believe the thorough treatment of induced methods encompassed by the
present article and its predecessor will have lasting archival as well as pedagogical
value, to say nothing of the potential impact on developer productivity.

1.2. Notation
In this article, we continue the notation established in [Van Zee and Smith 2017].
Specifically, we use uppercase Roman letters (e.g. A, B, and C) to refer to matrices,
lowercase Roman letters (e.g. x, y, and z) to refer to vectors, and lowercase Greek
letters (e.g. χ, ψ, and ζ) to refer to scalars. Subscripts are used typically to denote
sub-matrices within a larger matrix (e.g. A = ( A0 A1 · · · An−1 ) ) or scalars within a
larger matrix or vector.

We also make extensive use of superscripts to denote the real and imaginary compo-
nents of a scalar, vector, or (sub-)matrix. For example, αr, αi ∈ R denote the real and
imaginary parts, respectively, of a scalar α ∈ C. Similarly, Ar and Ai refer to the real
and imaginary parts of a complex matrix A, where Ar and Ai are themselves matri-
ces with dimensions identical to A. Note that while this notation for real, imaginary,
and complex matrices encodes information about content and origin, it does not en-
code how the matrices are actually stored. We will explicitly address storage details as
implementation issues are discussed.

Also, at times we find it useful to refer to the real and imaginary elements of a com-
plex object indistinguishably as fundamental elements (or F.E.). We also abbreviate

2The BLIS framework is available under the so-called “new” or “modified” or “3-clause” BSD license.
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floating-point operations as “flops” and memory operations as “memops”. We define the
former to be a MULTIPLY or ADD (or SUBTRACT) operation whose operands are funda-
mental elements and the latter to be a load or store operation on a single fundamental
element. These definitions allow for a consistent accounting of complex computation
relative to the real domain.

We also discuss cache and register blocksizes that are key features of the matrix
multiplication algorithm discussed elsewhere [Van Zee and van de Geijn 2015; Van
Zee et al. 2016; Van Zee and Smith 2017]. Unless otherwise noted, blocksizes nC , mC ,
kC , mR, and nR refer to those appropriate for computation in the real domain. Complex
domain blocksizes will be denoted with a superscript z.

This article also discusses and references several hypothetical algorithms and func-
tions. Unless otherwise noted, a call to function FUNC that implements C := C + AB
appears as [ C ] := FUNC( A, B, C ). We will also reference functions that access prop-
erties of matrices. For example, M(A) and N(A) would return the m and n dimensions
of a matrix A, while RS(B) and CS(B) would return the row and column strides of B.

2. BACKGROUND AND REVIEW
2.1. Motivation
In [Van Zee and Smith 2017], the authors list three primary motivating factors behind
their effort to seek out methods for inducing complex matrix multiplication via real
domain kernels:

— Productivity. By inducing complex matrix multiplication from real domain kernels,
the number of kernels that must be supported would be halved. This allows the DLA
library developers to focus on a smaller and simpler set of real domain kernels. This
benefit would manifest most obviously when instantiating BLAS-like functionality
on new hardware [Van Zee et al. 2016]

— Portability. Induced methods avoid dependence on complex domain kernels because
they encode the idea of complex matrix product a higher level. This would naturally
allow us to encode such methods portably within a framework such as BLIS [Van
Zee and van de Geijn 2015]. Once integrated into the framework, developers and
users would benefit from the immediate availability of complex matrix multiplication
implementations whenever real matrix kernels were present.

— Performance. Implementations of complex matrix multiplication that rely on real
domain kernels would likely inherit the high-performance properties of those ker-
nels. Any improvement to the real kernels would benefit both real and complex do-
mains.

Thus, it is clear that finding a suitable induced method would carry significant ben-
efit to DLA library and kernel developers.

2.2. The 3m and 4m methods
The authors of [Van Zee and Smith 2017] presented two general ways of inducing
complex matrix multiplication: the 3M method and the 4M method. These methods are
then contrasted to the conventional approach, whereby a blocked matrix multiplication
algorithm is executed with a complex domain kernel—one that implements complex
arithmetic at the scalar level, in assembly language.

The 4M method begins with the classic definition of complex scalar multiplication
and addition in terms of real and imaginary components of χ, ψ, ζ ∈ C:

ζr := ζr + χrψr − χiψi

ζi := ζi + χrψi + χiψr (1)
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We then observe that we can apply such a definition to complex matrices A ∈ Cm×k,
B ∈ Ck×n, and C ∈ Cm×n, provided that we can reference the real and imaginary parts
as logically separate submatrices:

Cr := Cr +ArBr −AiBi

Ci := Ci +ArBi −AiBr (2)

This definition expresses complex matrix multiplication in terms of four matrix prod-
ucts (hence the name 4M) and four matrix accumulations (ie: additions or subtrac-
tions).

The 3M method relies on an algebraic equivalent of Eq. 2:

Cr := Cr +ArBr −AiBi

Ci := Ci +
(
Ar +Ai

)(
Br +Bi

)
−ArBr −AiBi

This reexpression reduces the number of matrix products to three, at the expense of
increasing the number of accumulations from four to seven. However, when the cost of
a matrix product greatly exceeds that of an accumulation, this trade-off can result in
a net reduction in computational runtime.

The authors of [Van Zee and Smith 2017] observe that both methods may be applied
to any particular level of a blocked matrix multiplication algorithm, resulting in sev-
eral algorithms, each exhibiting somewhat different properties. The blocked algorithm
used in that article is shown in Figure 1 (left) and explained in detail in Section 2.1
of [Van Zee and Smith 2017] and revisited in Section 2.4 of the present article.

Algorithms that implement the 3M method were found to yield “effective flops per
second” performance that not only exceeded that of 4M, but also approached or ex-
ceeded the theoretical peak rate of the hardware. Unfortunately, these compelling re-
sults come at a cost: the numerical properties of implementations based on 3M are
slightly less robust than that of algorithms based on the conventional approach or
4M. And although the author of [Higham 1992] found that 3M was stable enough for
most practical purposes, many applications will simply not be willing to stray from
the numerical expectations implicit in conventional matrix multiplication. Thus, going
forward, we will turn our attention away from 3M, and instead focus on the 4M as the
standard reference method against which we will compare.

2.3. Previous findings
For the reader’s convenience, we will now summarize the key findings, observations,
and other highlights from the previous article regarding algorithms and implementa-
tions based on the 4M method.

— Since the algorithms in the 4M family execute the same number of flops, the algo-
rithms’ relative performance depends entirely on the (1) the number of memops exe-
cuted and (2) the level of cache from which fundamental elements of matrices A and
B (or rather, F.E. of the packed copies of these matrices, Ãi and B̃p) are reused3. The
number of memops is affected only by a halving of certain cache blocksize needed in
order to leave cache footprints of Ãi and B̃p unchanged. The level from which F.E. are
reused is determined by the level of the matrix multiplication algorithm to which the
4M method was originally applied. The lower the 4M method is applied, the higher
the efficiency of data reuse from and movement through the cache hierarchy.

3Here, the term “reuse” refers to the reuse of F.E. that corresponds to the recurrence of Ar , Ai, Br , and
Bi in Eq. 2, not the reuse of whole (complex) elements that naturally occurs in the execution of the matrix
multiplication algorithm in Figure 1 (left).
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— The lowest level application, algorithm 4M 1A, efficiently moves F.E. of A, B, and C
from main memory to the L1 cache only once per rank-kC update, with virtually no
excess movement due to incidental cache line proximity, and reuses F.E. from the L1
cache. It relies on a relatively simple packing format in which complex micro-panels
are stored with real and imaginary F.E. separated into two consecutive real micro-
panels, each with identical register blocksize and k dimensions. Algorithm 4M 1A
requires negligible workspace (approximately equal to the storage capacity of the vec-
tor register set), is well-suited for multithreading, and is minimally disruptive to the
encoding within the BLIS framework. And while algorithm 4M 1B—a slightly higher-
level application—very narrowly outperforms 4M 1A by trading away the most opti-
mal cache reuse behavior for an unreduced kC cache blocksize, 4M 1A proves to be
more versatile and can be extended relatively easily to all other level-3 operations.

— The conventional approach can be viewed as a special case of 4M in which F.E. are
reused from registers, rather than cache. In this way, a conventional implementation
embodies the lowest-level application of 4M possible, in which the method is applied
to individual scalars (and, typically, then optimally encoded via vector instructions).

— The way complex numbers are stored has a significant effect on performance. Inter-
leaved pair-wise storage of real and imaginary values naturally favors implementa-
tions that reuse F.E. from registers, as is common with conventional implementa-
tions. However, this storage is awkward for algorithms based on 4M (and 3M for that
matter), largely because it prevents the use of vector instructions for loading and
storing F.E. of C4, as these instructions implicitly must load or store several consecu-
tive values. Indeed, 4M 1A suffers from a quadrupling5 of the number of memops on
C, in addition to being forced to access these F.E. in a non-contiguous manner. If, how-
ever, applications stored complex matrices with real and imaginary parts separated,
the penalty paid by induced methods would be partially mitigated.

— While observed performance of low-level applications of 4M is decent, far exceeding
an unoptimized reference implementation, it not only falls short of a comparable
conventional solution based on a complex kernel, it appears to fall short of its real
domain “benchmark”—that is, the performance of a similar problem size in the real
domain computed by an optimized algorithm using the same real domain kernel.
This level of performance may be disappointing for some, even if it achieves 90-95%
of what is possible with a complex kernel. The authors conclude that its somewhat
attenuated performance would relegate 4M, in practice, to serving mostly as a place-
holder, to be used when complex kernels have not yet been written, rather than a
competitive replacement that makes complex kernels unnecessary.

2.4. Revisiting the matrix multiplication algorithm
In this section, we review a common algorithm for high-performance matrix multipli-
cation on conventional microprocessor architectures. This algorithm was first reported
on in [Goto and van de Geijn 2008] and further refined in [Van Zee and van de Geijn
2015]. Figure 1 (left) illustrates the key features of this algorithm.

The current state-of-the-art formulation of the matrix multiplication algorithm con-
sists of six loops, the last of which resides within a micro-kernel that is typically highly
optimized for the target hardware. These loops partition the matrix operands using
carefully chosen cache (nC , kC , and mC) and register (mR and nR) blocksizes that re-

4The traditional pair-wise storage is also awkward for 4M algorithms during the packing of data from A and
B, but this effect is not nearly as dramatic.
5A factor of two comes from the fact that, as shown in Eq. 2, 4M touches Cr and Ci twice each, while another
factor of two comes from the cache blocksize scaling required on kC in order to maintain the cache footprints
of micro-panels of Ãi and B̃p.
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Fig. 1. Left: An illustration of the algorithm for computing high-performance matrix multiplication, taken
from [Van Zee and Smith 2017], which expresses computation in terms of a so-called “block-panel” subprob-
lem (macro-kernel). Right: An alternate algorithm that expresses the operation in terms of “panel-block”
matrix multiplication.

sult in submatrices residing favorably at various levels of the cache hierarchy, so as to
allow data to be reused many times. In addition, submatrices of A and B are copied
(“packed”) to temporary workspace matrices (Ãi and B̃p, respectively) in such a way
that allows the micro-kernel to subsequently access matrix elements contiguously in
memory, which improves cache and TLB performance. The cost of this packing is amor-
tized over enough computation that its impact on overall performance is negligible for
all but the smallest problems. At the lowest level, within the micro-kernel loop, an
mR× 1 micro-column vector and a 1×nR micro-row vector are loaded from the current
micro-panels of Ãi and B̃p, respectively, so that the outer product of these vectors may
be computed to update the corresponding mR×nR submatrix, or “micro-tile” of C. The
individual floating-point operations that constitute these tiny rank-1 updates are of-
tentimes executed via vector instructions (if the architecture supports them) in order
to maximize utilization of the floating-point unit(s).

The algorithm captured by Figure 1 (left) forms the basis for all level-3 implemen-
tations found in the BLIS framework (as of this writing). This algorithm is based on
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a so-called block-panel matrix multiplication.6 The register (mR, nR) and cache (mC ,
kC , nC) blocksizes labeled in the algorithmic diagram are typically chosen by the ker-
nel developer as a function of hardware characteristics, such as the vector register
set, cache sizes, and cache associativity. The authors of [Low et al. 2016] present an
analytical model for identifying suitable (if not optimal) values for these blocksizes.

Later in this article, we will observe that it may be desirable in some situations to
have access to a companion algorithm that casts its largest cache-bound subproblem
(computed by the macro-kernel) in terms of panel-block multiplication. This alterna-
tive algorithm is depicted in Figure 1 (right).7 Either algorithm can be used to imple-
ment all of the level-3 operations defined by the original BLAS or the BLIS framework,
including the most popular and general-purpose operation, general matrix multiplica-
tion (GEMM).8

3. 1M METHOD
The primary motivation for seeking a better induced method comes from the obser-
vation that 4M inherently must update real and imaginary F.E. of C individually and
in separate steps (due to traditional pair-wise storage), and, in the case of 4M 1A,
twice as frequently (due to the algorithm’s half-of-optimal cache blocksize kC). As re-
viewed in Section 2.3, this imposes a significant drag on performance. If there existed
an induced method that could update real and imaginary elements in one step, it may
conveniently avoid both issues.

3.1. Derivation
Consider the classic definition of complex scalar multiplication and accumulation,
shown in Eq. 1, refactored and expressed in terms of matrix and vector notation, where
we use += operator to concisely denote element-wise accumulation:(

ζr

ζi

)
+=

(
χr −χi

χi χr

)(
ψr

ψi

)
(3)

Here, we have a singleton complex matrix multiplication problem that can naturally
be expressed as a tiny real matrix multiplication where m = k = 2 and n = 1.

From this, we make the following key observation: If we pack χ to Ãi in such a way
that duplicates χr and χi to the second column of the micro-panel (while also swapping
their order and negating χi), and if we pack ψ to B̃p such that ψi is stored to the second
row of the micro-panel (which, granted, only has one column), then a real domain
GEMM micro-kernel executed on those micro-panels will compute the correct result in
the complex domain, and do so with a single invocation of that micro-kernel.

Thus, Eq. 3 serves as a packing template that hints at how the data must be stored,
which we may generalize. We replace χ, ψ, ζ with α, β, γ so as to more intuitively denote
complex elements of matrices A, B, and C, respectively. Also, let us apply the Eq. 3 to

6This terminology describes the shape of the typical problem computed by the macro-kernel, i.e. the second
loop around the micro-kernel.
7We renamed the matrices (and indices) in the panel-block algorithm in Figure 1 (right) so that B is the left-
hand matrix product operand while A appears on the right. This allows Ãi and B̃p to remain the matrices
that reside in the L2 and L3 caches, respectively.
8Throughout this document, we will sometimes interchangeably use the term GEMM to refer to matrix
multiplication.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2017.



Implementing high-performance complex matrix multiplication via the 1m method 0:9

the special case of m = 3, n = 4, and k = 2 to better observe the general pattern.

γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
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+=



αr
00 −αi

00 αr
01 −αi

01

αi
00 αr

00 αi
01 αr

01

αr
10 −αi

10 αr
11 −αi

11

αi
10 αr

10 αi
11 αr

11

αr
20 −αi

20 αr
21 −αi

21

αi
20 αr

20 αi
21 αr

21



βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

 (4)

From this, we can make the following observations:

— The complex matrix multiplication C := C+AB withm = 3, n = 4, and k = 2 becomes
a real matrix multiplication with m = 6, n = 4, and k = 4. In other words, the m and
k dimensions are doubled for the purposes of the real GEMM primitive.

— If the primitive is the real GEMM micro-kernel, and we assume that matrices A and B
above represent column-stored and row-stored micro-panels from Ãi and B̃p, respec-
tively, and also that the dimensions are conformal to the register blocksizes of this
micro-kernel (i.e., m = mR and n = nR) then the micro-panels of Ãi are packed from
a 1

2mR × 1
2kC submatrix of A, which, when expanded in the special packing format,

appears as the mR × kC micro-panel that the real GEMM micro-kernel expects.
— Similarly, the micro-panels of B̃p are packed from a 1

2kC × nR submatrix of B, which,
when reordered into a second special packing format, appears as the kC × nR micro-
panel that the real GEMM micro-kernel expects.

It is easy to see by inspection that the real matrix multiplication implied by Eq. 4 in-
duces the desired complex matrix multiplication, provided the computation is executed
on matrices A and B that have been packed into special formats. We will refer to the
packing format used on matrix A above as the 1E format, since the F.E. are expanded
(i.e., duplicated to the next column and then swapped, with the imaginary component
negated). Similarly, we will refer to the packing format used on matrix B above as the
1R format, since the F.E. are merely reordered (i.e., imaginary elements moved to the
next row).

3.2. Two variants
Notice that implicit in the 1M method suggested by Eq. 4 is the fact that matrix C
is stored by columns. This assumption is important; C must be stored by columns in
order to allow the real domain micro-kernel to correctly update F.E. of C with the
corresponding F.E. from the matrix product AB.

Suppose, for a moment, that we instead refactored and expressed Eq. 1 as follows:(
ζr ζi

)
+=

(
χr χi

)( ψr ψi

−ψi ψr

)
(5)

This gives us a different template, one that implies different packing formats for ma-
trices A and B. Applying Eq. 5 to the special case of m = 4, n = 3, and k = 2, yields:
γr00 γi00 γr01 γi01 γr02 γi02
γr10 γi10 γr11 γi11 γr12 γi12
γr20 γi20 γr21 γi21 γr22 γi22
γr30 γi30 γr31 γi31 γr32 γi32

+=


αr
00 αi

00 αr
01 αi

01

αr
10 αi

10 αr
11 αi

11

αr
20 αi

20 αr
21 αi

21

αr
30 αi

30 αr
31 αi

31




βr
00 βi

00 βr
01 βi

01 βr
02 βi

02

−βi
00 βr

00 −βi
01 βr

01 −βi
02 βr

02

βr
10 βi

10 βr
11 βi

11 βr
12 βi

12

−βi
10 βr

10 −βi
11 βr

11 −βi
12 βr

12


(6)
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Table I. 1M complex domain blocksizes as a function of real do-
main blocksizes

Variant
Blocksizes, in terms of real domain values,
required for . . .

kz
C mz

C nz
C mz

R mz
P nz

R nz
P

1M C 1
2
kC

1
2
mC nC

1
2
mR mP nR nP

1M R 1
2
kC mC

1
2
nC mR mP

1
2
nR nP

Note: Blocksizes mP and nP represent the so-called “packing
dimensions” for the micro-panels of Ãi and B̃p, respectively.
These values are analagous to the leading dimensions of ma-
trices stored by columns or rows. In BLIS micro-kernels, typ-
ically mR = mP and nR = nP , but sometimes the kernel
author may find it useful for mR < mP or nR < nP .

In this variant, we see that matrix B, not A, is stored according to the 1E format
(where columns become rows), while matrix A is stored according to 1R (where rows
become columns). Also, we can see that matrix C must be stored by rows in order to
allow the real GEMM micro-kernel to correctly update its F.E. with the corresponding
values from the matrix product.

Henceforth, we will refer to the 1M variant exemplified in Eq. 4 as 1M C, since it
is predicated on column storage on the output matrix. Similarly, we will refer to the
variant depicted in Eq. 6 as 1M R, since it assumes the output matrix is stored by rows.

3.3. Determining complex blocksizes
As we alluded in Section 3.1, the appropriate blocksizes to use with 1M are a function
of the real domain blocksizes. This makes sense, since the idea is to fool the real GEMM
micro-kernel, and the various loops for register and cache blocking around the micro-
kernel, into thinking that it is computing a real domain matrix multiplication. Which
blocksizes must be modified (halved) and which are used unchanged depends on the
variant of 1M being executed (and specifically, which matrix is packed according to the
1E format).

Table I summarizes the complex domain blocksizes prescribed for 1M C and 1M R
as a function of the real domain values. This is somewhat analagous to the blocksize
scaling described in Tables II and III in [Van Zee and Smith 2017]. However, there the
scaling was optional in the sense that different scaling factors would still work, albeit
perhaps with a performance penalty. Here, in the case of Table I, some scaling factors
(namely, on mR or nR) are required in order for the 1M algorithm to function properly.

Those familiar with the matrix multiplication algorithm implemented by the BLIS
framework, as depicted in Figure 1 (left), may be unfamiliar with mP and nP , the so-
called packing dimensions. These values are, effectively, the leading dimensions of the
micro-panels. For most architectures, these values are almost always equal to mR and
nR, respectively. However, in some situations, it may be convenient (or necessary) to
use mR < mP or nR < nP . In any case, these packing dimensions are never scaled,
even when their corresponding register blocksizes are scaled to accommodate the 1E
format, because the halving that would otherwise be called for is cancelled out by the
doubling of F.E. that manifests in 1E.

3.4. Numerical stability
As with the 3M and 4M methods of [Van Zee and Smith 2017], a formal analysis of nu-
merical stability is beyond the scope of this article. However, by inspection we can see
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Algorithm: [ C ] := RMMBP( A, B, C ) Algorithm: [ C ] := RMMPB( B, A, C )

for ( j = 0 : n− 1 : nC )
Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := RKERN( Ãil, B̃ph, Cjihl )

for ( j = 0 : m− 1 : nC )
Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK Bjp → B̃p

for ( i = 0 : n− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := RKERN( Ãil, B̃ph, Cjihl )

Fig. 2. Abbreviated pseudo-codes for implementing the general matrix multiplication algorithms depicted
in Figure 1. Here, RKERN calls a real domain GEMM micro-kernel. Note that the only difference between
the algorithms is that the loop bounds on the 5th and 3rd loops around the micro-kernel are swapped.
Also, RMMPB labels the matrix product operands differently, with B referring to the left-hand matrix and A
referring to the right-hand matrix.

that the accumulation of intermediate terms occurs in the same order as would a con-
ventional assembly-based implementation based on the so-called broadcast method,
which is quite common.9 The only other factor that would affect stability is the cache
blocksize in the k dimension, kC . However, this blocksize value already varies across
architectures, and also sometimes between real and complex micro-kernels on the
same architecture, so this factor is not new. Therefore, we would expect the 1M method
(both in its 1M R and 1M C forms) to exhibit the numerical properties that were virtu-
ally identical to a solution based on complex micro-kernels.

3.5. Algorithms
3.5.1. General algorithm. Before investigating 1M method algorithms, we will first pro-

vide algorithms for computing real matrix multiplication to serve as a reference for
the reader. Specifically, we provide pseudo-code, targeting the real domain, for the two
algorithms depicited in Figure 1. These algorithms are shown as RMMBP and RMMPB
in Figure 2.

Notice that in the context of RMMPB, the 5th and 3rd loops around the micro-kernel
(RKERN) iterate over different dimensions, relative to those loops in RMMBP, but the
blocksizes used in those loops are the same. Thus, nC is used to partition in the m
dimension while mC is used to partition in the n dimension. The authors of [Van Zee
and van de Geijn 2015] initially studied matrix multiplication only in the context of an
algorithm based on block-panel subproblems, which led them to name the blocksizes

9The broadcast method of implementing a complex rank-1 update involves loading a few consecutive F.E.
from the current column of the micro-panel of Ãi into a vector register x, and then broadcasting the real
part of an element from the current row of the micro-panel of B̃p to every element within a vector register
y0. Element-wise multiplication xy0 then yields the terms corresponding to χrψr and χiψr from Eq. 3.
These terms are accumulated into γr and γi. Then, the imaginary part of the same element of the current
row of the micro-panel of B̃p is broadcast to a vector register y1, facilitating the element-wise product xy1,
which computes the terms −χiψi and χrψi, which are once again accumulated into γr and γi. The process
is repeated until the rank-1 update is complete. A row-oriented broadcast method is also possible, in which
real and imaginary F.E. are broadcast from B̃p instead of Ãi.
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Algorithm: [ C ] := 1M [CR] BP( A, B, C ) [ C ] := VK1M( A, B, C )

Set bool COLSTORE if RS( C ) = 1
for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

if COLSTORE PACK1R Bjp → B̃p

else PACK1E Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

if COLSTORE PACK1E Api → Ãi

else PACK1R Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := VK1M( Ãil, B̃ph, Cjihl )

Acquire workspace W
Determine if using W ; set USEW
if ( USEW )

Alias Cuse ←W , Cin ← 0
else

Alias Cuse ← C, Cin ← C
Set bool COLSTORE if RS(Cuse) = 1
if ( COLSTORE ) CS(Cuse)×= 2
else RS(Cuse)×= 2
N(A)×= 2; M(B)×= 2
Cuse := RKERN( A, B, Cin )
if ( USEW )
C := W

Fig. 3. Left: Pseudo-code for Algorithms 1M C BP and 1M R BP, which result from applying 1M C and 1M R
algorithmic variants to the block-panel algorithm depicted in Figure 1 (left). Here, PACK1E and PACK1R
pack matrices into the 1E and 1R formats, respectively. Right: Pseudo-code for a virtual micro-kernel used
by all 1M algorithms.

after the dimensions along which they partitioned. When generalized to support the
panel-block algorithm, these blocksizes refer not to a specific dimension but rather to a
specific level of cache being targeted. That is, mC targets the L2 cache while nC blocks
for the L3 cache. However, for historical purposes, we will continue to use the original
names throughout this article. We also choose to label the matrix product operands
differently in the panel-block setting; the left-hand matrix is named B while the right-
hand matrix is named A.10

3.5.2. 1m-specific algorithm. When applied to the block-panel algorithm depicted in Fig-
ure 1 (left), 1M C and 1M R yield nearly identical algorithms whose differences can be
encoded within a few conditional statements within key parts of the high and low
levels of code. We will refer to these specific algorithms as 1M C BP and 1M R BP, re-
spectively. Figure 3 shows a hybrid algorithm that encompasses both, supporting row-
and column-stored matrices C.

As with the 3M and 4M algorithms in [Van Zee and Smith 2017], we have separated
the so-called virtual micro-kernel into a separate function, shown in Figure 3 (right).
This 1M-specific virtual micro-kernel, VK1M, largely consists of a call to the real do-
main micro-kernel RKERN, with some added special case handling and book-keeping
needed to properly induce complex matrix multiplication. Some of the details of the
virtual micro-kernel will be addressed shortly.

10It is important to note that the renaming in panel-block algorithms such as RMMPB does not necessarily
represent a swapping of the operands, as would happen if the entire operation were transposed to CT +=
BTAT , nor does it represent a change to the operation’s interface. RMMBP and RMMPB simply use different
names for the left- and right-hand matrices within the algorithm descriptions. This renaming allows us to
reference the L2-bound block and L3-bound panel as Ãi and B̃p, respectively, in both algorithms.
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Note that 1M C and 1M R can also be applied to the panel-block algorithm depicted
in Figure 1 (right), yielding 1M C PB and 1M R PB. We omit pseudo-code for these
algorithms for the sake of brevity.

3.6. Performance properties and algorithmic pairs
Table II tallies the total number of F.E. memops required by the block-panel and panel-
block algorithms of both variants of 1M (1M C and 1M R). For comparison, we also
include the corresponding memop counts for a selection of 4M algorithms as well as a
conventional assembly-based solution, as first published in Table III in [Van Zee and
Smith 2017].

We can hypothesize that the observed performance signatures of 1M C BP and
1M R BP may be slightly different, because each places the additional memop over-
head unique to 1M on different parts of the computation. This stems from the fact that
there exists an asymmetry in the assignment of packing formats to matrices in each
1M variant. Specifically, additional memops are required during the initial packing and
the movement between caches for the matrix packed according to 1E, since that format
writes four F.E. for ever two that it reads from the source operand. Also, if 1M C BP
and 1M R BP use real micro-kernels with different micro-tile shapes (i.e., difference
values of mR and nR), those micro-kernels’ differing performance properties will likely
cause the performance signatures of 1M C BP and 1M R BP to deviate further.

Notice that the only difference between the rows for 1M C BP and 1M R PB is the
swapping of the m and n dimensions. This stems from the fact that the block-panel
and panel-block algorithms iterate over different dimensions in the 5th and 3rd loops,
but are otherwise identical. Indeed, for large enough problems, we expect 1M R BP
and 1M C PB to have the same performance properties because in each algorithm the
L2-bound packed matrix Ãi is formatted with 1R and the L3-bound B̃p is formatted
with 1E. These algorithms’ similaries sometimes make it convenient to refer to them
simultaneously as an algorithmic pair. The 1M R BP and 1M C PB form a second such
pair, as they share properties that are distinct from the first.

Table III summarizes Table II and also lists the level of the memory hierarchy from
which each matrix operand is reused as well as a measure of memory movement ef-
ficiency. The information listed for 4M and assembly algorithms is reproduced from
Table IV of the previous article.

Notice that transposing the entire operation, and using 1M R PB to compute CT +=
BTAT would cause the algorithm’s performance properties listed in Table III to align
indistinguishably with that of 1M C BP. A similar symmetry would be observed with
1M C PB and 1M R BP.

3.7. Algorithm-sensitive details
3.7.1. Micro-kernel storage preference. Within the BLIS framework, micro-kernels are

registered with a property that describes their output preference—that is, the seman-
tic row or column orientation of the vector registers that load and store C.11 Whenever
possible, the BLIS framework will perform logical transpositions12 so that the appar-
ent storage of C matches the preference property of the micro-kernel being used. This
guarantees that the micro-kernel will be able to load and store F.E. of C using vector
instructions.

11Even though micro-kernels are always registered as having a row or column preference for the purposes of
accessing C, these kernels still support matrices stored with general stride. However, 1M will never exercise
the real micro-kernel’s built-in support for general stride. This topic is discussed in Section 3.8.1.
12This amounts to a swapping of the row and column strides, and a swapping of the m and n dimensions.
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Table II. F.E. memops incurred by various algorithms, broken down by stage of computation.

Algorithm
F.E. memops required to . . . a

update micro-
tilesb Cr , Ci

pack
Ãi

move Ãi from
L2 to L1 cache

pack
B̃p

move B̃p from
L3 to L1 cache

4M H 8mn k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

4M 1B 8mn k
kC

8mk 2n
nC

4mk n
nR

8kn 4kn 2m
mC

4M 1A 8mn 2k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

assembly 4mn k
kC

4mk n
nC

2mk n
nR

4kn 2kn m
mC

1M C BP

2mn 2k
kC

6mk n
nC

4mk n
nR

4kn 2kn 2m
mC

1M R PB 6kn m
nC

4kn m
nR

4mk 2mk 2n
mC

1M R BP 4mk n
nC

2mk 2n
nR

6kn 4kn m
mC

1M C PB 4kn m
nC

2kn 2m
nR

6mk 4mk n
mC

a We express the number of iterations executed in the 5th, 4th, 3rd, and 2nd loops as
n
nC

, k
kC

, m
mC

, and n
nR

(with m and n swapped for panel-block algorithms 1M C PB and
1M R PB). The precise number of iterations along a dimension x using a cache blocksize
xC would actually be d x

xC
e. Simlarly, when blocksize scaling of 1

2
is required, the pre-

cise value
⌈

x
xC/2

⌉
is expressed as 2x

xC
. These simplifications allow easier comparison

between algorithms while still providing meaningful approximations.
b As described in Section 3.8.1, mR × nR workspace sometimes becomes mandatory,
such as when βi 6= 0. When workspace is employed in a 4M-based algorithm, the num-
ber of F.E. memops incurred updating the micro-tile typically doubles.

Table III. Performance properties of various algorithms.

A
lg

or
it

hm Total F.E. memops required
(Sum of columns of Table II)

Level from which F.E. of matrix X
are reused, and lL1: # of times each
cache line is moved into the L1
cache (per rank-kC update).

C lCL1 A lAL1 B lBL1

4M H 8mn
(

k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
MEM 4 MEM 4 MEM 4

4M 1B 8mn
(

k
kC

)
+ 4mk

(
4n
nC

+ n
nR

)
+ 2kn

(
4 + 4m

mC

)
L2 2a L2 1 L1 1

4M 1A 8mn
(

2k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
L1 1a L1 1 L1 1

assembly 4mn
(

k
kC

)
+ 2mk

(
2n
nC

+ n
nR

)
+ 2kn

(
2 + m

mC

)
REG 1 REG 1 REG 1

1M C BP 2mn
(

2k
kC

)
+ 2mk

(
3n
nC

+ 2n
nR

)
+ 2kn

(
2 + 2m

mC

)
REG 1 L2b 1 REG 1

1M R PB 2mn
(

2k
kC

)
+ 2kn

(
3m
nC

+ 2m
nR

)
+ 2mk

(
2 + 2n

mC

)
REG 1 L2b 1 REG 1

1M R BP 2mn
(

2k
kC

)
+ 2mk

(
2n
nC

+ 2n
nR

)
+ 2kn

(
3 + 2m

mC

)
REG 1 REG 1 L1b 1

1M C PB 2mn
(

2k
kC

)
+ 2kn

(
2m
nC

+ 2m
nR

)
+ 2mk

(
3 + 2n

mC

)
REG 1 REG 1 L1b 1

a This assumes that the micro-tile is not evicted from the L1 cache during the next call to RKERN.
b In the case of 1M algorithms, we consider F.E. of A and B to be “reused” from the level of cache in which
the 1E-formatted matrix resides.

This preference property is merely an interesting performance detail for conven-
tional implementations (real and complex). However, in the case of 1M, it becomes
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rather important for constructing a correctly-functioning implementation. Specifically,
the micro-kernel’s storage preference determines whether the 1M C or 1M R algorithm
is prescribed. Generally speaking, a 1M C algorithmic variant must employ a micro-
kernel that prefers to access C by columns, while a 1M R algorithmic variant must use
a micro-kernel that prefers to access C by rows. An exception (or at least a caveat) to
this rule is discussed in Section 3.7.3.

3.7.2. The panel-block algorithm. Now that we have established two algorithmic pairs—
1M C BP/1M R PB and 1M R BP/1M C PB—the question becomes, why choose one algo-
rithm over another within the same pair? It turns out that, at least in the context of
1M, we suspect that the reasons apply to limited scenarios, and that otherwise the two
algorithms are interchangeable.

— Small m or n dimensions. One reason to consider the panel-block algorithm is that
it is somewhat more forgiving of problems where the m dimension is relatively small.
To understand this phenomenon, let us instead begin by explaining why the block-
panel algorithm can tolerate small n somewhat better than small m.
Notice that, according to Figure 1 (left), micro-panels of B̃p typically reside in the
L3 cache. Those micro-panels are therefore reused from the L3 cache as they are
multiplied against different blocks Ãi. That is, they are reused from the L3 cache
across iterations of the 3rd loop. However, if n is very small, such that B̃p consists of
only a few micro-panels, then B̃p may not fall back to the L3 cache, but rather linger
in the portion of the L2 cache that is not occupied by Ãi. This tends to result in a
small performance improvement when the micro-kernel accesses those micro-panels
of B̃p after computation has proceeded to the next block of Ãi (i.e., with the next
iteration of the 3rd loop).
Now, let us consider what happens if m is very small, such that Ãi consists of only
a few micro-panels. Note that the algorithm is already predisposed to keeping those
micro-panels in the L2 cache, and the L1 cache is usually too small to hold even one
additional micro-panel of Ãi. Thus, there exists no cache benefit to small values of m
for block-panel algorithms.
The corresponding small dimension affinity for the panel-block algorithm is reversed.
That algorithm tolerates small m somewhat better for the same reason that the
block-panel algorithm tolerates small n dimensions—that is, because m is the di-
mension along which the nC blocksize is applied, which determines the number of
micro-panels in B̃p.

— Odd register blocksizes. Usually, mR and nR are both even numbers. However,
sometimes one or the other is odd.13 In this case, the variant of 1M is pre-determined.
That is, if nR is odd, then only 1M C may be used. This stems from the fact that, as
shown in Table I, the complex register blocksize nzR used during packing of 1M R
must be equal to 1

2nR. Obviously, nzR = 1
2nR cannot be computed as a whole number

if nR is odd. Simlarly, if mR is odd, then only 1M R may be used.

13The authors have never observed or heard of an optimal or near-optimal case where both register block-
sizes were odd. This can be attributed to the fact that the register blocksizes capture the orientation and
layout of the vector registers used to accumulate the micro-kernel’s matrix product. Since vector register
lengths are (so far) universally powers of two, they are also even numbers, and we cannot imagine any ben-
efits to forgoing use of some vector register elements. In fact, the analytical model proposed in [Low et al.
2016] explicitly constrains the space of possible register allocations to those where vector registers are fully
populated. For these reasons, we anticipate that all reasonable register allocations will have at least one
even register blocksize.
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mC mC 

nC 

mC += Ai 

~ 
Bp 

~ 

1E 1R 1M_C_BP 

nC 

+= 
Ai 

~ 
Bp 
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1R 1E 1M_R_PB 
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Fig. 4. Illustrations that depict key details of the four 1M algorithms at the level of the macro-kernel,
including the 1E/1R packing formats of Ãi and B̃p, whether each packed matrix is a left- or right-hand
operand to the matrix product, and the corresponding relationship between the m and n dimensions and
the cache and register blocksizes mC , mR, nC , and nR. In each diagram, the storage of the output matrix
prescribed by the 1M C/1M R variant is shown as vertical (column-stored) or horizontal (row-stored) lines.
The algorithms represented by the diagrams on the left will exhibit similar performance properties when
the matrices are large. A similar relationship holds between the pair of algorithms on the right.

Table IV. Summary of key properties of 1M algorithms.

A
lg

or
it

hm

Packing format /
Level from which
F.E. are reused

Requires µ-
kernel with
preference for
. . .

Tolerates
µ-kernel
with odd
. . .

Small di-
mension
affinity

A B

1M C BP 1E / L2 1R / REG columns nR n

1M R PBa 1E / L2 1R / REG rows nR m

1M R BP 1R / REG 1E / L1 rows mR n

1M C PBa 1R / REG 1E / L1 columns mR m

a Recall that panel-block algorithms 1M R PB and 1M C PB compute C += BA,
with matrix A being multiplied by matrix B from the right.

Figure 4 illustrates distinguishing details of the four 1M algorithms at the level of
the macro-kernel, while Table IV summarizes key properties of each 1M algorithm.

3.7.3. Implementing the panel-block algorithm. At first glance, it may seem that imple-
menting the panel-block algorithms 1M C PB and 1M R PB would require a significant
effort. After all, panel-block algorithms partition the matrix dimensions in a different
order, result in a different macro-kernel, and produce different micro-kernel subprob-
lems that multiply nR × kC micro-panels of B̃p by kC ×mR micro-panels of Ãi. In fact,
this would seem to call for a different micro-kernel altogether.

As it turns out, the panel-block algorithm can be implemented by recycling existing
code and leveraging the similarities within algorithmic pairs. Let us consider the pair
1M C BP and 1M R PB. Note that the micro-kernel for 1M C BP as well as higher-level
code (including the block-panel macro-kernel) already exist within the BLIS frame-
work. The higher-level code for 1M R PB can be implemented in BLIS by building an
alternate control tree structure that steps through the loop partitioning functions in
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a different order.14 Furthermore, it is possible to implement the panel-block macro-
kernel needed by 1M R PB in terms of the existing block-panel macro-kernel used by
1M C BP. Upon calling the panel-block macro-kernel function, we simply apply a log-
ical transposition of the matrix operands, and swap B̃p and Ãi. This transformation
orients C and the micro-panels of the packed matrices into a format and sequence
expected by 1M C BP’s macro-kernel and its column-preferential micro-kernel.

In a similar manner, 1M C PB can be implemented by recycling the code and row-
preferential micro-kernel used by 1M R BP.

Note that in Section 4 (specifically in Figures 7 and 8), we will report performance
results in which we refer to panel-block algorithms 1M C PB and 1M R PB as employing
row-preferring and column-preferring micro-kernels, respectively. This reversal comes
from the fact that we implement each panel-block macro-kernel in terms of its block-
panel counterpart, which, in our present discussion, uses a micro-kernel of opposite
preference.

3.8. Algorithm-agnostic details
3.8.1. Workspace. In some cases, a small amount of mR × nR workspace is needed.

These cases fall into one of four scenarios: (1) C is row-stored and the real micro-
kernel RKERN has a column preference; (2) C is column-stored and RKERN has a row
preference; (3) C is general-stored (i.e., neither RS(C) nor CS(C) is unit); and (4) β has
a non-zero imaginary component. If any of these situations apply, then the 1M virtual
micro-kernel will need to use workspace. This corresponds to the setting of USEW in
VK1M. The idea is simply that RKERN will be called to compute the micro-panel product
and store it to the workspace W . Subsequently, the result in W can be accumulated
back to C.

Cases (1) and (2), while supported, actually never occur in practice because BLIS
will perform (at a high level within the framework) a logical transposition whenever
necessary. The net effect is that the storage of C will always appear to match the
preference of the micro-kernel.

Case (3) is needed because the real micro-kernel is programmed to support the up-
dating of real matrices stored with general stride, which cannot be spoofed to match
the updating of complex matrices stored with general stride. The reason is even when
stored with general stride, complex matrices store real and imaginary F.E. in con-
tiguous pairs. There is no way to coax this pattern of data access from a real do-
main micro-kernel. Thus, general stride support must be implemented outside RKERN,
within VK1M.

Case (4) is needed because real domain micro-kernels are not semantically equipped
to scale C by complex scalars β (that is, β such that βi 6= 0).

3.8.2. Handling alpha and beta scalars. As in the previous article, we have simplified the
general matrix multiplication to C := C + AB. In practice, the operation is imple-
mented as C := βC + αAB, where α, β ∈ C. Let us use Algorithms 1M C BP and
1M R BP in Figure 3 as an examle of how to support arbitrary values of α and β.

If no workspace is needed (because none of the four situations described in Sec-
tion 3.8.1 apply), we can simply pass βr into the RKERN call. However, if β is complex,
or (regardless of whether β is real or complex) if any of the other three workspace cases

14A control tree is a data structure used internally by BLIS to encode the basic properties of level-3 algo-
rithms. It specifies, for example, which dimension to partition, the blocksize to use in that partitioning, and
a reference to the next node in the tree, which is processed in the body of the next loop. In general, control
trees allow a library developer to factor out certain parameters from the code local to any given loop. These
codes become generic and, when stored as separate functions, can then be composed together at runtime
into arbitrary compound algorithms.
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apply, then we must pass in a local βuse = 0 to RKERN, compute to local workspace W ,
and then apply β at the end of VK1M, when W is accumulated to C.

When α is real, the scaling may be performed directly by RKERN. This situation
is ideal since it almost always incurs no additional costs (since many micro-kernels
multiply their intermediate AB product by α unconditionally). Scaling by α with non-
zero imaginary components can be performed by the packing function when either Ãi

or B̃p are packed. Though somewhat less than ideal, the overhead incurred by this
treatment of α is minimal since packing is a memory-bound operation.

3.8.3. Multithreading. As with Algorithm 4M 1A in the previous article, 1M C BP and
1M R BP parallelize in a straightforward manner for multicore and many-core environ-
ments. Because those algorithms encode the 1M method entirely within the packing
functions and the virtual micro-kernel, all other levels of code are completely oblivi-
ous to, and therefore unaffected by, the specifics of the new algorithms. Therefore, we
expect that 1M C BP and 1M R BP will yield multithreaded performance that is on-par
with that of the corresponding real domain matrix multiplication function, RMMBP.

A similar analysis holds for panel-block algorithmic variants 1M C PB and 1M R PB.

3.8.4. Bypassing the virtual micro-kernel. Because the 1M virtual micro-kernel serves as
a wrapper to the real domain micro-kernel, it would seem at first glance that there
exists the potential for additional overhead in 1M algorithms, particularly from the
extra function calls. However, there are a few things to consider.

First, we should consider that a conventional solution would implement matrix mul-
tiplication using a complex micro-kernel, which sometimes has a smaller micro-tile
footprint (i.e., fewer F.E.). But, a complex micro-kernel that updates fewer F.E. would
need to be called more times in order to fully update the output matrix. Thus, the func-
tion call overhead incurred by 1M algorithms may already be at or near parity with
that of a conventional implementation.

Secondly, even if the complex micro-kernel updates the same number of F.E. as its
real domain counterpart, there exists a simple optimization that can be applied as
long as β ∈ R and C is either row- or column-stored (but not general-stored). If these
conditions are met and detected by the implementation, the real domain macro-kernel
can be called with modified parameters to induce the equivalent complex domain sub-
problem. This simple optimization avoids all overhead introduced by the virtual micro-
kernel, including (but not limited to) the cost incurred by additional function calls.

Finally, we suspect that, even if this optimization cannot be applied, the slowdown
that results from the additional overhead may not necessarily be prohibitive.

3.9. Other possible packing formats
An astute reader may have already noticed that the 1E and 1R formats are not unique
in their ability to facilitate induced complex matrix multiplication. Returning to Eqs. 4
and 6, it is easy to see that any permutation that permutes columns of A simultane-
ously with the corresponding rows of B will yield a valid packing configuration (i.e.,
combination of packing formats on A and B) that facilitates computing the desired re-
sult. The only difference between any two arbitrary packing configurations will be in
the order in which the intermediate terms αrβr, αrβi,−αiβi, and αiβr are accumulated
into γr and γi.

Perhaps the most interesting of these permutations is that in which even-
numbered15 columns of A are permuted to be consecutive with one another and
grouped together, while odd-numbered columns are permuted to immediately follow

15This assumes a zero-based indexing.
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them. This format, with its permutation of k dimension, would transform Eq. 4 to:

γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
γi20 γi21 γi22 γi23


+=



αr
00 αr

01 −αi
00 −αi

01

αi
00 αi

01 αr
00 αr

01

αr
10 αr

11 −αi
10 −αi

11

αi
10 αi

11 αr
10 αr

11

αr
20 αr

21 −αi
20 −αi

21

αi
20 αi

21 αr
20 αr

21




βr
00 βr

01 βr
02 βr

03

βr
10 βr

11 βr
12 βr

13

βi
00 βi

01 βi
02 βi

03

βi
10 βi

11 βi
12 βi

13



Or, more generally,

C +=
(
A Ǎ

)( Br

Bi

)
(7)

where A and Ǎ are column-stored, Br and Bi are row-stored, and C remains column-
stored, as before with 1M C based on 1E and 1R. The storage format of B would recycle
some of the packing infrastructure created to support 4M, wherein real and imaginary
F.E. are packed to separate but adjacent micro-panels. It would still, however, require
the support of a new format to store Ǎ, wherein real and imaginary F.E. are swapped
and the imaginary parts are negated.

A similar permutation can be applied to Eq. 6, yielding:

C +=
(
Ar Ai

)( B
B̌

)
(8)

where Ar and Ai are column-stored, B and B̌ are row-stored, and C remains row-
stored, as before with 1M R based on 1R and 1E.

These alternative packing formats do not immediately appear to have any advan-
tages over 1E and 1R.16 Indeed, the opposite may be true; for small values of mR and
nR (actually, small values of mP and nP ), packing to the 1E and 1R formats may enjoy
a slight advantage over other formats due to increased spatial locality when packing to
1E and 1R. This would occur because the formats call for copying (parts of) a complex
scalar to both the current column or row (of mR or nR F.E.) as well as next column or
row, which may reside within the same cache line, or within a cache line that is more
likely to have already been hardware-prefetched.

3.10. 2m
The previous article noted that because of its expression in terms of real and imaginary
matrices, 4M would perform more favorably on complex matrices that stored real and
imaginary values separately, as two real matrices. This would not benefit the accesses
on A and B, since those matrices must almost always be packed to achieve high perfor-
mance and can easily be separated during that process. However, it would benefit the
accesses on C. Referring back to Eq. 4, we can see that storing the real and imaginary
F.E. of C separately is equivalent to a permutation of the rows of C. In order to keep
the computation expressed unchanged, this permutation would need to be applied to
matrix A as well, since they both share an m dimension. Applying such a permutation

16One could make the case that the packing formats described by Eqs. 7 and 8 exhibit the benefit of being
somewhat easier to describe than 1E and 1R, because they can be expressed in terms of more familiar real,
imaginary, complex, and modified complex matrices.
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to Eq. 4 yields:

γr00 γr01 γr02 γr03
γr10 γr11 γr12 γr13
γr20 γr21 γr22 γr23
γi00 γi01 γi02 γi03
γi10 γi11 γi12 γi13
γi20 γi21 γi22 γi23


+=



αr
00 −αi

00 αr
01 −αi

01

αr
10 −αi

10 αr
11 −αi

11

αr
20 −αi

20 αr
21 −αi

21

αi
00 αr

00 αi
01 αr

01

αi
10 αr

10 αi
11 αr

11

αi
20 αr

20 αi
21 αr

21



βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

 (9)

And if we also apply the permutation along the k dimension discussed in Section 3.9,
we have:

γr00 γr01 γr02 γr03
γr10 γr11 γr12 γr13
γr20 γr21 γr22 γr23
γi00 γi01 γi02 γi03
γi10 γi11 γi12 γi13
γi20 γi21 γi22 γi23


+=



αr
00 αr

01 −αi
00 −αi

01

αr
10 αr

11 −αi
10 −αi

11

αr
20 αr

21 −αi
20 −αi

21

αi
00 αi

01 αr
00 αr

01

αi
10 αi

11 αr
10 αr

11

αi
20 αi

21 αr
20 αr

21




βr
00 βr

01 βr
02 βr

03

βr
10 βr

11 βr
12 βr

13

βi
00 βi

01 βi
02 βi

03

βi
10 βi

11 βi
12 βi

13


Or, more generally: (

Cr

Ci

)
+=

(
Ar −Ai

Ai Ar

)(
Br

Bi

)
(10)

This matrix multiplication can be computed via just two calls to a real domain matrix
multiplication primitive:

Cr +=
(
Ar −Ai

)( Br

Bi

)
, Ci +=

(
Ai Ar

)( Br

Bi

)
provided that

(
Ar −Ai

)
,
(
Ai Ar

)
, and

(
Br

Bi

)
can each be stored so that they can

be referenced as single matrices. We call this the 2M method, and the specific instance
derived from Eq. 10 as 2M C.

Similarly, applying permutations to the n and k dimensions to Eq. 6 yields:(
Cr Ci

)
+=

(
Ar Ai

)( Br Bi

−Bi Br

)
(11)

which can also be broken down in two instances of real matrix multiplication:

Cr +=
(
Ar Ai

)( Br

−Bi

)
, Ci +=

(
Ar Ai

)( Bi

Br

)
which corresponds to 2M R.

We can now make a few observations about 2M:

— Eqs. 10 and 11 are identical to Eqs. 3 and 5, respectively, except that scalars are
replaced with matrices.

— The initial permutation along the k dimension is actually unnecessary, and so the
formatting captured by Eq. 9 also falls under 2M. This permutation (or lack thereof)
only changes the order in which intermediate terms are accumulated.

— The storage of Cr and Ci in both Eqs. 10 and 11 is unspecified and does not depend on
which matrix, A or B, was originally formatted with 1E (prior to permutation). Either
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Table V. Register and cache blocksizes used by the various implementations of matrix mul-
tiplication, as configured for an Intel Xeon E5-2690 v3 “Haswell” processor.

Precision/Domain Implementation mz
R nz

R mz
C kzC nz

C

single complex

BLIS 1M C 16/2 6 144/2 256/2 2040

BLIS 1M R 6 16/2 144 256/2 2040/2

BLIS assembly 3 8 144 256 2040

OpenBLAS 8 2 384 192 ?a

double complex

BLIS 1M C 8/2 6 72/2 256/2 2040

BLIS 1M R 6 8/2 72 256/2 2040/2

BLIS assembly 3 4 72 256 2040

OpenBLAS 4 2 256 128 ?a

Note: Division by 2 is made explicit to allow the reader to quickly see the 1M blocksizes
as well as the blocksizes that would be used by the underlying real domain micro-
kernels when performing real matrix multiplication.
a We were unable to confidently determine the nz

C blocksizes used by OpenBLAS for
the Haswell architecture.

Cr or Ci may be stored by rows, columns, or a more excotic storage scheme, and their
storage formats need not even be identical. Thus, neither 2M C nor 2M R implies the
storage of C; rather, they only imply how the A and B matrices are formatted and
stored—that is, which one contains duplicated (and negated) F.E..

— The 2M method can be applied at an arbitrary level of matrix multiplication. For
example, if we assume from Eq. 10 that input matrices

(
Ar −Ai

)
,
(
Ai Ar

)
, and(

Br

Bi

)
are each stored as micro-panels (column-stored, column-stored, and row-

stored, respectively), then this application of 2M prescribes that C is stored by con-
tiguous mR × nR micro-tiles. If, instead, the aforementioned input matrices were
generally large, then C would need to be stored in whatever manner is appropriate
for the real matrix multiplication primitive.

4. PERFORMANCE
In this section we present performance results for implementations of 1M algorithms
on a recent Intel architectures. For comparison, we include results for select 4M algo-
rithms as well as the conventional assembly-based approach.

4.1. Platform and implementation details
Results presented in this section were gathered on a single Cray XC40 compute node
consisting of two 12-core Intel Xeon E5-2690 v3 processors featuring the “Haswell” mi-
croarchitecture. Each core, running at a clock rate of 3.2 GHz17, provides a single-core
peak performance of 51.2 gigaflops (GFLOPS) in double precision and 102.4 GFLOPS
in single precision.18 Each socket has a 30MB L3 cache that is shared among cores,
and each core has a private 256KB L2 cache and 32KB L1 (data) cache. Performance
experiments were gathered under the SuSE 11 operating system running the Linux
3.0.101 (x86 64) kernel. Source code was compiled by the GNU C compiler (gcc), ver-

17This system uses Intel’s Turbo Boost 2.0 dynamic frequency throttling technology. According to [Intel
Corporation 2016b], the maximum the clock frequency when executing AVX instructions is 3.2 GHz when
utilizing one or two cores, and 3.0 GHz when utilizing three or more cores.
18Accounting for the reduced AVX clock frequency, the peak performance when utilizing 24 cores is 48
GFLOPS/core in double precision and 96 GFLOPS/core in single precision.
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Fig. 5. Single-threaded performance of various conventional (i.e., assembly-coded) implementations of
double-precision (left) and single-precision (right) complex GEMM on a single core of an Intel Xeon E5-2690
v3 “Haswell” processor. The theoretical peak performance coincides with the top of each graph.

sion 5.2.0.19 The version of BLIS used in all tests was not officially released at the time
of this writing, and was adapted from version 0.2.1-85.20

Algorithms 1M C BP, 1M C PB, 1M R BP, and 1M R PB were implemented in the
BLIS framework, as described in Sections 3.5 through 3.8. We also refer to results
based on existing conventional, assembly-based micro-kernels written by hand for the
Haswell microarchitecture via GNU extended inline assembly syntax.

All experiments were performed on randomized, column-stored matrices with GEMM
scalars held constant: α = 2 and β = 1. In all performance graphs, each data point
represents the best of three trials.

Blocksizes for each of the implementations tested are provided in Table V. For ref-
erence, we also provide the blocksizes for single-precision and double-precision real
domain matrix multiplication, as well as those used by complex GEMM implementa-
tions in OpenBLAS 0.2.19.

In all graphs presented in this section the x-axes denote the problem size, the y-axes
show observed floating-point performance in units of GFLOPS, and the theoretical
peak performance coincides with the top of each graph.

4.2. Comparing to other implementations
As in the previous article, our primary goal is not to compare the performance of the
newly developed 1M implementations with that of other established BLAS solutions.
Rather, our intent is to focus comparisons within and between families of induced
methods. That said, we agree that some basic comparison is appropriate, and thus have
included Figure 5. Here, we compare conventional assembly-coded complex GEMM im-
plementations in BLIS with those provided by OpenBLAS 0.2.19 and Intel MKL 11.3.
We also include performance for BLIS’s assembly-coded real domain GEMM, since its
underlying kernel forms the basis for all induced methods presented here and in the
previous article. Figure 6 shows multithreaded performance of the same libraries on
24 cores. These graphs show that BLIS’s solutions are quite competitive, and in some

19The following optimization flags were used during compilation: -O3 -mavx2 -mfma -mfpmath=sse
-march=core-avx2.
20Despite not yet having an official version number, this version of BLIS may be uniquely identified, with
high probability, by the first 10 digits of its git “commit” (SHA1 hash) number: 1c732d3ddc.
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Fig. 6. Multithreaded performance of various conventional (i.e., assembly-coded) implementations of
double-precision (left) and single-precision (right) complex GEMM on 24 cores of an Intel Xeon E5-2690 v3
“Haswell” processor. The theoretical peak performance coincides with the top of each graph.

cases outperform OpenBLAS, while falling short of Intel’s highly optimized MKL li-
brary.

4.3. Sequential results
Figure 7 reports performance results for various implementations of double- and
single-precision complex matrix multiplication on a single core of the Haswell pro-
cessor. For these results, m = n was bound to the problem size while the k dimension
was fixed to the corresponding value of kC , as listed in Table V. As in the previous
article, we focus on this problem shape—rank-kC update—because: (1) it will yield
near-optimal performance for all of our implementations tested, (2) this type of ma-
trix multiplication frequently appears within high-performance implementations of
higher-level DLA operations such as Cholesky, LU, and QR factorizations, and (3) it is
the foundation for matrix multiplications where all three dimensions are large.21

The primary reference implementations chosen for Figure 7 consist of a high-
performance complex GEMM based on conventional assembly-coded complex kernels.
This reference implementation (the solid line) was held constant between the top-left
and top-right graphs, which report double-precision results, and the corresponding
single-precision implementation is similarly duplicated between the bottom-left and
bottom-right graphs. We also include a high-performance real GEMM and, as represen-
tatives of the 4M method, implementations of Algorithms 4M 1A and 4M HW. For these
three reference codes, we report results based on column-preferiential micro-kernels
on the left and those of row-preferiential micro-kernels on the right. (We indicate the
preference of the underlying micro-kernel of those algorithms with a “(c)” or “(r)” in the
graph legends.22) We include results for both types of micro-kernels because the left-
right difference also includes which 1M implementations are shown. That is, results

21The authors of [Goto and van de Geijn 2008] propose a taxonomy that includes other shape scenarios
besides rank-kC update and large quasi-square multiplication. Some of these other types of matrix prod-
uct may favor algorithms that are different from the one depicted in Figure 1. This topic deserves special
treatment, and thus is beyond the scope of the present article.
22Though it is not indicated in the graph legends, we chose to always compare against an assembly-coded
complex GEMM based on a row-preferentialmicro-kernel because it exhibited higher performance than its
column-preferential counterpart on the test hardware. The likely reason for this outperformance relates to
the way mR and nR affect the bandwidth needed from the L2 and L1 caches, and is briefly discussed in
Section 4.4.
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Fig. 7. Single-threaded performance of various implementations of double-precision (top) and single-
precision (bottom) complex GEMM on a single core of an Intel Xeon E5-2690 v3 “Haswell” processor. The left
and right graphs contain an identical reference curve for assenbly-coded complex GEMM as well as results
for three additional reference implementations (corresponding to the assembly-coded real GEMM, as well as
4M 1A and 4M HW). These latter three implementations differ from left to right graphs in the preference
of their underlying micro-kernel, indicated by a “(c)” or “(r)” (for column- or row-preferring). The left and
right graphs also differ in which 1M implementations they report, with the left graphs reporting 1M C BP
and 1M R PB (which employ column-preferring micro-kernels) and the right graphs reporting 1M R BP and
1M C PB (which employ row-preferring micro-kernels). The theoretical peak performance coincides with the
top of each graph.

for 1M C BP and 1M R PB (which use column-preferring micro-kernels) appear on the
left while those of 1M R BP and 1M C PB (which use row-preferring micro-kernels) ap-
pear on the right. We group the 1M algorithms in this manner so that we can visually
confirm the similarities (or differences) in performance within algorithm pairs.

As predicted in Section 3.7.2, we find that the performance signatures of the algo-
rithms within each of the aforementioned 1M algorithm pairs are virtually indistin-
guishable. That is, 1M C BP tracks closely with 1M R PB, and 1M R BP with 1M C PB.
This behavior holds for both single- and double-precision. The performance signatures
between pairs, however, differs slightly. This was expected given that the 1E and 1R
packing formats place different memory access burdens on different packed matri-
ces, Ãi and B̃p, which reside in different levels of cache. It was not previously clear,
however, which pair would be superior over the other, or if there would be a material
difference at all. It seems that, at least in the sequential case, the difference between
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Fig. 8. Multithreaded performance of various implementations of double-precision (top) and single-
precision (bottom) complex GEMM on two Intel Xeon E5-2690 v3 “Haswell” processors, each with 12 cores.
All data points reflect the use of 24 threads. The left and right graphs contain an identical reference curve
for assenbly-coded complex GEMM as well as results for three additional reference implementations (corre-
sponding to the assembly-coded real GEMM, as well as 4M 1A and 4M HW). These latter three implementa-
tions differ from left to right graphs in the preference of their underlying micro-kernel, indicated by a “(c)”
or “(r)” (for column- or row-preferring). The left and right graphs also differ in which 1M implementations
they report, with the left graphs reporting 1M C BP and 1M R PB (which employ column-preferring micro-
kernels) and the right graphs reporting 1M R BP and 1M C PB (which employ row-preferring micro-kernels).
The theoretical peak performance coincides with the top of each graph.

the 1M pairs’ performance signatures are minimal, though the difference is somewhat
more noticeable in double-precision. This difference is almost certainly due to the dif-
ferent performance characteristics of the row- and column-preferential micro-kernels.
We find evidence of this in the 4M 1A and 4M HW results as well as those of the real
GEMM implementation, which are also affected by the change in micro-kernel prefer-
ence.

In all cases, the 1M implementations outperform both 4M 1A and 4M HW, with the
margin growing in single-precision.

Somewhat surprisingly, the 1M implementations match or exceed the performance
of their real domain benchmarks (the dotted lines in each graph), and are very com-
petitive with assembly-coded complex GEMM regardless of the algorithm employed.
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4.4. Multithreaded results
Figure 8 shows double- and single-precision performance using 24 threads, with one
thread bound to each core of the processor. Performance is presented in units of gi-
gaflops per core to facilitate visual assessment of scalability. For all implementations,
we employed 2-way parallelism within the 5th loop and 12-way parallelism within the
3rd loop, for a total of 24 threads. This parallelization scheme was chosen in a manner
consistent with that of the previous article23, using a strategy set forth in [Smith et al.
2014].

Like in the single-threaded case, the performance of 1M algorithms closely track
one another within pairs, albeit with somewhat more jitter. However, here we find
a marked difference in performance between pairs. Specifically, the 1M R BP and
1M C PB implementations (those based on the row-preferring micro-kernel) outper-
form those of 1M C BP and 1M R PB (based on the column-preferring micro-kernel),
with the difference more pronounced in single-precision. We suspect this is rooted not
in the algorithms, per se, but in the differing micro-kernel implementations used by
each pair. The 1M R BP/1M C PB algorithms are implemented with a real micro-krnel
that is 6 × 8 and 6 × 16 in the single- and double-precision cases, respectively, while
1M C BP/1M R PB use 8 × 6 and 16 × 6 micro-kernels for single- and double-precision
implementations, respectively. The observed difference in performance between the
1M pairs is likely attributable to the fact that the micro-kernels’ different values for
mR and nR place different bandwidth requirements when reading F.E. from the caches
(primarily L1 and L2). Specifically, larger values of mR place a heavier burden on load-
ing elements from the L2 cache, which is usually disadvantageous since that cache
resides further from the processor. By contrast, a micro-kernel with larger nR loads
more elements (per mR×nR rank-1 update) from the L1 cache, which resides closer to
the processor, and relies less heavily on loading elements from the L2 cache.

Even in the worst case (for 1M C BP/1M R PB), the 1M implementations match or
exceed their real domain counterparts. And when the 1M R BP/1M C PB algorithm pair
is employed, performance is competitive with that of the conventional implementations
based on complex assembly-coded micro-kernels, particularly in double-precision.

The 1M algorithms based on row-preferential micro-kernels, 1M R BP/1M C PB , out-
perform 4M 1A, especially in single-precision where the margin is quite wide. The
1M C BP/1M R PB algorithms, based on a column-preferential micro-kernel, fare more
poorly relative to 4M 1A, but that pair generally still matches or exceeds the 4M imple-
mentation. We suspect that 4M 1A is more resilient to the lower-performing column-
preferential micro-kernel because that algorithm’s virtual micro-kernel leans heavily
on the L1 cache, which on this architecture is capable of being read from and written
to at relatively high bandwidth (64 bytes/cycle and 32 bytes/cycle, respectively) [Intel
Corporation 2016a].

5. OBSERVATIONS
5.1. 4m limitations circumvented
The previous article concluded by identifying a number of limitations inherent in the
4M method that, collectively, prevent the approach from becoming both a feasible and
competitive alternative to matrix multiplication via conventional assembly-based ker-

23The two sockets of the Xeon E5-2690 v3 each have an L3 cache that is shared among those sockets’ cores.
This encourages two-way parallelism in the 5th loop, which produces two panels B̃p to be packed and used
simultaneously on completely independent parts of matrix C. Furthermore, by also parallelizing the 3rd
loop, each of the 12 cores of either socket pack separate blocks Ãi into their private L2 caches. Thus, when
each core executes the 2nd loop (i.e., the macro-kernel), it multiplies its local block Ãi by the row-panel B̃p

that is shared among all cores on the socket.
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nels. We now revisit this list and briefly discuss whether, to what degree, and how
those limitations are overcome by algorithms based on the 1M method.

— Number of calls to primitive. The most versatile 4M algorithm, 4M 1A, incurs
up to a 400% increase in function call overhead over a comparable assembly-based
implementation. By comparison, 1M algorithms require at most a doubling of micro-
kernel function call overhead, and in certain common cases (e.g., when β ∈ R and C
is row- or column-stored), this overhead can be avoided completely. The 1M method
is clearly an improvement over 4M due to its reliance on a single invocation of the
matrix multiplication primitive.

— Inefficient reuse of intput date from A, B, and C. The most cache-efficient ap-
plication of 4M is the lowest level algorithm, 4M 1A, which reuses F.E. of A, B, and
C from the L1 cache. But, as shown in Table III, both 1M R and 1M C variants reuse
F.E. of two of the three matrices from registers, and with the inclusion of the panel-
block algorithm, two of the four 1M algorithms (one from each variant) reuse F.E. of
the third matrix from the L1 cache. This would seem to be a significant improvement,
though observed performance improvement over 4M 1A will depend on properties of
the hardware (i.e., the L1 cache performance)

— Non-contiguous output to C. Algorithms based on the 4M method must update
only the real and then only the imaginary parts of the output matrix, twice each.
Since C is typically stored (by rows or columns) with real and imaginary F.E. in-
terleaved, this piecemeal approach prevents the real micro-kernel from using vector
load and store instructions on C during those four updates. The 1M method avoids
this issue altogether by packing A and B to formats that allow the real micro-kernel
to update contiguous real and imaginary F.E. simultaneously, during a single invo-
cation. We suspect that this is, perhaps, the largest contributor to 1M’s performance
superiority over 4M.

— Reduction of kC . Algorithm 4M 1A requires that the real micro-kernel’s perferred
kC blocksize be halved in the complex algorithm in order to maintain proper cache
footprints of Ãi and B̃p as well the footprints of their constituent micro-panels.24 Us-
ing such sub-optimally sized micro-panels can noticeably hobble the performance of
4M 1A. Looking back at Table I, it may seem like 1M suffers a similar handicap, how-
ever, the reason for halving kC and its effect are both completely different. In the case
of 1M, the use of kzC = 1

2kC is simply a conversion of units (complex elements to real
F.E.) for the purposes of identifying the size of the complex submatrices to be packed
that will induce the optimal kC value from the perspective of the real micro-kernel,
not a reduction in the F.E. footprint of the micro-panels operated upon by the real
micro-kernel. Indeed, the ability of 1M to achieve high performance when k = 1

2kC
is a strength in the context of certain higher-level applications, such as Cholesky,
LU, and QR factorizations based on rank-k update. Those operations tend to perform
better when the algorithmic blocksize (corresponding to kC) is as narrow as possi-
ble in order to limit the amount of computation in the lower-performing unblocked
subproblem.

— Framework accommodation. The 1M algorithms are no more disruptive to the
BLIS framework than the most accommodating of 4M algorithms, 4M 1A, and much
less disruptive than the remaining algorithms. This is because, like with 4M 1A, al-
most all of the 1M implementation details are sequestered to the packing routines
and the virtual micro-kernel.

24Recall that the halving of kC for 4M 1A was motivated by the desire to keep the not just two, but four
real micro-panels in the L1 cache simultaneously. These correspond to the real and imaginary parts of the
current micro-panels of Ãi and B̃p.
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— Interference with multithreading. Because the 1M algorithms are implemented
entirely within the packing facility and virtual micro-kernel, they parallelize just as
easily as the most thread-friendly of the 4M algorithms, 4M 1A, and entirely avoid
the threading difficulties of higher-level 4M algorithms.

— Non-applicability to two-operand operations. Like 4M 1A, algorithms based on
1M can be applied to other level-3 operations, including those that involve only two
operands, such as TRMM and TRSM.25 Certain higher-level applications of 4M, how-
ever, are inherently incompatible with two-operand operations because they would
overwrite the original contents of the input/output operand even though subsequent
stages of computation depend on that original input.

This analysis suggests that the 1M method solves or avoids most of the performance-
degrading weaknesses of 4M, and in the remaining cases is no worse off than the best
4M algorithm. Thus, its observed performance superiority was predictable.

5.2. Further discussion
Before concluding, here we offer some final thoughts on the 1M method and its place
in the larger spectrum of approaches to implementing complex matrix multiplication.

5.2.1. Geometric interpretation. Matrix multiplication is sometimes thought of as a
three-dimensional operation with a contraction (accumulation) over the k dimension.
This interpretation carries into the complex domain as well. However, when each com-
plex element is viewed in terms of its real and imaginary components, we find that a
fourth pseudo-dimension of computation (of fixed size 2) emerges, one which also in-
volves a contraction. The 1M method reorders and duplicates elements of A and B—a
form of swizzling applied when the data is packed—in such a way that effectively “flat-
tens” this extra dimension of computation. This, combined with the exposed treatment
of real and imaginary F.E., causes the resulting floating-point operations to appear
indistinguishable from a real domain matrix multiplication with m and k (for column-
stored C) or k and n (for row-stored C) dimensions that are twice as long.

5.2.2. Data reuse: efficiency vs. programmability. Both the conventional approach and 1M
move data efficiently through the memory hierarchy.26 However, once in registers,
a conventional complex micro-kernel reuses those loaded values to perform twice as
many flops as 1M. The previous article observes that all 4M algorithms make different
variations of the same tradeoff: by forgoing the reuse of F.E. from registers and instead
reusing those data from some level of cache, the algorithms avoid the need to explicitly
encode complex arithmetic at the assembly level. As it turns out, 1M makes a simi-
lar tradeoff, but gives up less while gaining more: it is able to reuse F.E. from two of
the three matrix operands from registers while still avoiding the need for a complex
micro-kernel, and manages to replace that kernel operation with a single real matrix
multiplication. And we would argue that increasing programmability and productivity
by forfeiting a modest performance advantage is a good trade to make under almost
any circumstance.

5.2.3. Micro-kernel bandwidth. Because 1M algorithms do not explicitly reuse F.E. of Ãi

and B̃p from registers, they require higher memory bandwidth during the micro-kernel

25As with 4M 1A, support for TRSM requires a separate pair of micro-kernels that fuse a matrix multiplica-
tion with a triangular solve with nR right-hand sides.
26This is in contrast to, for example, Algorithm 4M HW, which the previous article showed makes rather
inefficient use of cache lines as they travel through the L3, L2, and L1 caches.
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computation than a conventional assembly-based solution.27 Specifically, increased
bandwidth is utilized when reading from the copy of the matrix that is packed into
the 1E format, which resides in either the L2 or L1 cache, depending on which algo-
rithm is being employed.28 In practice, this potential weakness of 1M is not a concern.
Yes, in principle, one could design an architecture with sufficiently low memory band-
width from L2 or L1 cache that a conventional complex matrix multiplication achieves
high performance while a 1M-based implementation struggles. However, this would
imply a corresponding performance shortfall in the underlying real domain matrix
kernel. Given the ubiquity and importance of real matrix multiplication in the scien-
tific community, hardware vendors have great incentive to design architectures that
allow sgemm and dgemm to achieve high performance. Thus, we would expect that 1M
will remain a viable alternative for the foreseeable future.

5.2.4. Storage. The supremacy of the 1M method is closely tied to the interleaved,
pairwise storage of real and imaginary values—specifically, of the output matrix C. If
users and applications decide to start storing complex matrices as two real matrices
(traditionally-stored, by rows or columns), one each for real and imaginary compo-
nents, the 2M approach (for numerically sensitive settings) as well as low-level appli-
cations of 3M (for numerically insensitive settings) become more appropriate.

6. CONCLUSIONS
We began the article by reviewing the general motivations for induced methods for
complex matrix multiplication, and the specific methods, 3M and 4M, studied in the
previous article. Then, we recast complex scalar multiplication (and accumulation) in
such a way that it revealed a template that could be used to fashion a new induced
method that casts the complex matrix multiplication in terms of a single real matrix
product. The key is the application of two new packing formats on the left- and right-
hand matrix product operands that allows us to disguise the complex matrix multipli-
cation as a real matrix multiplication with slightly modified input parameters. This
1M method is shown to have two variants, depending on whether the output matrix is
stored by rows or columns. We introduced an alternative “panel-block” algorithm that,
combined with the original block-panel algorithm, gives rise to a total of four 1M al-
gorithms, and discussed the similarities and differences in the performance properties
of each. We also considered alternative packing formats, including a 2M method that
would be applicable to more exotic storage arrangements that separate the real and
imaginary components. When implemented in the BLIS framework, competitive per-
formance was observed for 1M algorithms on a recent Intel microarchitecture. These
tests provided empirical evidence of predicted performance similarities within algo-
rithmic pairs, and also confirmed that performance can differ between pairs. Finally,
we reviewed the limitations of the 4M method that are overcome by 1M and then con-
cluded by discussing a few high-level observations.

The key takeaway from our study of induced methods is that the real and imaginary
elements of complex matrices can always be reordered to accommodate the desired

27While this bandwidth distinction actually holds for all induced methods, different algorithms will place
differing degrees of bandwidth pressure on the memory hierarchy, depending on the level(s) of cache from
which it reuses F.E. of A and B.
28The bandwidth from the 1R-formatted matrix is unaffected since it only reorders (rather than duplicates)
its F.E.. And since 1M uses half the kC that is optimal in the real domain (and therefore would perform
roughly twice as many rank-kC updates), the bandwidth required for accessing F.E. of the output matrix
may also be higher, though the precise level of increase will depend on the value of kzC that would be used by
a comparable assembly-based implementation. However, bandwidth requirements on C are already quite
low, so we would not expect this difference to measurably impact performance.
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fundamental primitives, whether those primitives are defined to be various forms of
real matrix multiplication (as is the case for the 4M, 3M, 2M, and 1M methods), or
vector instructions (as is the case for micro-kernels that implement complex arithmetic
in assembly code). Indeed, even in the real domain, the classic matrix multiplication
algorithm’s packing format is simply a reordering of data that targets the fundamental
primitive implicit in the micro-kernel—namely, an mR×nR rank-1 update. The family
of induced methods presented here and in the previous article expand upon this basic
reordering so that the mathematics of complex arithmetic can be expressed at different
levels of the algorithm and of its corresponding implementation, each yielding different
benefits, costs, and performance.
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for high-performance BLIS. ACM Trans. Math. Soft. 43, 2, 12:1–12:18.
OpenBLAS 2012. http://xianyi.github.com/OpenBLAS/.
SMITH, T. M., VAN DE GEIJN, R. A., SMELYANSKIY, M., HAMMOND, J. R., AND VAN ZEE, F. G. 2014.

Anatomy of high-performance many-threaded matrix multiplication. In Proceedings of the 28th IEEE
International Parallel & Distributed Processing Symposium (IPDPS).

VAN ZEE, F. G., SMITH, T., IGUAL, F. D., SMELYANSKIY, M., ZHANG, X., KISTLER, M., AUSTEL, V., GUN-
NELS, J., LOW, T. M., MARKER, B., KILLOUGH, L., AND VAN DE GEIJN, R. A. 2016. The BLIS frame-
work: Experiments in portability. ACM Trans. Math. Soft. 42, 2, 12:1–12:19.

VAN ZEE, F. G. AND SMITH, T. M. 2017. Implementing high-performance complex matrix multiplication
via the 3m and 4m methods. ACM Transactions on Mathematical Software. Under review.

VAN ZEE, F. G. AND VAN DE GEIJN, R. A. 2015. BLIS: A framework for rapidly instantiating BLAS func-
tionality. ACM Trans. Math. Soft. 41, 3, 14:1–14:33.

WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. 2000. Automated empirical optimization of software
and the ATLAS project. Parallel Computing 27, 2001.

Received March 2017; revised December 2017; accepted March 2018

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2017.


