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Abstract

We propose two high-level application programming interfaces (APIs) to use a graphics processing unit (GPU)
as a co-processor for dense linear algebra operations. Combined with an extension of the FLAME API and an
implementation on top of NVIDIACUBLAS, the result is an efficient and user-friendly tool to design,implement, and
execute dense linear algebra operations on the current generation of NVIDIA graphics processors, of wide-appeal to
scientists and engineers. As an application of the developed APIs, we implement and evaluate the performance of
three different variants of the Cholesky factorization. Our prototype implementation of these APIs on top of NVIDIA
CUBLAS offers a measure of the efficacy of this approach (in terms of ease-of-use), and an experimental evaluation
on a G80 processor reports on its performance.

Keywords: M-script languages, graphics processors, linear algebra,BLAS, high performance.

1 Introduction

The improvements in performance, functionality, and programmability of the current generation of graphics processors
(GPUs) have attracted interest in exploring the use of this class of hardware for general–purpose computation and,
particularly, for linear algebra operations [10, 13, 2, 3].In this line, the development of theCUDA [16] Application
Programming Interface (API) is a positive step towards presenting NVIDIA graphics hardware as a general–purpose
co–processor. Nevertheless, we believe this class of interfaces still falls a step too short as a vast majority of scientists
and engineers employ user–friendly environments likeMATLAB , OCTAVE, or LABVIEW to perform complex analysis,
modeling, and simulations.

In response to this situation, in this paper we present two high-level APIs to execute the BLAS (Basic Linear
Algebra Subprograms) functionality [14, 8, 7] on graphics processors from user-friendly environments. Both APIs are
based on the popular M-script language that is used inMATLAB /OCTAVE (M-code) andLABVIEW (MATHSCRIPT).
While the first API leaves the user in control of transferringthe data to the GPU memory, the second API transparently
takes care of this process at the cost of a certain overhead.

The Formal Linear Algebra Methods Environment (FLAME) encompasses a methodology for deriving provably
correct algorithms for dense linear algebra operations as well as an approach to represent (and code) the resulting
algorithms [12, 4]. A key observation is that in reasoning about algorithms intricate indexing is typically avoided and
it is with the introduction of complex indexing that programming errors are often introduced and confidence in code
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is diminished. Thus, a carefully designed API should avoid explicit indexing whenever possible. FLAME@lab and
FLAME/C are examples of such APIs for the M-script and C programming languages [5]. As a second contribution of
this paper, we naturally extend FLAME to cover graphics hardware. Using this extension, the design and development
of high-performance dense linear algebra codes for this class of hardware results in a significant reduction in effort
compared with more traditional approaches to such library development [1, 6].

The rest of the paper is structured as follows. In Sections 2 and 3 we describe the proposed high-level APIs. In
Section 4 we illustrate how these APIs allow easy migration of high-performance linear algebra operations coded using
the FLAME@lab API to GPUs. In Section 5 we give some hints on the implementation of the APIs on top of NVIDIA
CUBLAS interface. In Section 6 we employ the factorization of a symmetric positive definite matrix to evaluate the
performance of the APIs in combination with FLAME. Finally,in Section 7 we give some concluding remarks.

2 An Advanced Interface for Linear Algebra Operations

In this section we present the interface to FLAG@lab, a Formal Linear Algebra Methods Environment on GPUs for
MATLAB and LABVIEW -like environments. The interface allows the user to initialize and terminate the execution
environment, transfer data between main memory and the graphics device memory, and execute the functionality of
BLAS on the graphics hardware.

The following attributes describe a matrix as it is stored inthe memory of a computer:

1. the datatype of the entries in the matrix,

2. the row and column dimensions of the matrix,

3. the address where the data is stored, and

4. the mapping that describes how the two-dimensional arrayis mapped to one-dimensional memory.

We note that the memory of a computer includes, among others,main memory and GPU memory space. Hereafter
objectdenotes a descriptor of a matrix that is physically stored inthe latter space.

2.1 Initializing and finalizing the FLAG@lab API

Before using the environment one must initialize it with a call to

FLAG_Init( )

Purpose: Initialize FLAG@lab.

If no more FLAG@lab calls are to be made, the environment is exited by calling

FLAG_Finalize( )

Purpose: Finalize FLAG@lab.

2.2 Linear algebra objects

The following call creates an object (descriptoror handle) for a matrix and allocates space to store the entries of the
matrix in the GPU memory:

A = FLAG_Obj_create( datatype, m, n )

Purpose: Create an object that describes anm× n matrix A, with entries of typedatatype , and create the associated storage array
in the GPU memory space.
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Heredatatype is a string that can take on the values’FLA INT’ , ’FLA FLOAT’ , and’FLA COMPLEX’, for the
obvious integer, (single-precision) real and (single-precision) complex datatypes that are commonly encountered. (No
support is provided yet for double-precision numbers as current hardware in general does not operate with this type of
data.) The leading dimension of the array that is used to store the matrix is determined inside of this call; FLAG@lab
treats vectors as special cases of matrices: ann × 1 matrix or a1 × n matrix.

If an object is created withFLAG Obj create , a call toFLAG Obj free is required to ensure that all space
associated with the object in the GPU memory is properly released:

FLAG_Obj_free( A )

Purpose: Free all space allocated to store data associated withA in the GPU memory.

2.3 Inquiry routines

A number of inquiry routines can be used to access information about an object. The datatype and row and column
dimensions of the matrix can be extracted by calling

datatype = FLAG_Obj_datatype( A )
m = FLAG_Obj_length ( A )
n = FLAG_Obj_width ( A )

Purpose: Extract datatype, row, or column dimension of matrixA, respectively.

2.4 Matrix contents

The contents of an object can be initialized to a certain scalar value with the call:

FLAG_Obj_set( A, value )

Purpose: Initialize all entries of matrixA in the GPU memory space to equalvalue .

Filling the contents of an object (transferring data from main memory to GPU memory space) can be done using

FLAG_Axpy_matrix_to_object( alpha, B, A, i, j )

Purpose: Fill the entries of the matrixA in the GPU memory space with the result of the productalpha ·B.

A similar approach of accessing the entries of a matrix has been successfully exploited in PLAPACK and PMI [9, 15].
Given a matrixB with m rows andn columns and a scalaralpha , both in main memory, the previous call is

equivalent to

A( i:i+m-1, j:j+n-1 ) = alpha * B + A( i:i+m-1, j:j+n-1 );

whereA is an object in GPU memory space.
The call with the opposite purpose (transferring data from GPU memory space to main memory) is

B = FLAG_object_to_matrix( m, n, A, i, j )

Purpose: Retrieve the entries of the matrixA in the GPU memory space.

Upon execution of this call, matrixB in main memory is set as

B = A( i:i+m-1, j:j+n-1 );
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2.5 A most useful utility routine

Likely one of the more useful tools in the FLAG@lab package, which is particularly helpful for testing, is

FLAG_Obj_show( A );

Purpose: Print the contents ofA.

In particular, the result of

FLAG_Obj_show( A );

produces the usualMATLAB -like output:

A = [
< entries_of_A >

];

2.6 Views

In FLAG@lab we deal with blocks of a matrix that resides in theGPU memory space by introducing the notion of a
view, which is areferenceinto an existing matrix or vector. Given an objectA describing a matrix in the GPU memory
space, the following call creates a view of the object:

Aview = FLAG_Obj_view( A, m, n, i, j )

Purpose: Create the viewAview consisting of them×n submatrix (block) ofA starting at coordinate (i ,j ).

Thus, after the call

Aview = FLAG_Obj_view( A, m, n, i, j );

Aview andA( i:i+m-1, j:j+n-1 ) refer to the same positions in the GPU memory space. Subsequent modi-
fications of the contents of the view affect the original contents of the matrix.

2.7 Computational kernels

There exists a FLAG@lab routine for each subprogram defined in the BLAS interface, organized following the usual
Level 1, 2, and 3 structure. Below we give a short specification of these routines.

2.7.1 Level 1 BLAS

In the following list of calls,x andy are vectors in the GPU memory space whilealpha is a scalar. The functionality
of the routine is obvious from the relation between the name of the Level 1 FLAG@lab routine and the BLAS.

FLAG_Swap ( x, y )
FLAG_Scal ( alpha, x )
FLAG_Copy ( x, y )
FLAG_Axpy ( alpha, x, y )

alpha = FLAG_dot ( x, y )
alpha = FLAG_nrm2 ( x )
alpha = FLAG_asum ( x )
iota = FLAG_iamax( x )

With this interface the dimensions of the objects the routine operates on are not specified. If only a part of a vector
is involved in an operation, this can be accomplished using aview of the object. Also, there is no need to use different
calls depending on the datatypes of the entries as this information is embedded in the object.
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2.7.2 Level 2 BLAS

In the following Level 2 calls,x andy are vectors andA is a matrix, all in the GPU memory space;alpha andbeta
are scalars.

FLAG_Gemv( trans, alpha, A, x, beta, y )
FLAG_Symv( uplo, alpha, A, x, beta, y )
FLAG_Trmv( uplo, trans, diag, A, x )
FLAG_Trsv( uplo, trans, diag, A, x )

FLAG_Ger ( alpha, x, y, A )
FLAG_Syr ( uplo, alpha, x, A )
FLAG_Syr2( uplo, alpha, x, y, A )

There are three mode parameters (options), in the Level 2 calls which can take on values from the following lists
of strings.

1. trans : ’FLA NOTRANSPOSE’, ’FLA TRANSPOSE’ (also ’FLA CONJTRANSPOSE’for complex matri-
ces);

2. uplo : ’FLA UPPERTRIANGULAR’, ’FLA LOWERTRIANGULAR’;

3. diag : ’FLA NONUNITDIAG’ , ’FLA UNIG DIAG’.

These parameters will reappear next, in the Level 3 calls, where they can take on the same values.

2.7.3 Level 3 BLAS

The list of Level 3 calls involves matrices in the GPU memory space asA, B, C; and scalars likealpha andbeta .

FLAG_Gemm( transA, transB, alpha, A, B, beta, C )
FLAG_Symm( transA, transB, alpha, A, B, beta, C )
FLAG_Syrk( uplo, trans, alpha, A, beta, C )
FLAG_Trmm( side, uplo, transA, diag, alpha, A, B )
FLAG_Trsm( side, uplo, transA, diag, alpha, A, B )

A new mode parameter appears here,side , which can take on the strings’FLA LEFT’ , ’FLA RIGHT’ .

2.8 Putting it all together: a basic code to multiply two matrices

Figure 1 gives a fragment of M-script code that uses the routines in the FLAG@lab interface to compute the product
C := AT · B, whereA, B andC are matrices with real entries of dimensionk × m, k × n andm × n, respectively.

3 A Simple Interface for Linear Algebra Operations

For users who do not want to deal with the management and transference of objects between main memory and GPU
memory space, we propose a simplified interface, built on topof FLAG@lab, which hides this process.

This interface only provides access to the BLAS kernels, receiving as input parameters matrices that are stored
in the main memory. Each time one of the routines in this interface is invoked, the entries of the input matrices are
transfered to the GPU memory space, operation proceeds there, and the results are returned to the main memory in the
form of output parameters. We note that this interface, while being easier to use, introduces a considerable overhead
when the purpose is to use the GPU to perform multiple operations on a matrix, as the data will need to be transfered
once for each operation that is performed on it.

The routine names of this simplified interface only differ from those of the previous API in the prefix, which
corresponds now to “FLAGS”; thus, e.g., the routines that compute the matrix multiplicationC := β · C + α · A · B
using both interfaces are:
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1 A = read_matrix( k, m ); % ’Read’ input matrices A,B
2 B = read_matrix( k, n ); % user-supplied read_matrix
3
4 FLAG_Init(); % Initialize environment
5
6 Aobj = FLAG_Obj_create( ’FLA_FLOAT’, k, m ); % Create space f or
7 Bobj = FLAG_Obj_create( ’FLA_FLOAT’, k, n ); % objects A,B,C
8 Cobj = FLAG_Obj_create( ’FLA_FLOAT’, m, n ); % in the GPU
9

10 FLAG_Axpy_matrix_to_object( 1.0, A, Aobj, 1, 1 ); % Set cont ents of
11 FLAG_Axpy_matrix_to_object( 1.0, B, Bobj, 1, 1 ); % objects A,B,C
12 FLAG_Obj_set( Cobj, 0.0 ); % in the GPU
13
14 FLAG_Gemm( ’FLA_TRANSPOSE’,...
15 ’FLA_NO_TRANSPOSE’,...
16 1.0, Aobj, Bobj, 0.0, Cobj ); % Compute C:=AˆT B
17
18 FLAG_Obj_show( Cobj ); % Print out results
19
20 FLAG_Obj_free( Aobj ); % Free objects A,B,C
21 FLAG_Obj_free( Bobj ); % in the GPU
22 FLAG_Obj_free( Cobj );
23
24 FLAG_Finalize(); % Free environment

Figure 1: FLAG@lab code to compute the productC := AT B.

FLAG_Gemm( transA, transB, FLAGS_Gemm( transA, transB,
alpha, A, B, alpha, A, B,
beta, C ) beta, C )

While the appearance is similar we note that in the call toFLAG Gemm, A, B andCare objects for matrices in the GPU
memory space, while in the call toFLAGSGemmthese refer to matrices in the main memory.

The code that calculates the productC := AT · B, with A, B andC real matrices of dimensionk × m, k × n and
m × n, respectively, is given in Figure 2.

1 A = read_matrix( k, m ); % ’Read’ input matrices A,B
2 B = read_matrix( k, n ); % user-supplied read_matrix
3 C = zeros( m, n );
4
5 FLAGS_Init(); % Initialize environment
6
7 FLAGS_Gemm( ’FLA_TRANSPOSE’,...
8 ’FLA_NO_TRANSPOSE’,...
9 1.0, A, B, 0.0, C ); % Compute C:=AˆT B

10
11 disp( C ); % Print out results
12
13 FLAGS_Finalize(); % Free environment

Figure 2: FLAGS@lab code to compute the productC := AT B.

4 Porting FLAME to Graphics Processors

FLAME avoids complicate indexing by embedding the notion ofaview, which is a reference into an existing matrix or
vector, into apartitioningoperation. Figure 3 illustrates the use of the FLAME@lab APIto code a blocked algorithm
that computes the Cholesky factorization of a (symmetric positive definite) matrixA [11]. In this operation, the matrix
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is decomposed into the productA = LLT , where the lower triangular matrixL is known as the Cholesky factor of
A. Upon completion of the code, the entries of the Cholesky factor overwrite the corresponding entries of the lower
triangular part ofA.

In this section we follow this successful approach extending FLAME to graphics processors. The partitioning and
repartitionings in the code are just indexing operations that do not modify the contents of the matrix. The specific
behaviour of these operations is explained in detail in [5],but will also become evident from the presentation of the
FLAG@lab interface that is given next.

1 function [ A_out ] = FLA_Cholesky_blk( A, nb_alg )
2
3 [ ATL, ATR, ...
4 ABL, ABR ] = FLA_Part_2x2( A, 0, 0, ’FLA_TL’ );
5
6 while ( size( ATL, 1 ) < size( A, 1 ) )
7
8 b = min( size( ABR, 1 ), nb_alg );
9

10 [ A00, A01, A02, ...
11 A10, A11, A12, ...
12 A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ATL, ATR, ...
13 ABL, ABR, ...
14 b, b, ’FLA_BR’ );
15
16 %-------------------------------------------------- ----------%
17 A11 = FLA_Cholesky_unb( A11 );
18 A21 = A21 * inv( tril( A11 ) )’;
19 A22 = A22 - tril( A21 * A21’ );
20 %-------------------------------------------------- ----------%
21
22 [ ATL, ATR, ...
23 ABL, ABR ] = FLA_Cont_with_3x3_to_2x2( A00, A01, A02, ...
24 A10, A11, A12, ...
25 A20, A21, A22, ...
26 ’FLA_TL’ );
27
28 end
29
30 A_out = [ ATL, ATR
31 ABL, ABR ];
32
33 return

Figure 3: FLAME@lab blocked code to compute the Cholesky factorization.

Given a descriptorA of a matrix in the GPU memory space, the following call creates descriptors (or views) of the
four quadrants:

[ ATL, ATR,...
ABL, ABR ] = FLAG_Part_2x2( A, mb, nb, quadrant )

Purpose: Partition matrixA into four quadrants where the quadrant indicated byquadrant is mb× nb.

Here quadrant is a string that can take on the values’FLA TL’ , ’FLA TR’ , ’FLA BL’ , and ’FLA BR’ to
indicate thatmbandnb specify the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant,
respectively.

Thus, invocation of the operation

[ATL, ATR,...
ABL, ABR ] = FLAG_Part_2x2( A, mb, nb, ’FLA_TL’ );

in FLAG@lab creates four views, one for each quadrant. Subsequent modifications of the contents of a view affect the
original contents of the matrix in the GPU memory space.
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A 2 × 2 partitioning can be further divided into a3 × 3 partitioning using the call

[ A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22 ] = FLAG_Repart_2x2_to_3x3( ATL, ATR,...

ABL, ABR,...
mb, nb,...
quadrant )

Purpose: Repartition a2 × 2 partitioning of matrixA into a3 × 3 partitioning where themb × nb submatrixA11 is split from the
quadrant indicated byquadrant .

Herequadrant can again take on the values’FLA TL’ , ’FLA TR’ , ’FLA BL’ , and’FLA BR’ to indicate that
themb× nb submatrixA11 is split from submatrixATL, ATR, ABL, or ABR, respectively.

Once the contents of the so-identified submatrices have beenupdated, the blocks of the3 × 3 partitioning can be
merged back into a2 × 2 partitioning by a call to

[ ATL, ATR,...
ABL, ABR ] = FLAG_Cont_with_3x3_to_2x2( A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
quadrant )

Purpose: Update the2 × 2 partitioning of matrixA by moving the boundaries so thatA11 is joined to the quadrant indicated by
quadrant .

This time the value ofquadrant (’FLA TL’ , ’FLA TR’ , ’FLA BL’ , or ’FLA BR’ ) indicates to which quadrant
the submatrixA11 is to be joined.

Using these routines, we can easily implement a code to compute the Cholesky factorization using the FLAG@lab,
as illustrated in Figure 4.

We note two subtle differences between the FLAME@lab and FLAG@lab codes for the Cholesky factorization
(Figures 3 and 4). First, the FLAG@lab code operates on a matrix which already resides on the GPU memory space;
this implies that the environment has been initialized, space for this matrix has been allocated in the GPU memory,
and the data has been already transferred to this space (see,e.g., Figure 1). For the FLAME@lab code, the only
requirement before calling the routine is the initialization of the matrix entries with the appropriate values. Second,
updates on submatrices likeATL in the FLAME@lab code do not modify the contents of the original matrixA. This
is a fundamental difference with FLAG@lab whereATL is a view intoA and, therefore, any modification of the two
objects affects the other (sub)matrix.

Similar routines exist that provide2× 1 and1× 2 partitionings, repartition these into3× 1 and1× 3 partitionings
and merge them back. The following two subsections providesa summarized list of these routines. For more details,
see [5].

4.1 Horizontal and vertical partitionings

In addition to the routines listed above, FLAG@lab completes its FLAME compatibility with a set of horizontal
partitioning routines:

[ AT,...
AB ] = FLA_Part_2x1 ( A,...

mb, side )
[ A0,...

A1,...
A2 ] = FLA_Repart_2x1_to_3x1 ( AT,...

AB,...
mb, side )

[ AT,...
AB ] = FLA_Cont_with_3x1_to_2x1( A0,...

A1,...
A2,...

side )
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1 function [ A ] = FLAG_Cholesky_blk( A, nb_alg )
2
3 [ ATL, ATR, ...
4 ABL, ABR ] = FLAG_Part_2x2( A, 0, 0, ’FLA_TL’ );
5
6 while ( FLAG_Obj_length( ATL, 1 ) < FLAG_Obj_length( A, 1 ) )
7
8 b = min( FLAG_Obj_length( ABR, 1 ), nb_alg );
9

10 [ A00, A01, A02, ...
11 A10, A11, A12, ...
12 A20, A21, A22 ] = FLAG_Repart_2x2_to_3x3( ATL, ATR, ...
13 ABL, ABR, ...
14 b, b, ’FLA_BR’ );
15
16 %-------------------------------------------------- ----------%
17 FLAG_Cholesky_unb( A11 );
18 % A21 = A21 * inv( tril( A11 ) )’;
19 FLAG_Trsm( ’FLA_RIGHT’, ’FLA_LOWER_TRIANGULAR’,
20 ’FLA_TRANSPOSE’, ’FLA_NONUNIT_DIAG’,
21 1.0, A11, A21 );
22 % A22 = A22 - tril( A21 * A21’ );
23 FLAG_Syrk( ’FLA_LOWER_TRIANGULAR’, ’FLA_NO_TRANSPOSE’ ,
24 -1.0, A21, 1.0, A22 );
25 %-------------------------------------------------- ----------%
26
27 [ ATL, ATR, ...
28 ABL, ABR ] = FLAG_Cont_with_3x3_to_2x2( A00, A01, A02, ...
29 A10, A11, A12, ...
30 A20, A21, A22, ...
31 ’FLA_TL’ );
32
33 end
34
35 return

Figure 4: FLAG@lab blocked code to compute the Cholesky factorization.

Here,side can take on the values’FLA TOP’ , ’FLA BOTTOM’.
Similar routines are implemented for vertical partitioning schemes:

[ AL, AR ] = FLA_Part_1x2 ( A,...
nb, side )

[ A0, A1, A2 ] = FLA_Repart_1x2_to_1x3 ( AL, AR,...
nb, side )

[ AL, AR ] = FLA_Cont_with_1x3_to_1x2( A0, A1, A2,...
side )

Here,side can take on the values’FLA LEFT’ , ’FLA RIGHT’ .

5 Implementation of FLAG@lab on top of CUBLAS

We have developed a prototype implementation of the previous interface on top of NVIDIACUBLAS. This API
provides wrappers to help writing Fortran programs that usethe library. To illustrate the Fortran API, Figure 5 shows a
fragment of Fortran code that uses this interface to computeC := AT ·B, with A, B andC real matrices of dimension
k × m, k × n andm × n, respectively.

While there are strong similarities between our advanced FLAG@lab API and the CUBLAS API (compare Fig-
ures 1 and 5), we believe our interface to be much more intuitive when developing codes for complex linear algebra
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1 #define SIZEOF_REAL 4
2
3 * ’Read’ input matrices A,B; user-supplied read_matrix
4 CALL READ_MATRIX( K, M, A, LDA )
5 CALL READ_MATRIX( K, N, B, LDB )
6
7 * Initialize environent
8 CALL CUBLAS_INIT
9

10 * Create space for objects A,B,C in the GPU
11 STAT = CUBLAS_ALLOC( K* M, SIZEOF_REAL, AOBJ )
12 STAT = CUBLAS_ALLOC( K* N, SIZEOF_REAL, BOBJ )
13 STAT = CUBLAS_ALLOC( M* N, SIZEOF_REAL, COBJ )
14
15 * Set contents of objects A,B,C in the GPU
16 CALL CUBLAS_SET_MATRIX( K, M, SIZEOF_REAL, A, LDA, AOBJ, K )
17 CALL CUBLAS_SET_MATRIX( K, N, SIZEOF_REAL, B, LDB, BOBJ, K )
18
19 * Compute C:=AˆT B
20 CALL CUBLAS_GEMM( ’Transpose’, ’No Transpose’,
21 M, N, K, 1.0, AOBJ, K, BOBJ, K,
22 0.0, COBJ, M )
23
24 * Print out results, user-supplied print_matrix
25 CALL CUBLAS_GET_MATRIX( M, N, SIZEOF_REAL, COBJ, M, C, LDC )
26 CALL PRINT_MATRIX( M, N, C, LDC )
27
28 * Free objects A,B,C in the GPU
29 CALL CUBLAS_FREE( AOBJ )
30 CALL CUBLAS_FREE( BOBJ )
31 CALL CUBLAS_FREE( COBJ )
32
33 * Free environment
34 CALL CUBLAS_SUTDOWN

Figure 5:CUBLAS code to compute the productC := AT B.

operations like, e.g., the Cholesky factorization (compare Figures 4 and 6).

6 Exploring the Performance of the APIs

We next evaluate the performance of several alternatives tocompute the Cholesky factorization of a symmetric definite
positive matrix using a CPU and a graphics processor. Our purpose is to combine the ease of use of FLAME and the
high performance characteristic of the modern graphics processors. Three different implementations of the Cholesky
factorization have been implemented ([11]). Unblocked andblocked algorithms for the different variants are given in
Figure 7 in a notation that has been developed as part of the FLAME project [12, 4].

Each variant has been implemented in three ways:

• Using NVIDIA CUBLAS library from a Fortran program, as in Figure 6.

• Using the advanced interface FLAG@lab from an OCTAVE M-script program, as in Figure 4.

• Using the simplified interface FLAGS@lab from an OCTAVE M-script program.

In addition, we propose a hybrid approach, in which CPU and GPU work together to compute the result, and also
evaluate the performance of the Cholesky routine implementation inMATLAB /OCTAVE.

The implementations have been tested on an Intel Core2 Duo processor (codename Crusoe E6320) on the CPU
side, and a Nvidia Geforce 8800 Ultra (G80 processor) on the GPU side. We have developed Fortran 77 implementa-
tions of the unblocked and blocked algorithms linked with CUDA 1.1 (with the same version of CUBLAS library) for
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1 #define SIZEOF_REAL 4
2 #define IDX2F(I,J,LDA) ((((J)-1) * (LDA))+((I)-1)) * SIZEOF_REAL
3 #define AOBJ(I,J) DEVPTRA+IDX2F(I,J,LDA)
4
5 *
6 * Compute the Cholesky factorization A = L * L’.
7 *
8 DO 20 J = 1, N, NB
9 *

10 * Update and factorize the current diagonal block and test
11 * for non-positive-definiteness.
12 *
13 JB = MIN( NB, N-J+1 )
14 CALL SPOTF2( ’Lower’, JB,
15 $ AOBJ(J,J), LDA, INFO )
16 IF( INFO.NE.0 )
17 $ GO TO 30
18 IF( J+JB.LE.N ) THEN
19 *
20 * Compute the current block column.
21 *
22 CALL CUBLAS_STRSM( ’Right’, ’Lower’,
23 $ ’Transpose’, ’Non-unit’,
24 $ N-J-JB+1, JB,
25 $ ONE, AOBJ(J,J), LDA,
26 $ AOBJ(J+JB, J), LDA )
27 CALL CUBLAS_SSYRK( ’Lower’, ’No transpose’,
28 $ N-J-JB+1, JB,
29 $ -ONE, AOBJ(J+JB,J), LDA,
30 $ ONE, AOBJ(J+JB,J+JB), LDA )
31 END IF
32 20 CONTINUE
33

Figure 6: CUBLAS blocked code to compute the Cholesky factorization.

the GPU. In the CPU, we employed LAPACK version 3.0 and GotoBLAS version 1.19. The compilers include GNU
Fortran Compiler version 3.3.5 and NVCC (NVIDIA compiler) release 1.0, version 0.2.1221. All codes have been
tested usingOCTAVE version 2.9.19.

The results on the GPU presented hereafter include the time required to transfer the data from the main memory to
the GPU memory and retrieve the results back. Results are reported in terms of GFLOPS (109 floating-point arithmetic
operations per second). A single core of the Intel processorwas employed in the experiments.

Figure 8 (left-side) presents a comparison between the three implemented variants of the Cholesky factoriza-
tion using the advanced FLAG@lab interface, including alsothe performance obtained for theMATLAB /OCTAVE

implementation of the factorization routine (functionchol ). All three FLAG@lab implementations deliver higher
performance than the OCTAVE CPU based implementation. It is also important to note how the performance of the
GPU implementations is higher when matrix sizes are large; on the other side, the CPU implementation keeps the
performance constant for all matrix sizes, attaining higher performance than the GPU only for small matrices.

When using the simple implementation (FLAGS), transfer times between main and video memory play a deter-
minant role on the final performance results. Figure 8 (right-side) show the performance of the three implemented
variants for the Cholesky factorization, comparing them with the FLAME@lab implementations of the same routines.
The results show that GPU implementations obtain better performance than CPU/FLAME based implementations, and
even obtain similar results than theMATLAB /OCTAVE implementations shown in Figure 8 (left-side).

GPU implementations perform better when they process big amounts of data. For small matrices, Figure 8 (left-
side) shows a higher performance when the factorization process is performed on the CPU. Therefore, we introduce
a hybrid algorithm that computes the small factorizations of the diagonal blocks on the CPU, avoiding the overhead
introduced by extra transfers and operations that do not match easily the GPU architecture (basically, the square root
calculation). Figure 9 shows the performance of this hybridapproach for the first variant of the Cholesky implemen-
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Algorithm: A := CHOL UNB(A)

Partition A→

„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do
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«
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α11 aT
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A

where α11 is 1× 1

Variant 1:
α11 :=

√
α11

a21 := a21/α11

A22 := A22 − a21aT

21

Variant 2:
aT

10
:= aT

10
TRIL (A00)−T

α11 := α11 − aT

10
a10

α11 :=
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α11

Variant 3:
α11 := α11 − aT

10
a10

α11 :=
√

α11

a21 := a21 − A20a10

a21 := a21/α11

Continue with

„
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«

←

0

@

A00 a01 A02
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α11 aT
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A20 a21 A22
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endwhile

Algorithm: A := CHOL BLK(A)

Partition A→

„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block sizenb

Repartition

„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is nb × nb

Variant 1:
A11 := CHOL UNB(A11)

A21 := A21TRIL (A11)−T

A22 := A22 −A21AT

21

Variant 2:
A10 := A10TRIL (A00)−T

A11 := A11 −A10AT

10

A11 := CHOL UNB(A11)
Variant 3:
A11 := A11 −A10AT

10

A11 := CHOL UNB(A11)
A21 := A21 −A20AT

10

A21 := A21TRIL (A11)−T

Continue with

„
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ABL ABR

«

←

0
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A10 A11 A12

A20 A21 A22

1

A

endwhile

Figure 7: Multiple variants of the unblocked (left) and blocked (right) algorithms for the Cholesky factorization
implemented on top of GLAME@lab.

tation.
As the results attained for the hybrid implementation are better than those obtained for the “pure” GPU implemen-

tations, we use them to compare the FLAG@lab performance with the CUBLAS Fortran implementations. The low
performance obtained by FLAG@lab implementations compared with that of the CUBLAS Fortran implementations,
see Figure 9, can be explained in two ways:

1. The interpreted nature of the M-script is presented as oneof the main bottlenecks when trying to achieve high
performance on these type of implementations. Although there are no memory copies when the FLAG@lab
repartition routines are invoked, the interpretation of calls is a key factor that limits the final performance of the
implementations. As shown in Figure 10 (left-side), the repartition overhead on the overall execution time is
considerable for these type of blocked implementation.

2. In addition to transfer times, there exists another source of inefficiency in FLAG@lab BLAS implementations.
Figure 10 (right-side) shows the difference in performancebetween CUBLASTRSMimplementation and the
same routine executed through FLAG@lab. Two facts limit thefinal performance:

• The internal implementation of the MEX-files interface of the tested version of OCTAVE introduces a
considerable overhead when invoking and returning from a MEX routine.

• The internal double-precision data representation of OCTAVE must be converted into single-precision be-
fore operating with it on GPU, and transformed back into double-precision before the final transfer to main
memory. This implies an important penalty on the overall performance of this type of routines.
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FLAME@lab/FLAG@lab. On the right side, difference in performance between a basic BLAS execution based on
Fortran CUBLAS and FLAG@lab implementation based on MEX-files.

A more detailed analysis of the performance of Fortran implementations for the Cholesky factorization on top of
CUBLAS is given in [3].

7 Concluding Remarks

This paper makes the following contributions and observations:

• We have proposed two API to assist in the development of M-script codes for complex dense linear algebra
operations, targeting performance and ease-of-use. The advanced API in FLAG@lab requires more intervention
from the user but pays off in terms of performance when the APIis used to implement a code that performs
multiple operations on a matrix (or parts of it, as in blockedalgorithms).

• We have also described an extension of FLAME that enables a straight-forward translation of codes written using
FLAME@lab to graphics processors. Thus, our approach inherits the advantages of FLAME, which include a
cleaner notation, a formal derivation procedure of provably correct algorithms, and the existence of a library of
codes for more complex dense linear algebra operations thanthose provided by BLAS.

• We have developed a prototype implementation of the proposed APIs on top of NVIDIACUBLAS to show the
validity of this approach.

• Our experimental evaluation on the NVIDIA G80 graphics processor shows that the advanced interface is an
interesting approach to achieve high performance onMATLAB /OCTAVE code for linear algebra operations while
simultaneously taking benefit from the advantages of FLAME.

• Although the reported performance is not comparable with that of CUBLAS native implementations, FLAG@lab
is presented as a competitive approach that combines a user-friendly environment with a high performance com-
puting platform.

Our proposal is a first step towards the introduction of graphics processors into FLAME in order to achieve
high performance with low cost hardware and an easy environment. Future work will include the adaptation of the
FLAME/C API to graphics processors, trying to achieve all the performance that a modern GPU can offer, without the
penalties of the interpreted languages.
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Additional Information

For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/ .
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