FLAG@lab: An M-script API for Linear Algebra Operations on
Graphics Processors

Sergio Barrachina Maribel Castillo Francisco D. Igual Rafdayo
Enrique S. Quintana-Orti

Depto. de Ingenieria y Ciencia de Computadores
Universidad Jaume |
12.071—-Castellbn, Spain
{barrachi,castillo,figual,mayo,quintaj@icc.uji.es

FLAME Working Note #30

February 14, 2008

Abstract

We propose two high-level application programming integf (APIS) to use a graphics processing unit (GPU)
as a co-processor for dense linear algebra operations. iGechlwith an extension of the FLAME API and an
implementation on top of NVIDIACUBLAS, the result is an efficient and user-friendly tool to desigiplement, and
execute dense linear algebra operations on the currentagemeof NVIDIA graphics processors, of wide-appeal to
scientists and engineers. As an application of the devdl@gds, we implement and evaluate the performance of
three different variants of the Cholesky factorizationr @rototype implementation of these APIs on top of NVIDIA
CcUBLAS offers a measure of the efficacy of this approach (in termsasé®f-use), and an experimental evaluation
on a G80 processor reports on its performance.

Keywords: M-script languages, graphics processors, linear alg&traS, high performance.

1 Introduction

The improvements in performance, functionality, and pangmability of the current generation of graphics processor
(GPUSs) have attracted interest in exploring the use of tlasisscof hardware for general-purpose computation and,
particularly, for linear algebra operations [10, 13, 2, Bi.this line, the development of theuDA [16] Application
Programming Interface (API) is a positive step towards gméag NVIDIA graphics hardware as a general-purpose
co—processor. Nevertheless, we believe this class ofates still falls a step too short as a vast majority of scsent
and engineers employ user—friendly environmentsMk&LAB , OCTAVE, or LABVIEW to perform complex analysis,
modeling, and simulations.

In response to this situation, in this paper we present twb-tevel APIs to execute the BLASBAsic Linear
Algebra Subprogramdunctionality [14, 8, 7] on graphics processors from usemndly environments. Both APIs are
based on the popular M-script language that is usedAnLAB /OCTAVE (M-code) andLABVIEW (MATHSCRIPT).
While the first APl leaves the user in control of transferiting data to the GPU memory, the second API transparently
takes care of this process at the cost of a certain overhead.

The Formal Linear Algebra Methods Environment (FLAME) emgasses a methodology for deriving provably
correct algorithms for dense linear algebra operationselsag an approach to represent (and code) the resulting
algorithms [12, 4]. A key observation is that in reasoningwtlalgorithms intricate indexing is typically avoided and
it is with the introduction of complex indexing that progranimg errors are often introduced and confidence in code

is diminished. Thus, a carefully designed API should avaiglieit indexing whenever possible. FLAME@lab and
FLAME/C are examples of such APIs for the M-script and C pamgming languages [5]. As a second contribution of
this paper, we naturally extend FLAME to cover graphics hane. Using this extension, the design and development
of high-performance dense linear algebra codes for thissalé hardware results in a significant reduction in effort
compared with more traditional approaches to such librametbpment [1, 6].

The rest of the paper is structured as follows. In Sectionsd?3awe describe the proposed high-level APIs. In
Section 4 we illustrate how these APIs allow easy migratidrigh-performance linear algebra operations coded using
the FLAME@lab APl to GPUs. In Section 5 we give some hints @niiiplementation of the APIs on top of NVIDIA
CUBLAS interface. In Section 6 we employ the factorization of a syatria positive definite matrix to evaluate the
performance of the APIs in combination with FLAME. Finalily,Section 7 we give some concluding remarks.

2 An Advanced Interface for Linear Algebra Operations

In this section we present the interface to FLAG@lab, a Fotrimear Algebra Methods Environment on GPUs for
MATLAB andLABVIEW -like environments. The interface allows the user to ifit&@and terminate the execution
environment, transfer data between main memory and théhgpgdevice memory, and execute the functionality of
BLAS on the graphics hardware.

The following attributes describe a matrix as it is storethima memory of a computer:

1. the datatype of the entries in the matrix,
2. the row and column dimensions of the matrix,
3. the address where the data is stored, and
4. the mapping that describes how the two-dimensional asrayapped to one-dimensional memory.
We note that the memory of a computer includes, among othea® memory and GPU memory space. Hereafter

objectdenotes a descriptor of a matrix that is physically storetiénlatter space.

2.1 Initializing and finalizing the FLAG@lab API

Before using the environment one must initialize it with ta

FLAG_Init()

Purpose: Initialize FLAG@lab.

If no more FLAG@lab calls are to be made, the environmentiteéby calling

FLAG_Finalize()

Purpose: Finalize FLAG@Iab.

2.2 Linear algebra objects

The following call creates an objeaédscriptoror handlg for a matrix and allocates space to store the entries of the
matrix in the GPU memory:

A = FLAG_Obj_create(datatype, m, n)

Purpose: Create an object that describesmar n matrix A, with entries of typedatatype , and create the associated storage array
in the GPU memory space.

Heredatatype is a string that can take on the valuEEA _INT’ ,’FLA _FLOAT’, and’FLA _COMPLEX; for the
obvious integer, (single-precision) real and (singlecfzien) complex datatypes that are commonly encounteial. (
support is provided yet for double-precision numbers aseaiihardware in general does not operate with this type of
data.) The leading dimension of the array that is used te $ha matrix is determined inside of this call; FLAG@lab
treats vectors as special cases of matrices: anl matrix or al x n matrix.

If an object is created witkLAG. Obj _create , a call toFLAGObj _free is required to ensure that all space
associated with the object in the GPU memory is properlyassd:

FLAG_Obj_free(A)

Purpose: Free all space allocated to store data associatedAnittthe GPU memory.

2.3 Inquiry routines

A number of inquiry routines can be used to access informathmut an object. The datatype and row and column
dimensions of the matrix can be extracted by calling

datatype = FLAG_Obj_datatype(A)
m = FLAG_Obj_length (A)
n = FLAG_Obj_width (A)

Purpose: Extract datatype, row, or column dimension of matixespectively.

2.4 Matrix contents

The contents of an object can be initialized to a certairesaallue with the call:

FLAG_Obj_set(A, value)

Purpose: Initialize all entries of matriA in the GPU memory space to equallue .

Filling the contents of an object (transferring data fromimmaemory to GPU memory space) can be done using

FLAG_Axpy_matrix_to_object(alpha, B, A, i, j)

Purpose: Fill the entries of the matriA in the GPU memory space with the result of the prodipha -B.

A similar approach of accessing the entries of a matrix has kaccessfully exploited in PLAPACK and PMI [9, 15].
Given a matrixB with mrows andn columns and a scalaipha , both in main memory, the previous call is
equivalent to

A(i:i+m-1, jj+n-1) = alpha * B + A(iii+m-1, jij+n-1);

whereA is an object in GPU memory space.
The call with the opposite purpose (transferring data frdAtUGnemory space to main memory) is

B = FLAG_object_to_matrix(m, n, A, i, j)

Purpose: Retrieve the entries of the matrin the GPU memory space.

Upon execution of this call, matri® in main memory is set as

B = A(iii+m-1, jj+n-1);

2.5 A most useful utility routine
Likely one of the more useful tools in the FLAG @lab packagkich is particularly helpful for testing, is

FLAG_Obj_show(A);

Purpose: Print the contents oA.

In particular, the result of
FLAG_Obj_show(A);
produces the usualATLAB -like output:

A=
< entries_of A >

I

2.6 Views

In FLAG@lab we deal with blocks of a matrix that resides in @RU memory space by introducing the notion of a
view, which is areferencanto an existing matrix or vector. Given an objéctiescribing a matrix in the GPU memaory
space, the following call creates a view of the object:

Aview = FLAG_Obj view(A, m, n, i, j)

Purpose: Create the viewAview consisting of thenxn submatrix (block) ofA starting at coordinate (j).

Thus, after the call
Aview = FLAG_Obj view(A, m, n, i, j);
Aview andA(iii+m-1, j;j+n-1) refer to the same positions in the GPU memory space. Subseoeli-

fications of the contents of the view affect the original @mts of the matrix.

2.7 Computational kernels

There exists a FLAG@lab routine for each subprogram defiméle BLAS interface, organized following the usual
Level 1, 2, and 3 structure. Below we give a short specificadithese routines.

2.7.1 Level1BLAS

In the following list of callsx andy are vectors in the GPU memory space whilgha is a scalar. The functionality
of the routine is obvious from the relation between the nafrikeoLevel 1 FLAG@lab routine and the BLAS.

FLAG_Swap (X, Y)

FLAG_Scal (alpha, x)

FLAG_Copy (X, Y)

FLAG_Axpy (alpha, x, y)
alpha = FLAG dot (X, Y)
alpha = FLAG_nrm2 (X)
alpha = FLAG_asum (X)
iota = FLAG_iamax(X)

With this interface the dimensions of the objects the rautiperates on are not specified. If only a part of a vector
is involved in an operation, this can be accomplished usiwigwa of the object. Also, there is no need to use different
calls depending on the datatypes of the entries as thisnration is embedded in the object.

2.7.2 Level2BLAS

In the following Level 2 callsx andy are vectors and is a matrix, all in the GPU memory spa@pha andbeta
are scalars.

FLAG_Gemv(trans, alpha, A, x, beta, y)
FLAG_Symv(uplo, alpha, A, x, beta, y)
FLAG_Trmv(uplo, trans, diag, A, x)
FLAG_Trsv(uplo, trans, diag, A, X))

FLAG_Ger (alpha, x, y, A)
FLAG_Syr (uplo, alpha, x, A)
FLAG_Syr2(uplo, alpha, x, y, A)

There are three mode parameters (options), in the Level2which can take on values from the following lists
of strings.

1. trans :'FLA NQTRANSPOSE"FLA -TRANSPOSHKalso'FLA _CONJTRANSPOSEfor complex matri-
ces);

2. uplo :'FLA _UPPERTRIANGULAR’,"FLA _LOWER RIANGULAR
3. diag : 'FLA _-NONUNITDIAG’ ,'FLA _UNIG.DIAG'.

These parameters will reappear next, in the Level 3 callgraithey can take on the same values.

2.7.3 Level 3BLAS

The list of Level 3 calls involves matrices in the GPU mema@gce as\, B, C, and scalars likalpha andbeta .

FLAG_Gemm(transA, transB, alpha, A, B, beta, C)
FLAG_Symm(transA, transB, alpha, A, B, beta, C)
FLAG_Syrk(uplo, trans, alpha, A, beta, C)
FLAG_Trmm(side, uplo, transA, diag, alpha, A, B)
FLAG_Trsm(side, uplo, transA, diag, alpha, A, B)

A new mode parameter appears haide , which can take on the stringSLA _LEFT’ ,'FLA _RIGHT" .

2.8 Putting it all together: a basic code to multiply two matrices

Figure 1 gives a fragment of M-script code that uses themestin the FLAG@Iab interface to compute the product
C := AT . B, whereA, B andC are matrices with real entries of dimensibrx m, k x n andm x n, respectively.

3 A Simple Interface for Linear Algebra Operations

For users who do not want to deal with the management andéranse of objects between main memory and GPU
memory space, we propose a simplified interface, built orofdd. AG@lab, which hides this process.

This interface only provides access to the BLAS kernelsgivéing as input parameters matrices that are stored
in the main memory. Each time one of the routines in this fater is invoked, the entries of the input matrices are
transfered to the GPU memory space, operation proceeds trat the results are returned to the main memory in the
form of output parameters. We note that this interface, evhéding easier to use, introduces a considerable overhead
when the purpose is to use the GPU to perform multiple operatn a matrix, as the data will need to be transfered
once for each operation that is performed on it.

The routine names of this simplified interface only diffeorfr those of the previous API in the prefix, which
corresponds now toFLAGS”; thus, e.g., the routines that compute the matrix multigtionC' := - C +«a- A - B
using both interfaces are:

1 A = read_matrix(k, m); % ’'Read’ input matrices A,B

2 B = read_matrix(k, n); % user-supplied read_matrix

3

4 FLAG_Init(); % Initialize environment

5

6 Aobj = FLAG_Obj_create('FLA_FLOAT’, k, m); % Create space f or
7 Bobj = FLAG_Obj create('FLA_FLOAT’, k, n); % objects A,B,C

8 Cobj = FLAG_Obj create('FLA_FLOAT, m, n); % in the GPU

9

10 FLAG_Axpy_matrix_to_object(1.0, A, Aobj, 1, 1); % Set cont ents of
11 FLAG_Axpy_matrix_to_object(1.0, B, Bobj, 1, 1); % objects A,B,C
12 FLAG_Obj_set(Cobj, 0.0); % in the GPU

13

14 FLAG_Gemm('FLA_TRANSPOSE',...

15 'FLA_NO_TRANSPOSE',...

16 1.0, Aobj, Bobj, 0.0, Cobj); % Compute C:=A"T B

17

18 FLAG_Obj show(Cobj); % Print out results
19

20 FLAG_Obj_free(Aobj); % Free objects AB,C
21 FLAG_Obj_free(Bobj); % in the GPU

22 FLAG_Obj_free(Cobj);

23

24 FLAG_Finalize(); % Free environment

Figure 1: FLAG@lab code to compute the proddct= A” B.

FLAG_Gemm(transA, transB, FLAGS _Gemm(transA, transB,
alpha, A, B, alpha, A, B,
beta, C) beta, C)

While the appearance is similar we note that in the calilt& G GemmA, B andC are objects for matrices in the GPU
memory space, while in the call ®LAGSGemnthese refer to matrices in the main memory.

The code that calculates the prodatt= A” - B, with A, B andC real matrices of dimensiok x m, k x n and
m x n, respectively, is given in Figure 2.

1 A = read_matrix(k, m); % 'Read’ input matrices A,B
2 B = read_matrix(k, n); % user-supplied read_matrix
3 C = zeros(m, n);

4

5 FLAGS_Init(); % Initialize environment
6

7 FLAGS_Gemm('FLA_TRANSPOSE',...

8 'FLA_NO_TRANSPOSE',...

9 1.0, A, B, 00, C); % Compute C:=AT B

11 disp(C); % Print out results

13 FLAGS_Finalize(); % Free environment

Figure 2: FLAGS@lab code to compute the prodiict= A” B.

4 Porting FLAME to Graphics Processors

FLAME avoids complicate indexing by embedding the notioawiew, which is a reference into an existing matrix or
vector, into gpartitioning operation. Figure 3 illustrates the use of the FLAME@Iab A&Rtode a blocked algorithm
that computes the Cholesky factorization of a (symmetraitpe definite) matrix4 [11]. In this operation, the matrix

is decomposed into the produdt= LLT, where the lower triangular matrik is known as the Cholesky factor of
A. Upon completion of the code, the entries of the Choleskiofaaverwrite the corresponding entries of the lower
triangular part ofA.

In this section we follow this successful approach extep@&bAME to graphics processors. The partitioning and
repartitionings in the code are just indexing operatiorad tto not modify the contents of the matrix. The specific
behaviour of these operations is explained in detail inljb}, will also become evident from the presentation of the
FLAG@Ilab interface that is given next.

1 function [A_out] = FLA_Cholesky blk(A, nb_alg)

2

3 [ATL, ATR, ...

4 ABL, ABR | = FLA_Part_ 2x2(A, 0, 0, 'FLA_TL');

5

6 while (size(ATL, 1) < size(A, 1))

7

8 b = min(size(ABR, 1), nb_alg);

9

10 [AOO, AO01, AO2, ...

11 A10, Al1, A12, ..

12 A20, A21, A22 | = FLA_Repart _2x2_to_3x3(ATL, ATR, ...

13 ABL, ABR, ...
14 b, b, 'FLA_BR’);
15

16 Q-mmmmm s e %
17 All = FLA Cholesky_unb(A1l);

18 A21 = A21 = inv(tril(A11)),

19 A22 = A22 - tril(A21 * A21");

20 Qfgmmmmmmm e e %
22 [ATL, ATR, ...

23 ABL, ABR] = FLA Cont_with_3x3 to_2x2(A00, A01, A02, ...

24 Al10, Al11, Al12, ..
25 A20, A21, A22, ...
26 FLA TL);

28 end

30 A out = [ATL, ATR

31 ABL, ABR J;

33 return

Figure 3: FLAME@Ilab blocked code to compute the Choleskiofération.

Given a descriptoA of a matrix in the GPU memory space, the following call createscriptors (or views) of the
four quadrants:

[ATL, ATR,...
ABL, ABR] = FLAG_Part_2x2(A, mb, nb, quadrant)

Purpose: Partition matrixA into four quadrants where the quadrant indicatedjbgdrant ismb x nb.

Here quadrant is a string that can take on the valué4 A _TL' , 'FLA _-TR’, 'FLA BL’, and’FLA BR’ to
indicate thambandnb specify the dimensions of theop-Left, Top-Rght, Bottom-Left, or Bottom-Rght quadrant,

respectively.
Thus, invocation of the operation
[ATL, ATR,...
ABL, ABR] = FLAG_Part_2x2(A, mb, nb, 'FLA_TL);

in FLAG@lab creates four views, one for each quadrant. Syesgt modifications of the contents of a view affect the
original contents of the matrix in the GPU memory space.

A 2 x 2 partitioning can be further divided into3ax 3 partitioning using the call

[A0, AO1, A02,...

Al10, All, A12,...

A20, A21, A22] = FLAG_Repart_2x2_to_3x3(ATL, ATR,...
ABL, ABR,...
mb, nb,...
quadrant)

Purpose: Repartition & x 2 partitioning of matrixA into a3 x 3 partitioning where thab x nb submatrixAll is split from the
quadrant indicated bguadrant .
Herequadrant can again take on the valu#dd. A TL' ,’FLA _TR’,’FLA BL’, and’FLA BR’ to indicate that
themb x nb submatrixAl1l is split from submatribATL, ATR ABL, or ABR respectively.

Once the contents of the so-identified submatrices have lygeaied, the blocks of thex 3 partitioning can be
merged back into & x 2 partitioning by a call to

[ATL, ATR,...
ABL, ABR] = FLAG_Cont_with_3x3_to_2x2(A00, A01, A02,...
A10, All, A12,...
A20, A21, A22,...
quadrant)

Purpose: Update the2 x 2 partitioning of matrixA by moving the boundaries so that.1 is joined to the quadrant indicated by
quadrant .

This time the value ofjuadrant ('FLA _TL' ,’FLA _TR’,’FLA _BL’, or’FLA _BR’) indicates to which quadrant
the submatriXA11 is to be joined.

Using these routines, we can easily implement a code to ctantipe: Cholesky factorization using the FLAG@lab,
as illustrated in Figure 4.

We note two subtle differences between the FLAME@Ilab andG@Rab codes for the Cholesky factorization
(Figures 3 and 4). First, the FLAG@Ilab code operates on axwaltich already resides on the GPU memory space;
this implies that the environment has been initialized cepfar this matrix has been allocated in the GPU memory,
and the data has been already transferred to this spacee(geefigure 1). For the FLAME@Ilab code, the only
requirement before calling the routine is the initialipatiof the matrix entries with the appropriate values. Second
updates on submatrices likeTL in the FLAME@lab code do not modify the contents of the ordjimatrix A. This
is a fundamental difference with FLAG@Ilab whe&&L is a view intoA and, therefore, any modification of the two
objects affects the other (sub)matrix.

Similar routines exist that providex 1 and1 x 2 partitionings, repartition these infox 1 and1 x 3 partitionings
and merge them back. The following two subsections provédasmmarized list of these routines. For more details,
see [5].

4.1 Horizontal and vertical partitionings

In addition to the routines listed above, FLAG@lab compéate FLAME compatibility with a set of horizontal
partitioning routines:

[AT,...
AB] = FLA_Part_2x1 (A..
mb, side)
[AO....
Al,...
A2] = FLA_Repart_2x1 to 3x1 (AT,...
AB,...
mb, side)
[AT,...
AB] = FLA_Cont_with_3x1_to_2x1(AO,...
Al,.
A2,.
side)

function [A] = FLAG_Cholesky _blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLAG_Part_ 2x2(A, 0, 0, 'FLA_TL’);

while (FLAG_Obj_length(ATL, 1) < FLAG_Obj_length(A, 1))

CoO~NOOUITRAWNEF

b = min(FLAG_Obj_length(ABR, 1), nb_alg);

10 [A0, AO1, AO2, ...

11 A10, All, A12, ...

12 A20, A21, A22 | = FLAG_Repart_2x2_to_3x3(ATL, ATR, ...

13 ABL, ABR, ...
14 b, b, 'FLA_BR’);

16 B %
17 FLAG_Cholesky unb(A1l);

18 % A21 = A21 * inv(tril(A11));

19 FLAG_Trsm('FLA_RIGHT’, 'FLA_LOWER_TRIANGULAR’,

20 'FLA_TRANSPOSE’, 'FLA_NONUNIT_DIAG’,

21 1.0, All, A21);

22 % A22 = A22 - tril(A21 * A21');

23 FLAG_Syrk('FLA_LOWER_TRIANGULAR’, 'FLA_NO_TRANSPOSE’

24 -1.0, A21, 1.0, A22),

25 Qmmmmm s e %

27 [ATL, ATR, ...

28 ABL, ABR] = FLAG_Cont with_3x3_to_2x2(A00, A01, A02, ...

29 A10, All, Al12, ...
30 A20, A21, A22, ...
31 FLA_TL);

33 end

35 return

Figure 4: FLAG@Ilab blocked code to compute the Choleskyoféaition.

Here,side can take on the valuéBLA _TOP’,’FLA .BOTTOM:!
Similar routines are implemented for vertical partitiomschemes:

[AL, AR] = FLA_Part_1x2 (A,..
nb, side)
[AO, Al, A2] = FLA_Repart_1x2 to_1x3 (AL, AR,...
nb, side)
[AL, AR] = FLA Cont_with_1x3_to_1x2(A0, Al, A2,...
side)

Here,side can take on the valueBLA _LEFT' ,’FLA _RIGHT'.

5 Implementation of FLAG@Iab on top of CUBLAS

We have developed a prototype implementation of the previoterface on top of NVIDIACUBLAS. This API
provides wrappers to help writing Fortran programs thathedibrary. To illustrate the Fortran API, Figure 5 shows a
fragment of Fortran code that uses this interface to compute A” - B, with A, B andC real matrices of dimension
k x m, k x nandm x n, respectively.

While there are strong similarities between our advancefiG®lab APl and the CUBLAS API (compare Fig-
ures 1 and 5), we believe our interface to be much more iméutinen developing codes for complex linear algebra

#define SIZEOF_REAL 4

* 'Read’ input matrices A,B; user-supplied read_matrix
CALL READ_MATRIX(K, M, A, LDA)
CALL READ_MATRIX(K, N, B, LDB)

* Initialize environent
CALL CUBLAS_INIT

CO~NOOUIRAWNEF

10 = Create space for objects A,B,C in the GPU

11 STAT = CUBLAS_ALLOC(KM, SIZEOF_REAL, AOBJ)

12 STAT = CUBLAS_ALLOC(KN, SIZEOF_REAL, BOBJ)

13 STAT = CUBLAS_ALLOC(MN, SIZEOF_REAL, COBJ)

14

15 = Set contents of objects A,B,C in the GPU

16 CALL CUBLAS_SET_MATRIX(K, M, SIZEOF_REAL, A, LDA, AOBJ, K)
17 CALL CUBLAS_SET_MATRIX(K, N, SIZEOF_REAL, B, LDB, BOBJ, K)
18

19 = Compute C:=A"T B

20 CALL CUBLAS GEMM('Transpose’, 'No Transpose’,

21 M, N, K, 1.0, AOBJ, K, BOBJ, K,

22 0.0, COBJ, M)

23

24« Print out results, user-supplied print_matrix

25 CALL CUBLAS_GET_MATRIX(M, N, SIZEOF_REAL, COBJ, M, C, LDC)
26 CALL PRINT_MATRIX(M, N, C, LDC)

27

28 « Free objects A,B,C in the GPU

29 CALL CUBLAS_FREE(AOBJ)

30 CALL CUBLAS_FREE(BOBJ)

31 CALL CUBLAS_FREE(COBJ)

32

33 = Free environment

34 CALL CUBLAS_SUTDOWN

Figure 5:CUBLAS code to compute the product:= A” B.

operations like, e.g., the Cholesky factorization (coregégures 4 and 6).

6 Exploring the Performance of the APIs

We next evaluate the performance of several alternativesrtgpute the Cholesky factorization of a symmetric definite
positive matrix using a CPU and a graphics processor. Oyrgsaris to combine the ease of use of FLAME and the
high performance characteristic of the modern graphicsgssors. Three different implementations of the Cholesky
factorization have been implemented ([11]). Unblocked blodked algorithms for the different variants are given in
Figure 7 in a notation that has been developed as part of tA&/H project [12, 4].

Each variant has been implemented in three ways:

e Using NVIDIA CUBLAS library from a Fortran program, as in Ficg 6.
e Using the advanced interface FLAG@lab from ao1@veE M-script program, as in Figure 4.

e Using the simplified interface FLAGS @lab from arc@®vE M-script program.

In addition, we propose a hybrid approach, in which CPU antd @®rk together to compute the result, and also
evaluate the performance of the Cholesky routine impleatemt inMATLAB /OCTAVE.

The implementations have been tested on an Intel Core2 Dangepsor (codename Crusoe E6320) on the CPU
side, and a Nvidia Geforce 8800 Ultra (G80 processor) on e Gide. We have developed Fortran 77 implementa-
tions of the unblocked and blocked algorithms linked with[@AU1.1 (with the same version of CUBLAS library) for

10

#define SIZEOF_REAL 4
#define IDX2F(1,J,LDA) ((((9)-1) « (LDA)+(()-1)) * SIZEOF_REAL
#define AOBJ(I,J) DEVPTRA+IDX2F(I,J,LDA)

*

* Compute the Cholesky factorization A = L * L

*

DO 20 J =1, N, NB

CO~NOUIAWNEF

10 = Update and factorize the current diagonal block and test
11« for non-positive-definiteness.

12

13 JB = MIN(NB, N-J+1)

14 CALL SPOTF2('Lower’, JB,

15 $ AOBJ(J,J), LDA, INFO)

16 IF(INFO.NE.O)

17 $ GO TO 30

18 IF(J+JB.LE.N) THEN

19 =

20 = Compute the current block column.

21«

22 CALL CUBLAS_STRSM('Right’, 'Lower’,

23 $ "Transpose’, 'Non-unit’,

24 $ N-J-JB+1, JB,

25 $ ONE, AOBJ(J,J), LDA,
26 $ AOBJ(J+JB, J), LDA)
27 CALL CUBLAS_SSYRK(’'Lower’, 'No transpose’,

28 $ N-J-JB+1, JB,

29 $ -ONE, AOBJ(J+JB,J), LDA,
30 $ ONE, AOBJ(J+JB,J+JB), LDA)
31 END IF

32 20 CONTINUE

33

Figure 6: CUBLAS blocked code to compute the Cholesky fazadion.

the GPU. In the CPU, we employed LAPACK version 3.0 and GotABlversion 1.19. The compilers include GNU
Fortran Compiler version 3.3.5 and NVCC (NVIDIA compileBlease 1.0, version 0.2.1221. All codes have been
tested usingpCTAVE version 2.9.19.

The results on the GPU presented hereafter include the &mered to transfer the data from the main memory to
the GPU memory and retrieve the results back. Results aoeteghin terms of GFLOPSL()* floating-point arithmetic
operations per second). A single core of the Intel procesasremployed in the experiments.

Figure 8 (left-side) presents a comparison between the timplemented variants of the Cholesky factoriza-
tion using the advanced FLAG@lab interface, including dts® performance obtained for theaTLAB /OCTAVE
implementation of the factorization routine (functiohol). All three FLAG@Ilab implementations deliver higher
performance than the €&ave CPU based implementation. It is also important to note havpberformance of the
GPU implementations is higher when matrix sizes are largethe other side, the CPU implementation keeps the
performance constant for all matrix sizes, attaining higitexformance than the GPU only for small matrices.

When using the simple implementation (FLAGS), transferesnbetween main and video memory play a deter-
minant role on the final performance results. Figure 8 (rgjtie) show the performance of the three implemented
variants for the Cholesky factorization, comparing therthvihe FLAME@Iab implementations of the same routines.
The results show that GPU implementations obtain bettédopaance than CPU/FLAME based implementations, and
even obtain similar results than tReTLAB /OCTAVE implementations shown in Figure 8 (left-side).

GPU implementations perform better when they process biguats of data. For small matrices, Figure 8 (left-
side) shows a higher performance when the factorizatiooga®is performed on the CPU. Therefore, we introduce
a hybrid algorithm that computes the small factorizatiohthe diagonal blocks on the CPU, avoiding the overhead
introduced by extra transfers and operations that do natessily the GPU architecture (basically, the square root
calculation). Figure 9 shows the performance of this hybpgroach for the first variant of the Cholesky implemen-

11

Algorithm: A := CHOL_UNB(A) Algorithm: A := CHOL_BLK(A)
Partition A — (VYT WP) Partition A — < VYT WP)
where Arpr is0 x 0 where Aty is0 x 0
while m(Apr) < m(A) do while m(Apr) < m(A) do
Determine block sizen,,
Repartition Repartition
A | Arn A(T)o ao1 A(T)2 Arn | Arg :200 Ao1 | Ao2
(Apr | ABR) T\ Sl p o | i Asr | Asr) 1 | A | Arz
Azo | a21 | A2z Azo | A21 | A2z
where a11is1 x 1 where A1 isny X ng
Variant 1: Variant 1:
11 = /a1 A11 = CHOL_UNB(AU)
az1 := ag1/a11 Aoy i= A1 TRIL (A11) T
A22 = A22 - a2lagl A22 = A22 — A21A’2Tl
Variant 2: Variant 2:
aly = aTRIL (Ago)~ T A1p := A1pTRIL (Ago) ™ T
Q11 = 11 — a’i[‘oal() Aq1 = A — AlOA?O
a1 := /a1y A11 := CHOL.UNB(A11)
Variant 3: Variant 3:
Q11 = o111 — arlrgal() A1 = A1 — Al()ArlI‘O
a1 = 4/an Aq1 := CHOL_.UNB(A11)
a21 := a21 — A20a10 Agy 1= Agy — Ag AT,
a1 := az1/a11 Asy = A1 TRIL (A11) " T
Continue with Continue with
Arp | Arr A%O 2o A%2 Arr | Arg Ao | Ao1 | Aoz
(T | Aon) — Gig | 11 | @i (- -) — | Ao | Aun | A2
Azo | az1 Aao BL BR Azg | A21 | A22
endwhile endwhile

Figure 7: Multiple variants of the unblocked (left) and tled (right) algorithms for the Cholesky factorization
implemented on top of GLAME@lab.

tation.

As the results attained for the hybrid implementation atéeb¢han those obtained for the “pure” GPU implemen-
tations, we use them to compare the FLAG@lab performandetivt CUBLAS Fortran implementations. The low
performance obtained by FLAG@Ilab implementations contpaith that of the CUBLAS Fortran implementations,
see Figure 9, can be explained in two ways:

1. The interpreted nature of the M-script is presented abtiee main bottlenecks when trying to achieve high
performance on these type of implementations. Althoughetlage no memory copies when the FLAG@lab
repartition routines are invoked, the interpretation dlisda a key factor that limits the final performance of the
implementations. As shown in Figure 10 (left-side), thearéifion overhead on the overall execution time is
considerable for these type of blocked implementation.

2. In addition to transfer times, there exists another soofénefficiency in FLAG@lab BLAS implementations.
Figure 10 (right-side) shows the difference in performabpetveen CUBLASTRSMimplementation and the
same routine executed through FLAG@Iab. Two facts limitfithal performance:

e The internal implementation of the MEX-files interface oéttested version of OTAVE introduces a
considerable overhead when invoking and returning from aXiviitine.

e The internal double-precision data representation of & E must be converted into single-precision be-
fore operating with it on GPU, and transformed back into deydrecision before the final transfer to main
memory. This implies an important penalty on the overalf@anance of this type of routines.

12

FLAG@lab/Octave Cholesky implementations FLAME@Iab/FLAGS@Iab Cholesky implementations
T

12 - - T T T T T 07 - - T ; T
FLAG_Cholesky_Varl —— FLA_Cholesky_Varl —+—
FLAG Cholesky_Var2 FLA_Cholesky_Var2
FLAG_Cholesky Var3 —#— FLA_Cholesky Var3 —s—
Octave chol() —=— 06 | FLAGS Cholesky Varl —s— |
10 - FLAGS_Cholesky_Var2
FLAGS_Cholesky_Var3
05 | R
sl
" » 04l 4
4 4
S s S
T e e
© O o3} e E
4 /}Z
L /
02t 4
/
%%W
2F /
0.1 e - 4
—
b . |
Py = . ! o !
500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix dimension (m=n) Matrix dimension (m=n)

Figure 8: Comparison between the Cholesky factorizatioplémentations in ©TAVE and three different imple-
mentations of the same routine accelerated through FLAG@ét-side). Comparison between the performance
of the simplified FLAG@Ilab interface (FLAGS) and the same lengentations using only the CPU through the
FLAME@Iab API (right-side).

CUBLAS/FLAG@Iab Cholesky implementations

45
i i i " CUBLAS Cholesky varl ——
CUBLAS_CholesKy_Varl (Hybrid)
w0l FLAG_Cholesky Varl —+— |
FLAG_Cholesky_Varl (Hybrid) —&—
35 B
Es x B
25 B

GFLOPS

wl /\
15 | / _— B

10 ¢

0
500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix dimension (m=n)

Figure 9: Comparison between the performance attained@BLAS implementation of Variant 1 of the Cholesky
factorization, and the same implementation based on FLAGB@Both are executed exclusively on GPU and simul-
taneously on CPU and GPU (hybrid approach).

13

Overhead of repartitioning time (FLAG_Cholesky_Varl) Octave Implementation Overhead - Trsm (Right Side - Lower Triangular)
T T T T T T 80 T T T T
Total time ——— FLAG_Trsm —+—
Repartitioning time CUBLAS_Trsm
35 4 70 -

3t E 60 -

25 4 50 | ’ ! J
L 4 a0 L) 1

15 | B 30 F /\

20 / /

1 _onnl L

.
) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix dimension (m=n) Matrix dimension (m=n)

Time (s)
~
GFLOPS

Figure 10: On the left side, overhead introduced by the t#jmaning procedures characteristic of
FLAME@Ilab/FLAG@lab. On the right side, difference in perfance between a basic BLAS execution based on
Fortran CUBLAS and FLAG@Iab implementation based on MEXsfil

A more detailed analysis of the performance of Fortran imyglietations for the Cholesky factorization on top of
CUBLAS is given in [3].

7 Concluding Remarks

This paper makes the following contributions and obseowati

We have proposed two API to assist in the development of Npiscodes for complex dense linear algebra
operations, targeting performance and ease-of-use. Mamaed APl in FLAG@Iab requires more intervention
from the user but pays off in terms of performance when the i8Rised to implement a code that performs
multiple operations on a matrix (or parts of it, as in blockégbrithms).

We have also described an extension of FLAME that enableaiglst-forward translation of codes written using
FLAME@Iab to graphics processors. Thus, our approach itshttie advantages of FLAME, which include a
cleaner notation, a formal derivation procedure of proyabkrect algorithms, and the existence of a library of
codes for more complex dense linear algebra operationgliose provided by BLAS.

We have developed a prototype implementation of the prapésds on top of NVIDIACUBLAS to show the
validity of this approach.

Our experimental evaluation on the NVIDIA G80 graphics mssor shows that the advanced interface is an
interesting approach to achieve high performanceanLAB /OCTAVE code for linear algebra operations while
simultaneously taking benefit from the advantages of FLAME.

Although the reported performance is not comparable wahdhCUBLAS native implementations, FLAG@Ilab
is presented as a competitive approach that combines driesetly environment with a high performance com-
puting platform.

Our proposal is a first step towards the introduction of gieplprocessors into FLAME in order to achieve
high performance with low cost hardware and an easy envieminFuture work will include the adaptation of the
FLAME/C API to graphics processors, trying to achieve adl prerformance that a modern GPU can offer, without the
penalties of the interpreted languages.

14

Additional Information

For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/

Acknowledgments

This research was patrtially supported by the CICYT projddiZD05-09037-C02-02 and FEDER, and project No.
P1-1B2007-32 of théundacbn Caixa-Castefin/Bancaixaand UJI. Francisco D. Igual is supported as well by a
research fellowship from thdniversidad Jaume | of Castéth (PREDOC/2006/02).

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dermimiack J. Dongarra, J. Du Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. SorenséMAPACK Users’ guide (third ed.)Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E.G&iintana-Orti. Evaluation and tuning of the level 3
CUBLAS for graphics processors. To appear in proceedin38EC08, 2008.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E.Quintana-Orti. Solving dense linear systems on
graphics processors. Technical report, Universitat Jdy2@&08.

[4] Paolo Bientinesi, John A. Gunnels, Margaret E. Myersiifire S. Quintana-Orti, and Robert A. van de Geijn.
The science of deriving dense linear algebra algorithh@M Trans. Math. Soft31(1):1-26, March 2005.

[5] Paolo Bientinesi, Enrique S. Quintana-Orti, and RoBewrvan de Geijn. Representing linear algebra algorithms
in code: The FLAME application programming interfac&<M Trans. Math. Soft31(1):27-59, March 2005.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Deraiyl. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whal&calL APACK Users’ GuideSIAM, 1997.

[7] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, aimdDaff. A set of level 3 basic linear algebra
subprogramsACM Trans. Math. Soft16(1):1-17, March 1990.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, antdRd J. Hanson. An extended set of FORTRAN
basic linear algebra subprogramCM Trans. Math. Soft14(1):1-17, March 1988.

[9] H. Carter Edwards and Robert A. van de Geijn. On applicginterfaces to parallel dense matrix libraries: Just
let me solve my problemConcurrency and Computation: Practice and Experiermgbmitted. Available from
http://www.cs.utexas.edu/users/flame/Publications/

[10] Nico Galoppo, Naga K. Govindaraju, Michael Henson, Birtesh Manocha. LU-GPU: Efficient algorithms for
solving dense linear systems on graphics hardwar&An05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputingage 3, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Gene H. Golub and Charles F. Van Lo&matrix ComputationsThe Johns Hopkins University Press, Baltimore,
2nd edition, 1989.

[12] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, andeRAA. van de Geijn. FLAME: Formal Linear
Algebra Methods EnvironmenACM Trans. Math. Soft27(4):422-455, December 2001.

[13] Jin Hyuk Junk and Dianne P. O’Leary. Cholesky decontpmsiand linear programming on a GPU. Master’s
thesis, University of Maryland, College Park.

15

[14] C.L.Lawson, R. J. Hanson, D. R. Kincaid, and F. T. KroBhsic linear algebra subprograms for Fortran usage.
ACM Trans. Math. Soft5(3):308-323, Sept. 1979.

[15] Greg Morrow and Robert van de Geijn. A parallel lineayedira server for matlab-like environments. Aro-
ceedings of SC98&o appear.

[16] NVIDIA. Nvidia CUDA Compute Unified Device Architecture. Programgnuide 2007.

16

