
FLAME 2005 Prospetus:Towards the Final Generation of Dense Linear Algebra LibrariesPaolo Bientinesi� Kazushige Gotoy Tze Meng Low�Enrique S. Quintana-Ort��z Robert van de Geijn� Field Van Zee �FLAME Working Note #16April 20, 2005AbstratWhat if one set out to develop the �nal dense linear algebra library? Suh a library would notneessarily have to be bakward ompatible to existing libraries (although this would be preferred), butit would have to be forward ompatible to future arhitetures, languages, and funtionality. Invariablysuh a �nal generation library would have to be able to generate routines from spei�ation rather thantaking the form of the stati libraries that have evolved from EISPACK and LINPACK. In other words,we believe that the software arhiteture of suh a �nal generation library would be very di�erent fromLAPACK and SaLAPACK. In this talk we disuss results from our FLAME projet that suggest thatmehanial derivation of algorithms from mathematial spei�ation is ahievable, as is the mehanialanalysis (ost and stability), and mehanial ode generation. These results suggest that the input to suha system would be the mathematial spei�ations of operations to be inluded in the library, rewrite rulesfor translating algorithms to ode, and models of target arhitetures. From this, a full-blown version ofthe system should then be able to mehanially generate algorithms and implementations, pakaged aslibraries tuned on mehanially generated performane analyses, with mehanially generated stabilityanalyses.1 IntrodutionAt any given time some projet is always pursuing the next dense linear algebra library. Suh developmenttends to be justi�ed by the needs of omputational sientists who wish to use suh libraries as blak boxesalled from appliation odes. The ontribution to siene of suh pakages lies primarily with the sieneit enables. Often there are ontributions to numerial analysis from advanes for individual operations andalgorithms as well. Typially, the development is evolutionary: funtionality is added to an existing library.An alternative question that an be asked is how to develop the �nal dense linear algebra library. Thepursuit of that question is likely to also yield ontributions to fundamental omputer siene sine it requiresthe proess of developing libraries to be examined and made systemati1. The question is meant to fousattention on the researh questions in software engineering and software arhiteture rather than on the�Department of Computer Sienes, The University of Texas at Austin, Austin, TX 78712,fpauldj,ltm,rvdg,fieldg�s.utexas.edu.yTexas Advane Computing Center, The University of Texas at Austin, Austin, TX 78712, kgoto�ta.utexas.edu.zDepartamento de Ingenier��a y Cienia de Computadores, Universidad Jaume I, 12.071 { Castell�on, Spain,quintana�i.uji.es.1One de�nition of siene is knowledge that has been redued to a system.1



atual library that results. The Formal Linear Algebra Methods Environment (FLAME) projet at UT-Austin pursues this topi.What features should one expet from a �nal library? The answer is that it must have the funtion-ality, high performane, portability, and auray of urrent libraries. It also must be forward ompatible tofuture omputer arhitetures and programming languages. More hallenging is that it must be forward om-patible to operations yet to be identi�ed by the ommunity. A stati library (as is traditionally implemented)annot ahieve this. What is needed is a system that mehanially develops libraries.How an a system mehanially develop high-performane, aurate libraries? We observe that a linearalgebra operation is posed as a mathematial spei�ation, an arhiteture an be desribed by a model, anda new language an be aommodated by rewrite rules that translate algorithms to ode. Our onlusionis that the system needs to take mathematial spei�ations and arhitetural models as input and mustprodue algorithms, ost analyses, and stability analyses as output. A seond (possibly separate) systeman then translate algorithms to ode given rewrite rules for a spei�ed language.The urrent dotrine. Let us review some of the assumptions that underlie the urrent dotrine byexamining this following quote from a reently proposal [7℄, funded by NSF2:\By exploiting features of modern programming languages and making Sa/LAPACK easier to use we will be in aposition to apture a new generation of users who are not interested in using Fortran 77, the urrent implementationlanguage. Balaned against this are the ost in performane, memory usage or even reliability of some of thesefeatures, and the diÆulty of building and maintaining one version of these very large libraries, let alone severalversions in di�erent languages. Sine we do not believe that we an simultaneously maximize performane, memoryeÆieny, ease of use, reliability, and ease of maintenane, we have deided on the following strategy: Maintain oneore version in Fortran 77, and provide wrappers in other languages just for the driver routines. Based on urrentuser demand, these other languages will inlude Fortran 95 and C, as well as seleted higher level languages suhas Matlab, Python and Mathematia (where ultimate ease of use is possible, suh as typing x = Anb to solve Ax= b no matter what type, mathematial properties or data struture A has). Users of the Fortran 77 version willget maximum performane and memory eÆieny, but worst ease-of-use. Users of the wrappers will have betterease of use and reliability, but worse performane and memory eÆieny in some ases. We, the developers, willhave a tratable amount of ode to maintain."This quote makes lear that the software arhiteture of the next (Sa)LAPACK library will be idential tothat of the original LAPACK, the software arhiteture of whih is essentially idential to that of the 1970spakage LINPACK [1, 6, 8℄. While following this dotrine will satisfy the needs of the sienti� omputingommunity in the short run, it does not provide a solution to the perennial problem of having to extendand modify this library for new arhitetures, languages, and funtionality. Furthermore, it plaes a heavyburden on the library developer. We believe the urrent dotrine annot evolve into a �nal library.This paper. In this paper we review preliminary researh [12, 3, 5, 16, 18, 4℄ that failitates a mehanialsystem that targets most of the operations supported by the BLAS, LAPACK, SaLAPACK, as well as manyoperations enountered in ontrol theory [9, 1, 6, 15, 14℄. We will desribe di�erent omponents and insightsby fousing on a onrete example, the symmetri rank-k update operation (syrk), whih is a level-3 BLASoperations [9℄: C := AAT +C where C is symmetri and hene only the lower triangular part of C is storedand updated.In Setion 2, we present a methodology for systematially deriving orret algorithms. We reason thatthe methodology is suÆiently systemati that is an be automated, a laim supported by a prototypemehanial system oded in Mathematia [24℄. In Setion 3, we show how algorithms an be easily mappedto ode via the introdution of appropriate Appliation Programming Interfaes (APIs) [5℄. Examples of how2In subsequent disussion we will refer to the new LAPACK projet as LAPACK07.2



new arhitetural features and/or language extensions an be aommodated are given in Setion 4 [16, 18℄.Analysis of the resulting implementations, regarding ost and numerial stability, is briey disussed inSetion 5. Related topis are mentioned in Setion 6. Setion 7 deals with bakward ompatibility to legaylibraries. Conlusions are given in the �nal setion.2 Enabling siene: formal derivation of algorithmsThe high performane requirement inherently means that a loop-based algorithm is desired possibly ombinedwith reursion [13℄. (Details related to this laim go beyond the sope of this disussion.) For arhitetureswith omplex multi-level memories, subproblems that arise as the problem is bloked for di�erent memorylayers must often be omputed with di�erent algorithms [13, 19℄. Thus, the system must to be ableto mehanially develop a family of loop-based algorithms for omputing the operation fromthe mathematial spei�ation. In this setion we review a systemati approah to deriving loop-basedalgorithms. The methodology is suÆiently systemati that it an, and has been, automated.The FLAME approah starts by systematially deriving algorithms via an eight-step proess that wenext reprodue for the symmetri rank-k update operation [16, 18, 3℄. We instantiate that proess in the\worksheet" in Fig. 1 for a spei� algorithmi variant for omputing syrk. The olumn marked \Step"indiates the order in whih the worksheet is �lled out.Step 1: Determine the preondition and postondition. We will let Ĉ denote the original ontents ofC so that upon ompletion C should ontain C = AAT +Ĉ, whih is alled the postondition. It desribes thestate of the variables upon ompletion of the omputation. The preondition C = Ĉ and the postonditionappear in Steps 1a and 1b in Fig.1.Step 2: Determine loop-invariants. Next, matries are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB � (1)where the thik lines indiate how far into the matries the omputation has reahed. For syrk it is assumedthat CTL is square so that both CTL and CBR are symmetri. Here the ? indiates the symmetri part ofC that is not referened. For di�erent operations and/or algorithmi variants operands may be partitioneddi�erently.Substituting the partitioned matries into the postondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR ! =  ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (2)This shows that m(CTL) should equal m(AT ), where m(X) denotes the row dimension of matrix X , andthat Ĉ should be partitioned as C.The idea now is that (2) tells us all omputation that must be performed in terms of the di�erentsubmatries of C and A. We wish to determine the state of matrix C at the top of a loop-body thatomputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop omputes theresult, not all required omputation has already been performed at the top of the loop-body. This suggeststhat the states given in Fig. 2 an be maintained as loop-invariants: they are partial results towards the �nalresult.An important is that eah loop-invariant has a orresponding algorithmi variant. Let us pik Loop-invariant 1 in Fig. 2: � CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR ! :3



Step Annotated Algorithm: C := AAT + C1a nC = Ĉo4 Partition C ! � CTL ?CBL CBR � , Ĉ !  ĈTL ?ĈBL ĈBR ! ,A! � ATAB �where CTL is 0� 0, ĈTL is 0� 0, AT has 0 rows2 (� CTL CTRCBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !)3 while m(CTL) < m(C) do2,3 ( � CTL CTRCBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !! ^ (m(CTL) < m(C)))5a Determine blok size bRepartition� CTL ?CBL CBR �! 0� C00 ? ?C10 C11 ?C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1A, ĈTL ?ĈBL ĈBR !! 0B� Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CAwhere C11 is b� b , Ĉ11 is b� b , A1 has b rows6 8><>:0� C00 ? ?C10 C11 ?C20 C21 C22 1A = 0B� A0AT0 + Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CA9>=>;8 C10 := A1AT0 +C10C11 := A1AT1 +C115b Continue with� CTL ?CBL CBR � 0� C00 ? ?C10 C11 ?C20 C21 C22 1A, � ATAB � 0� A0A1A2 1A ĈTL ?ĈBL ĈBR ! 0B� Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CA7 8><>:0� C00 ? ?C10 C11 ?C20 C21 C22 1A = 0B� A0AT0 + Ĉ00 Ĉ01 Ĉ02A1AT0 + Ĉ10 A1AT1 + Ĉ11 Ĉ12Ĉ20 Ĉ21 Ĉ22 1CA9>=>;2 (� CTL CTRCBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !)endwhile2,3 ( � CTL CTRCBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !! ^ : (m(CTL) < m(C)))1b nC = AAT + ĈoFigure 1: Worksheet for deriving the bloked algorithm for C := AAT + C (Variant 1). Grey-shaded boxesstate assertions that must hold at the indiated point in the algorithm. The remaining ommands are hosento make those assertions true. The thik and thin lines are used to indiate movement through the matries.The state desribed by the loop-invariant must hold before and after exeution of an iteration of the loop.Thus, it must hold at the top and bottom of the loop-body, but also before and after the loop. This isindiated in Fig. 1 everywhere where Step 2 appears.4



� CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR ! � CTL ?CBL CBR � =  ATATT + ĈTL ?ABATT + ĈBL ĈBR !Invariant 1 Invariant 2� CTL ?CBL CBR � =  ĈTL ?ĈBL ABATB + ĈBR ! � CTL ?CBL CBR � =  ĈTL ?ABATT + ĈBL ABATB + ĈBR !Invariant 3 Invariant 4Figure 2: Loop-invariants for omputing syrk.Step 3: Determine the loop-guard G. Upon ompletion � CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !! ^ :Gmust imply that C = AAT + Ĉ. This suggests G : m(CTL) < m(C), whih is then plaed in Step 3.Step 4: Determine the initialization. Before ommenement of the loop, the loop-invariant must betrue. This presribes the initialization in Step 4 in Fig. 1.Step 5: Indiate progress through the matries. Progress is indiated by exposing submatries to beupdated and/or used, in Step 5a, and to then move the thik lines, in Step 5b. The initialization and theloop-guard presribe the diretion of the movement. The range of the movement of the thik lines determineswhether the resulting algorithm is an unbloked algorithm or a bloked algorithm.Step 6: Determine the state before the update. Exposing submatries is an indexing operation.The state of those exposed submatries is presribed by the loop-invariant, and an be obtained via textualsubstitution of the exposed submatries into the loop-invariant. This is indiated in Step 6.Step 7: Determine the state after moving the thik lines. Similarly, moving the thik lines is anindexing operation. The state of the exposed submatries must updated so that the loop-invariant againbeomes true. Determining that state requires again textual substitution of the exposed submatries intothe loop-invariant. This is indiated in Step 7.Step 8: Determine the update. Finally, by omparing the known state in Step 6 with the desired statein Step 7, one an dedue the update to be performed in Step 8.The algorithm. All states in the shaded boxes in Fig. 1 only help derive, onstrutively, a orret algorithm.Deleting these, and temporary variables as Ĉ that are only required to prove orretness, leaves the algorithm.In Fig. 3 we show all four algorithmi variants for syrk under the partitioning given in (1).Note: The spei�ation of the operation together with the partitioning of the operands (the systematiway in whih the algorithm aesses the arrays) ditates reasonable loop-invariants, whih in turn ditateall other steps of the derivation of the algorithm.Remark 1 In [4℄ we disuss a prototype mehanial system, oded in Mathematia, that implements theabove steps. We note that the sope of this prototype system has been shown to inlude all of the BLAS,most of LAPACK, and it has also applied to muh more omplex problems, inluding the solution of thetriangular Sylvester equation [19℄ and the generalized triangular Sylvester equation [14℄. This suggeststhat our approah should be able to generate algorithms for operations that have not yetbeen identi�ed.
5



Algorithm: C = Syrk blk var1 2( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blok size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 + C10 C21 := A2AT1 +C21C11 := A1AT1 + C11 C11 := A1AT1 +C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1Aendwhile

Algorithm: C = Syrk blk var3 4( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blok size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1AendwhileFigure 3: Bloked algorithms for omputing C := AAT + C. The left algorithm implements Variants 1 and2, whih orrespond to Loop-invariants 1 and 2 in Fig. 2. The right algorithm implements Variants 3 and4, whih orrespond to Loop-invariants 3 and 4 in Fig. 2. The top algorithm sweeps through C from thetop-left to the bottom-right, while the bottom algorithm aesses the matrix in the opposite diretion.3 Rewriting algorithms as odeHaving the ability to derive orret algorithms solves only part of the problem sine translating thosealgorithms to ode traditionally requires deliate indexing into arrays, whih exposes opportunities for theintrodution of errors. As part of the FLAME projet, we have de�ned APIs for Matlab's M-sript language,for the C and Fortran programming languages, and for PLAPACK [5, 23℄. These APIs hide intriate indiesusing tehniques similar to those used by MPI [20℄ and PETS [2℄, allowing ode to losely reet thealgorithm. In Fig. 4(a), we show an example of FLAME/C ode orresponding to algorithmi Variant 2,whih is shown in Fig. 4(d). To understand the ode, it suÆes to know that C and A are desriptors forthe matries C and A, respetively. The various routines failitate the reation of views (referenes) into thedata desribed by C and A. Think of a variable as CTL as a fany pointer into the array C. Furthermore, thealls to FLA Gemm and FLA Syrk are wrappers to the BLAS alls dgemm and dsyrk. What is most strikingabout this ode is the absene of intriate indexing, just as in the algorithm.Remark 2 If the algorithm is stored in some meta language, rewrite rules an be de�ned to map thealgorithm to any language. This overomes the problem identi�ed in LAPACK07 of having to maintain thelibrary in multiple languages leading that projet to propose to use Fortran77 for the ore ode base. Thismakes our approah forward ompatible to languages that have not yet been oneived.6



int Syrk_blk_var2( FLA_Obj C, FLA_Obj A, int nb_alg ){ FLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;FLA_Obj AT, A0,AB, A1,A2;int b;FLA_Part_2x2( C, &CTL, &CTR,&CBL, &CBR, 0, 0, FLA_TL );FLA_Part_2x1( A, &AT,&AB, 0, FLA_TOP );while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, FLA_BR );FLA_Repart_2x1_to_3x1( AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, FLA_BOTTOM );/*-----------------------------------------------------------*/FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A2, A1, ONE, C21 );FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );/*-----------------------------------------------------------*/FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,FLA_TL );FLA_Cont_with_3x1_to_2x1( &AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP );}}

int OpenFLA_Syrk_blk_var2( FLA_Obj C, FLA_Obj A, int nb_alg ){ FLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;FLA_Obj AT, A0,AB, A1,A2;int b;FLA_Part_2x2( C, &CTL, &CTR,&CBL, &CBR, 0, 0, FLA_TL );FLA_Part_2x1( A, &AT,&AB, 0, FLA_TOP );#pragma intel omp parallel taskq {while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, FLA_BR );FLA_Repart_2x1_to_3x1( AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, FLA_BOTTOM );/*-----------------------------------------------------------*/#pragma intel omp task aptureprivate( A0, A1, C10, C11 ){FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A2, A1, ONE, C21 );FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );} /* end task *//*-----------------------------------------------------------*/FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,FLA_TL );FLA_Cont_with_3x1_to_2x1( &AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP );}} /* end of taskq */}(a) FLAME/C (b) OpenFLAMEint PLA_Syrk_blk_var2( FLA_Obj C, FLA_Obj A, int nb_alg ){ PLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;PLA_Obj AT, A0,AB, A1,A2;int b;PLA_Part_2x2( C, &CTL, &CTR,&CBL, &CBR, 0, 0, PLA_TL );PLA_Part_2x1( A, &AT,&AB, 0, PLA_TOP );while ( PLA_Obj_length( CTL ) < PLA_Obj_length( C ) ){b = min( PLA_Obj_length( CBR ), nb_alg );PLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, PLA_BR );PLA_Repart_2x1_to_3x1( AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, PLA_BOTTOM );/*-----------------------------------------------------------*/PLA_Gemm( PLA_NO_TRANSPOSE, PLA_TRANSPOSE,ONE, A2, A1, ONE, C21 );PLA_Syrk( PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );/*-----------------------------------------------------------*/PLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,PLA_TL );PLA_Cont_with_3x1_to_2x1( &AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP );}}

Algorithm: C = Syrk blk var2( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blok size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsC21 := A2AT1 +C21C11 := A1AT1 +C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1Aendwhile() PLAPACK (d) AlgorithmFigure 4: Various implementations of bloked Variant 2.7



0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

matrix dimension m

G
F

LO
P

S
/s

ec
.

OpenFLAME syrk_ln_var2 performance (one task; outer panel−panel)

Reference
OpenFLAME (n_th=4)
OpenFLAME (n_th=8)
OpenFLAME (n_th=12)
OpenFLAME (n_th=16)

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

matrix dimension m

G
F

LO
P

S
/s

ec
.

OpenFLAME syrk_ln_var2 performance (two loops, split column tasks; outer panel−panel)

Reference
OpenFLAME (n_th=4)
OpenFLAME (n_th=8)
OpenFLAME (n_th=12)
OpenFLAME (n_th=16)

Figure 5: Performane of SMP implementations of syrk (Variant 2). Here n th indiates the number ofthreads used in the experiment. Left: 1D work deomposition. Right: 2D work deomposition.4 Portability to di�erent arhiteturesThe APIs disussed above an be easily extended to target di�erent features of urrent and next generationarhitetures. To illustrate this, we now onsider SMP systems (whih are often programmed by addingOpenMP diretives to ode) and distributed memory systems.SMP arhitetures. In Fig. 4(b) we show how the loop in Fig. 4(a) an be annotated with OpenMPdiretives, in this ase task queue diretives whih have been proposed for the next OpenMP standard [21℄.In that implementation, the update in the loop is taken as a single task. (In [16, 18℄ we disuss additionaloptimizations that an be equally easily oded. In that paper we also show the importane of hoosing theappropriate algorithmi variant.)Performane attained by the ode in Fig. 4(b) on a 16CPU 1.5GHz Itanium2 system is reported inFig. 5 (left). The top of eah graph represents the theoretial peak of the system: 96 GFLOPS. TheFLA Gemm and FLA Syrk alls are wrappers to sequential BLAS implementations by Kazushige Goto [11℄.Impressive speedup is observed. In the graph to its right, we show how performane an be improvedfurther for smaller problem sizes by an additional level of parallelism in the all to FLA Gemm, reating atwo-dimensional partitioning of the work, similar to the two-dimensional distributions used on distributedmemory arhitetures.Distributed memory arhitetures. In order to target distributed memory arhitetures the C languagePLAPACK API an be extended so that PLAPACK ode looks essentially idential to FLAME/C ode, asillustrated in Fig. 4(). Naturally, suh ode an be ombined with OpenFLAME alls to perform the loalomputations on luster arhitetures with SMP nodes.In numerous papers we have demonstrated that PLAPACK ode is ompetitive with SaLAPACK im-plementations.Remark 3 The extensions that support SMP and distributed memory omputing an be made part of therewrite rules that transform algorithms into a library for a spei� arhiteture. This demonstrates howthe FLAME approah, in some sense, is forward ompatible to next generation arhitetures.8



5 Mehanial analysisWe noted that the derivation proess yields many algorithmi variants for a given operation. Experiene andtheory indiates that di�erent algorithms are best suited for di�erent arhitetures, problem sizes, and/orsubproblems [19℄. If new algorithms are derived (e.g., for new operations), the stability of those algorithmsneeds to be determined. We now briey disuss these topis.Cost analysis. The Mathematia systems for deriving and implementing algorithms an be retooled to alsoanalyze their ost. By replaing operations in the body of the loop with their ost, and the loop onstrutby a summation, an expression for the ost of the algorithm an be derived. Mathematia an then beused to massage those summations into losed-form expressions for the ost of the algorithm. Arhiteturaldetails an be added to the model to improve the auray sine omplex expressions will manipulated byMathematia rather than by hand. We believe that the resulting analyses will be suÆiently aurate that itwill be possible to mehanially resolve tradeo�s between di�erent algorithms and implementations in orderto optimize the library.Stability analysis. As part of a dissertation by Paolo Bientinesi, a member of the FLAME team, thepossibility of systematially and/or mehanially analyzing the stability of algorithms is being pursued. Theability to mehanially generate stability analyses is of great importane to our approah, sine it oftengenerates new algorithms with unknown stability properties. Early results look promising.6 Related topisAttaining high performane. The LAPACK07 proposal argues that the best performane is attained byodes written in Fortran77 in ombination with ATLAS-like tuning. Our experiene has been quite di�erent.The strength of the FLAME approah is that it an identify multiple algorithms for a single operation.As a result, the best algorithm an be hosen for a given situation and often di�erent algorithms are hosenas subproblems beome small enough to �t in ahe memory. The reason why one an ode at the level ofabstration demonstrated in Fig. 4 is that the somewhat more ostly way of indexing employed by FLAMEis amortized over enough omputation that it does not adversely impat performane. However, for smallsubproblems, e.g. matrix-matrix produts where one of the matries �ts in the L2 ahe, it beomes neessaryto all highly optimized kernels.Our approah identi�es the smallest unit of omputation is for whih suh kernels must be alled, thesmallest set of suh kernels is, the funtionality they must support, and the interfae to suh low-level kernelsin order to aommodate urrent and future arhitetures. This provides a lean separation of onernbetween algorithmi development at a high level of abstration and kernels that support performane. Italso enhanes portability to new arhitetures. Finally, it failitates analyti performane analysis sine theperformane of this small set of kernels an be reasonably modeled with high auray.Alternative storage shemes. With the advent of proessors with multiple layers of ahe, a numberof projets have started to re-examine how matries should be stored in memory (a thorough review ofthese projets an be found in a reent SIAM Review paper by Elmroth et al. [10℄). The primary goal is toimprove performane of basi linear algebra kernels as the level-3 BLAS, a set of matrix-matrix operationsthat perform O(n3) omputations on O(n2) data, as well as higher level linear algebra libraries suh asLAPACK. The idea is that by storing bloks at di�erent levels of granularity paked in memory, ostlymemory-to-memory opies and/or transpositions an be avoided. These opies are urrently required toprovide ontiguous aess to memory and/or to redue ahe and TLB misses. While oneptually the9



proposed solutions are simple and often elegant, omplex indexing has so far prevented general aeptane.An additional ompliation omes from the fat that the �lling of suh data strutures tends to put aonsiderable indexing burden on the appliation.A simple observation underlies our approah to this: Storage by reursive bloks is typially explainedas a tree struture with submatries that are stored ontiguously as leaves, and indutively as bloks ofsubmatries at eah other level of the tree. Thus, a data struture that reets this tree and an API thatobeys this tree is the most natural way of expressing hierarhialmatries, and of manipulating suh matries.Similarly, algorithms over these trees are expressed as reursive algorithms. An API for implementingreursive algorithms that obey this tree seems a natural solution.The observation is that if one allows elements in a FLAME objet (matrix) themselves to be objetsdesribing matries, then hierarhially stored matries are naturally supported. This then allows algorithmsover hierarhially stored matries to be oded over submatries in a style like that shown in Fig. 4. Prototypeimplementations of this approah show promise [17℄.Interfaes to appliations. A key weakness of SaLAPACK has been that it does not have an interfaethat allows appliations to build distributed matries without the appliation programmer having to knowintriate details about SaLAPACKmatrix distribution. By ontrast, PLAPACK from the beginning has hadan interfae that allows appliations to submit submatries to a global matrix without having to know thedistribution of that global matrix [23, 22℄. We have demonstrated the e�etiveness of a similar (prototype)interfae for hierarhially stored matries [17℄.7 Bakward ompatibility with legay librariesWhile bakward ompatibility is not neessary to ahieve our goal of a �nal generation library, it is neessaryif we are to impat the omputational siene ommunity. It is easy to provide an interfae from the oldLAPACK subroutine spei�ations to a library that is generated using the proposed methodology. Bakwardompatibility, however, omes at a prie: often higher performane an be ahieved simply by hanging theinterfae slightly from the one supported by LAPACK3.While the same ould be ahieved for SaLAPACK, we observe that only very sophistiated users employSaLAPACK. The e�ort to reode appliations to all a PLAPACK-like library is minimal. Thus, beingbakward ompatible with SaLAPACK interfae is less ritial.8 ConlusionWe have summarized a number of researh projets that together provide initial evidene that large portionsof ommonly used dense linear algebra libraries an be mehanially derived, oded, and analyzed. It is instriving towards the ultimate goal of making the entire proess mehanial that useful pratial tools havebeen, and/or will be, developed:� The formal derivation proess makes the disovery of algorithms suÆiently systemati that it anbe, and has been, applied manually by novies. This greatly redued the time required to identifyalgorithms for operations while providing on�dene in the orretness of the algorithms.3An example is the QR fatorization. By allowing ertain intermediate results to be passed from the QR fatorizationroutine to the routine that subsequently solves a linear least-squares system, reomputation of those intermediate results anbe avoided. 10
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