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Abstract

What if one set out to develop the final dense linear algebra library? Such a library would not
necessarily have to be backward compatible to existing libraries (although this would be preferred), but
it would have to be forward compatible to future architectures, languages, and functionality. Invariably
such a final generation library would have to be able to generate routines from specification rather than
taking the form of the static libraries that have evolved from EISPACK and LINPACK. In other words,
we believe that the software architecture of such a final generation library would be very different from
LAPACK and ScaLAPACK. In this talk we discuss results from our FLAME project that suggest that
mechanical derivation of algorithms from mathematical specification is achievable, as is the mechanical
analysis (cost and stability), and mechanical code generation. These results suggest that the input to such
a system would be the mathematical specifications of operations to be included in the library, rewrite rules
for translating algorithms to code, and models of target architectures. From this, a full-blown version of
the system should then be able to mechanically generate algorithms and implementations, packaged as
libraries tuned on mechanically generated performance analyses, with mechanically generated stability
analyses.

1 Introduction

At any given time some project is always pursuing the next dense linear algebra library. Such development
tends to be justified by the needs of computational scientists who wish to use such libraries as black boxes
called from application codes. The contribution to science of such packages lies primarily with the science
it enables. Often there are contributions to numerical analysis from advances for individual operations and
algorithms as well. Typically, the development is evolutionary: functionality is added to an existing library.

An alternative question that can be asked is how to develop the final dense linear algebra library. The
pursuit of that question is likely to also yield contributions to fundamental computer science since it requires
the process of developing libraries to be examined and made systematic'. The question is meant to focus
attention on the research questions in software engineering and software architecture rather than on the
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actual library that results. The Formal Linear Algebra Methods Environment (FLAME) project at UT-
Austin pursues this topic.

What features should one expect from a final library? The answer is that it must have the function-
ality, high performance, portability, and accuracy of current libraries. It also must be forward compatible to
future computer architectures and programming languages. More challenging is that it must be forward com-
patible to operations yet to be identified by the community. A static library (as is traditionally implemented)
cannot achieve this. What is needed is a system that mechanically develops libraries.

How can a system mechanically develop high-performance, accurate libraries? We observe that a linear
algebra operation is posed as a mathematical specification, an architecture can be described by a model, and
a new language can be accommodated by rewrite rules that translate algorithms to code. Our conclusion
is that the system needs to take mathematical specifications and architectural models as input and must
produce algorithms, cost analyses, and stability analyses as output. A second (possibly separate) system
can then translate algorithms to code given rewrite rules for a specified language.

The current doctrine. Let us review some of the assumptions that underlie the current doctrine by
examining this following quote from a recently proposal 7], funded by NSF?:

“By exploiting features of modern programming languages and making Sca/LAPACK easier to use we will be in a
position to capture a new generation of users who are not interested in using Fortran 77, the current implementation
language. Balanced against this are the cost in performance, memory usage or even reliability of some of these
features, and the difficulty of building and maintaining one version of these very large libraries, let alone several
versions in different languages. Since we do not believe that we can simultaneously maximize performance, memory
efficiency, ease of use, reliability, and ease of maintenance, we have decided on the following strategy: Maintain one
core version in Fortran 77, and provide wrappers in other languages just for the driver routines. Based on current
user demand, these other languages will include Fortran 95 and C, as well as selected higher level languages such
as Matlab, Python and Mathematica (where ultimate ease of use is possible, such as typing z = A\b to solve Ax
= b no matter what type, mathematical properties or data structure A has). Users of the Fortran 77 version will
get maximum performance and memory efficiency, but worst ease-of-use. Users of the wrappers will have better
ease of use and reliability, but worse performance and memory efficiency in some cases. We, the developers, will
have a tractable amount of code to maintain.”

This quote makes clear that the software architecture of the next (Sca)LAPACK library will be identical to
that of the original LAPACK, the software architecture of which is essentially identical to that of the 1970s
package LINPACK [1, 6, 8]. While following this doctrine will satisfy the needs of the scientific computing
community in the short run, it does not provide a solution to the perennial problem of having to extend
and modify this library for new architectures, languages, and functionality. Furthermore, it places a heavy
burden on the library developer. We believe the current doctrine cannot evolve into a final library.

This paper. In this paper we review preliminary research [12, 3, 5, 16, 18, 4] that facilitates a mechanical
system that targets most of the operations supported by the BLAS, LAPACK, ScaLAPACK, as well as many
operations encountered in control theory [9, 1, 6, 15, 14]. We will describe different components and insights
by focusing on a concrete example, the symmetric rank-k update operation (SYRK), which is a level-3 BLAS
operations [9]: C := AAT 4+ C where C is symmetric and hence only the lower triangular part of C is stored
and updated.

In Section 2, we present a methodology for systematically deriving correct algorithms. We reason that
the methodology is sufficiently systematic that is can be automated, a claim supported by a prototype
mechanical system coded in Mathematica [24]. In Section 3, we show how algorithms can be easily mapped
to code via the introduction of appropriate Application Programming Interfaces (APIs) [5]. Examples of how

2In subsequent discussion we will refer to the new LAPACK project as LAPACKO?7.



new architectural features and/or language extensions can be accommodated are given in Section 4 [16, 18].
Analysis of the resulting implementations, regarding cost and numerical stability, is briefly discussed in
Section 5. Related topics are mentioned in Section 6. Section 7 deals with backward compatibility to legacy
libraries. Conclusions are given in the final section.

2 Enabling science: formal derivation of algorithms

The high performance requirement inherently means that a loop-based algorithm is desired possibly combined
with recursion [13]. (Details related to this claim go beyond the scope of this discussion.) For architectures
with complex multi-level memories, subproblems that arise as the problem is blocked for different memory
layers must often be computed with different algorithms [13, 19]. Thus, the system must to be able
to mechanically develop a family of loop-based algorithms for computing the operation from
the mathematical specification. In this section we review a systematic approach to deriving loop-based
algorithms. The methodology is sufficiently systematic that it can, and has been, automated.

The FLAME approach starts by systematically deriving algorithms via an eight-step process that we
next reproduce for the symmetric rank-k update operation [16, 18, 3]. We instantiate that process in the
“worksheet” in Fig. 1 for a specific algorithmic variant for computing SYRK. The column marked “Step”
indicates the order in which the worksheet is filled out.

Step 1: Determine the precondition and postcondition. We will let C denote the original contents of
C so that upon completion C should contain C' = AAT +C’, which is called the postcondition. Tt describes the
state of the variables upon completion of the computation. The precondition C' = C and the postcondition
appear in Steps la and 1b in Fig.1.

Step 2: Determine loop-invariants. Next, matrices are partitioned into regions:

Crr * At
A 1
C - ( T T ) and — ( T ) (1)

where the thick lines indicate how far into the matrices the computation has reached. For SYRK it is assumed
that C'rp is square so that both Cr; and Cggr are symmetric. Here the x indicates the symmetric part of
C that is not referenced. For different operations and/or algorithmic variants operands may be partitioned
differently.

Substituting the partitioned matrices into the postcondition yields

( Crr * ) . ( A ) ( At >T+ OTL * _ ATA%-I-CA'TL I * (2)
Cgr | CBr Ap Ap Csr | CBr ABAg-f-OBL I ABAg-‘rOBR .

This shows that m(Crr) should equal m(Ar), where m(X) denotes the row dimension of matrix X, and
that C should be partitioned as C.

The idea now is that (2) tells us all computation that must be performed in terms of the different
submatrices of C' and A. We wish to determine the state of matrix C' at the top of a loop-body that
computes the result C = AAT + C. This state is referred to as the loop-invariant. If the loop computes the
result, not all required computation has already been performed at the top of the loop-body. This suggests
that the states given in Fig. 2 can be maintained as loop-invariants: they are partial results towards the final
result.

An important is that each loop-invariant has a corresponding algorithmic variant. Let us pick Loop-

invariant 1 in Fig. 2:
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Cpr | Csr Crr | Csr )
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Figure 1: Worksheet for deriving the blocked algorithm for C := AAT + C (Variant 1). Grey-shaded boxes
state assertions that must hold at the indicated point in the algorithm. The remaining commands are chosen
to make those assertions true. The thick and thin lines are used to indicate movement through the matrices.

The state described by the loop-invariant must hold before and after execution of an iteration of the loop.
Thus, it must hold at the top and bottom of the loop-body, but also before and after the loop. This is

indicated in Fig. 1 everywhere where Step 2 appears.
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Figure 2: Loop-invariants for computing SYRK.

Step 3: Determine the loop-guard . Upon completion

(CTLI p ): ArAr + O |+ ), g
CpL | Cr CBL | Car

must imply that C' = AAT + €. This suggests G : m(Cpz) < m(C), which is then placed in Step 3.

Step 4: Determine the initialization. Before commencement of the loop, the loop-invariant must be
true. This prescribes the initialization in Step 4 in Fig. 1.

Step 5: Indicate progress through the matrices. Progress is indicated by exposing submatrices to be
updated and/or used, in Step 5a, and to then move the thick lines, in Step 5b. The initialization and the
loop-guard prescribe the direction of the movement. The range of the movement of the thick lines determines
whether the resulting algorithm is an unblocked algorithm or a blocked algorithm.

Step 6: Determine the state before the update. Exposing submatrices is an indexing operation.
The state of those exposed submatrices is prescribed by the loop-invariant, and can be obtained via textual
substitution of the exposed submatrices into the loop-invariant. This is indicated in Step 6.

Step 7: Determine the state after moving the thick lines. Similarly, moving the thick lines is an
indexing operation. The state of the exposed submatrices must updated so that the loop-invariant again
becomes true. Determining that state requires again textual substitution of the exposed submatrices into
the loop-invariant. This is indicated in Step 7.

Step 8: Determine the update. Finally, by comparing the known state in Step 6 with the desired state
in Step 7, one can deduce the update to be performed in Step 8.

The algorithm. All states in the shaded boxes in Fig. 1 only help derive, constructively, a correct algorithm.
Deleting these, and temporary variables as C that are only required to prove correctness, leaves the algorithm.
In Fig. 3 we show all four algorithmic variants for SYRK under the partitioning given in (1).

Note: The specification of the operation together with the partitioning of the operands (the systematic
way in which the algorithm accesses the arrays) dictates reasonable loop-invariants, which in turn dictate
all other steps of the derivation of the algorithm.

Remark 1 In [/] we discuss a prototype mechanical system, coded in Mathematica, that implements the
above steps. We note that the scope of this prototype system has been shown to include all of the BLAS,
most of LAPACK, and it has also applied to much more complex problems, including the solution of the
triangular Sylvester equation [19] and the generalized triangular Sylvester equation [1]. This suggests
that our approach should be able to generate algorithms for operations that have not yet
been identified.




Algorithm: C = SYRKBLK_VAR1_2( A, C )

Algorithm: C = SYRK_BLK_VAR3_4( A, C )

... Cri | Crr ) ( A )
Partition C — | =———————| A —
( CBrL | CBr Ap

where Cpp is 0 x 0, Ap has 0 rows

while m(Crr) < m(C) do
Determine block size b

Repartition

C C C
Crr | Crr 00 01 02
ol Con — Ci0 | C11 | Ci2
BL ) Cao | Ca1 | C22
Ar Ao
a1 — A1
B A,

where C7; is b x b, A; has b rows

s Crr | Crr ) ( A >
Partition C — | =—————mf——| A —
( Csr | CBr Ap

where Cpp is 0 x 0, A has 0 rows

while m(Cgr) < m(C) do
Determine block size b

Repartition
Coo | Co1 | Co2
( gTL STR )—) Ci0 | C11 | C12
BL BR Cao | C21 | C22
()~ (2o
v — Ay
B e

where Cp; isbx b, A; has b rows

Variant 4:
Cio 1= A1AT + C1o
Cr1 1= A1AT + Cpy

Variant 3:
Co1 := A2 AT 4+ Coy
Cy1 = A1AT + Oy

Variant 2:
Co1 := A2 AT 4+ Coy
Cy1 = A1AT + Oy

Variant 1:
Cio = A1AT + C1o
Cy1 = A1 AT + Cny

Continue with Continue with

Coo | Co1 | Co2 Coo | Co1 | Co2
( gTL gTR ) +— | Cio | Cu1 | Ci2 |, ( gTL gTR ) — | Cio | Ci1 | Cia |,
BL BR Cao | C21 | C22 BL BR Cao | C21 | Ca2

At
Ap

Ar
Ap

endwhile

) ) (&)

Figure 3: Blocked algorithms for computing C := AAT + C. The left algorithm implements Variants 1 and
2, which correspond to Loop-invariants 1 and 2 in Fig. 2. The right algorithm implements Variants 3 and
4, which correspond to Loop-invariants 3 and 4 in Fig. 2. The top algorithm sweeps through C from the
top-left to the bottom-right, while the bottom algorithm accesses the matrix in the opposite direction.

Ao
a (
As

endwhile

3 Rewriting algorithms as code

Having the ability to derive correct algorithms solves only part of the problem since translating those
algorithms to code traditionally requires delicate indexing into arrays, which exposes opportunities for the
introduction of errors. As part of the FLAME project, we have defined APIs for Matlab’s M-script language,
for the C and Fortran programming languages, and for PLAPACK [5, 23]. These APIs hide intricate indices
using techniques similar to those used by MPI [20] and PETSc [2], allowing code to closely reflect the
algorithm. In Fig. 4(a), we show an example of FLAME/C code corresponding to algorithmic Variant 2,
which is shown in Fig. 4(d). To understand the code, it suffices to know that C and A are descriptors for
the matrices C' and A, respectively. The various routines facilitate the creation of views (references) into the
data described by C' and A. Think of a variable as CTL as a fancy pointer into the array C. Furthermore, the
calls to FLA_Gemm and FLA _Syrk are wrappers to the BLAS calls DGEMM and DSYRK. What is most striking
about this code is the absence of intricate indexing, just as in the algorithm.

Remark 2 If the algorithm is stored in some meta language, rewrite rules can be defined to map the
algorithm to any language. This overcomes the problem identified in LAPACKO7 of having to maintain the
library in multiple languages leading that project to propose to use Fortran77 for the core code base. This
makes our approach forward compatible to languages that have not yet been conceived.




int Syrk_blk_var2( FLA_Dbj C, FLA_Obj A, int nb_alg )

FLA_Obj CTL, CIR, €00, €01, €02,
CBL,  CBR, c10, ci1, €12,
€20, €21, €22;
FLA_Obj AT, A0,
AB, At,
A2;
int b;

FLA_Part_2x2( C,  &CTL, &CIR,
%CBL, &CBR,
FLA_Part_2x1( A,  &AT,

&AB, 0, FLA_TOP );

0, 0, FLA_TL );

while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){
b = min( FLA_Obj_length( CBR ), nb_alg );
FLA_Repart_2x2_to_3x3( CTL, /xx/ CTR,  &C00, /**/ &CO1, &C02,

&C10, /**/ gCi1, &C12,
CBL, /**/ CBR, &C20, /*x/ #C21, &C22,
b, b, FLA_BR );

FLA_Repart_2x1_to_3x1( AT, 2A0,
/% %% %/ /% ¥ %/
ZA1,
AB, 2A2, b, FLA_BOTTOM );
/ /

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
ONE, A2, A1, ONE, €21 );

FLA_Syrk ( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, C11 );

/ /
FLA_Cont_with_3x3_to_2x2( &CTL, /*%/ &CTR, CO00, CO1, /*x/ C02,
C10, C11, /**/ C12,

/ 7/ /
2CBL, /*x/ CBR, €20, C21, /**/ C22,
FLA_TL );
FLA_Cont_with_3x1_to_2x1( &AT, A0,
AL,
/% %% %/ /% %% %/
%AB, A2, FLA_TOP ) ;

(a) FLAME/C

int OpenFLA_Syrk_blk_var2( FLA_Dbj C, FLA_Obj A, int nb_alg )

FLA_Obj CTL, CIR, €00, €01, €02,
CBL, CBR, c10, ci1, €12,
€20, €21, €22;
FLA_Obj AT, A0,
AB, A1,
A2;
int b;
FLA_Part_2x2( C,  &CTL, &CIR,
2CBL, ZCBR, 0, 0, FLALTL );
FLA_Part_2x1( A,  &AT,
2AB, 0, FLA_TOP );

#pragma intel omp parallel taskq {
while ( FLA_Dbj_length( CTL ) < FLA_Obj_lemgth( C ) ){
b = min( FLA_Obj_length( CBR ), nb_alg );
FLA_Repart_2x2_to_3x3( CTL, /xx/ CTR,  &C00, /**/ &CO1, &C02,

&C10, /**/ gCi1, &C12,
CBL, /**/ CBR, %C20, /**/ &C21, &C22,
b, b, FLA_BR );

FLA_Repart_2x1_to_3x1( AT, 2A0,
/% %% %/ /% ¥k %/
ZA1,
AB, 2A2, b, FLA_BOTTOM );
/ /

#pragma intel omp task captureprivate( A0, A1, C10, C11 ){
FLA_Gemm( FLA_ND_TRANSPOSE, FLA_TRANSPOSE,
ONE, A2, A1, ONE, C21 );
FLA_Syrk ( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, C11 );
} /* end task */
/ /
FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, CO00, CO1, /#*/ C02,
€10, Ci1, /*x/ C12,

/ /1 /
2CBL, /*x/ CBR, €20, C21, /**/ C22,
FLA_TL );

FLA_Cont_with_3x1_to_2x1( &AT, A0,

AL,
/% %% %/ /% 4% %/
%AB, A2, FLA_TOP ) ;
3
} /% end of taskq */

¥
(b) OpenFLAME

int PLA_Syrk_blk_var2( FLA_Obj C, FLA_Obj A, int nb_alg )
1{

PLA_Obj CTL, CTR, €00, Co01, €02,
CBL, CBR, €10, C11, €12,
€20, €21, €22;
PLA_Obj AT, A0,
AB, a1,
A2;
int b;

PLA_Part_2x2( C,  &CTL, &CTR,
2CBL, &CBR,
PLA_Part_2x1( A,  ZAT,

ZAB, 0, PLA_TOP );

0, 0, PLA_TL );

while ( PLA_Obj_length( CTL ) < PLA_Obj_length( C ) ){
b = min( PLA_Obj_length( CBR ), nb_alg );

PLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /#%/ &C01, &CO02,

2C10, /**/ &Ci1, &C12,
CBL, /x/ CBR,  &C20, /*/ &C21, &C22,
b, b, PLA_BR );

PLA_Repart_2x1_to_3x1( AT, 2A0,
/% 4% %/ /% % %/
(78
AB, %A2, b, PLA_BOTTON );
/ /

PLA_Gemm( PLA_NO_TRANSPOSE, PLA_TRANSPOSE,

ONE, A2, A1, ONE, €21 );
PLA_Syrk( PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE,

ONE, A1, ONE, C11 );
/ /
PLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, CO00, CO1, /#x/ C02,
€10, C11, /#*»/ C12,

/

/ /7
&CBL, /*x/ RCBR, C20, C21, /#*/ C22,
PLA_TL );
PLA_Cont_with_3x1_to_2x1( &AT, a0,
a1,
/% xx %/ /% xx x/
2AB, A2, FLA_TOP );

(c) PLAPACK

Algorithm: C = SYRK_BLK_VAR2( A, C )

Crr | Crr A Ar
JA—
Cesr | CBr Ap

where Crpp is 0 x 0, Ap has 0 rows

Partition C —

while m(Crr) < m(C) do
Determine block size b
Repartition
Coo | Co1 | Coz2

C C
= =) - Ci0 | C11 | C12

Csr | Cbr Cao | Ca1 | C22
Ar o
a1 g A1

B A,

where Cp; is b x b, A; has b rows

Ca1 1= A2 AT + Coy
Cr1:= A1 AT 4+ C1y

Continue with
Coo | Co1 | Co2

C C
IL IE ) Ci0 | C11 | C12

Csr | Cor Cao | C21 | Ca2
A
Ap TfL
— 1
Ap A_z

endwhile

(d) Algorithm

Figure 4: Various implementations of blocked Variant 2.
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Figure 5: Performance of SMP implementations of SYRK (Variant 2). Here n_th indicates the number of
threads used in the experiment. Left: 1D work decomposition. Right: 2D work decomposition.

4 Portability to different architectures

The APIs discussed above can be easily extended to target different features of current and next generation
architectures. To illustrate this, we now consider SMP systems (which are often programmed by adding
OpenMP directives to code) and distributed memory systems.

SMP architectures. In Fig. 4(b) we show how the loop in Fig. 4(a) can be annotated with OpenMP
directives, in this case task queue directives which have been proposed for the next OpenMP standard [21].
In that implementation, the update in the loop is taken as a single task. (In [16, 18] we discuss additional
optimizations that can be equally easily coded. In that paper we also show the importance of choosing the
appropriate algorithmic variant.)

Performance attained by the code in Fig. 4(b) on a 16CPU 1.5GHz Itanium2 system is reported in
Fig. 5 (left). The top of each graph represents the theoretical peak of the system: 96 GFLOPS. The
FLA Gemm and FLA Syrk calls are wrappers to sequential BLAS implementations by Kazushige Goto [11].
Impressive speedup is observed. In the graph to its right, we show how performance can be improved
further for smaller problem sizes by an additional level of parallelism in the call to FLA_Gemm, creating a
two-dimensional partitioning of the work, similar to the two-dimensional distributions used on distributed
memory architectures.

Distributed memory architectures. In order to target distributed memory architectures the C language
PLAPACK API can be extended so that PLAPACK code looks essentially identical to FLAME/C code, as
illustrated in Fig. 4(c). Naturally, such code can be combined with OpenFLAME calls to perform the local
computations on cluster architectures with SMP nodes.

In numerous papers we have demonstrated that PLAPACK code is competitive with ScaLAPACK im-
plementations.

Remark 3 The extensions that support SMP and distributed memory computing can be made part of the
rewrite rules that transform algorithms into a library for a specific architecture. This demonstrates how
the FLAME approach, in some sense, is forward compatible to next generation architectures.




5 Mechanical analysis

We noted that the derivation process yields many algorithmic variants for a given operation. Experience and
theory indicates that different algorithms are best suited for different architectures, problem sizes, and/or
subproblems [19]. If new algorithms are derived (e.g., for new operations), the stability of those algorithms
needs to be determined. We now briefly discuss these topics.

Cost analysis. The Mathematica systems for deriving and implementing algorithms can be retooled to also
analyze their cost. By replacing operations in the body of the loop with their cost, and the loop construct
by a summation, an expression for the cost of the algorithm can be derived. Mathematica can then be
used to massage those summations into closed-form expressions for the cost of the algorithm. Architectural
details can be added to the model to improve the accuracy since complex expressions will manipulated by
Mathematica rather than by hand. We believe that the resulting analyses will be sufficiently accurate that it
will be possible to mechanically resolve tradeoffs between different algorithms and implementations in order
to optimize the library.

Stability analysis. As part of a dissertation by Paolo Bientinesi, a member of the FLAME team, the
possibility of systematically and /or mechanically analyzing the stability of algorithms is being pursued. The
ability to mechanically generate stability analyses is of great importance to our approach, since it often
generates new algorithms with unknown stability properties. Early results look promising.

6 Related topics

Attaining high performance. The LAPACKO07 proposal argues that the best performance is attained by
codes written in Fortran77 in combination with ATLAS-like tuning. Our experience has been quite different.

The strength of the FLAME approach is that it can identify multiple algorithms for a single operation.
As a result, the best algorithm can be chosen for a given situation and often different algorithms are chosen
as subproblems become small enough to fit in cache memory. The reason why one can code at the level of
abstraction demonstrated in Fig. 4 is that the somewhat more costly way of indexing employed by FLAME
is amortized over enough computation that it does not adversely impact performance. However, for small
subproblems, e.g. matrix-matrix products where one of the matrices fits in the L2 cache, it becomes necessary
to call highly optimized kernels.

Our approach identifies the smallest unit of computation is for which such kernels must be called, the
smallest set of such kernels is, the functionality they must support, and the interface to such low-level kernels
in order to accommodate current and future architectures. This provides a clean separation of concern
between algorithmic development at a high level of abstraction and kernels that support performance. It
also enhances portability to new architectures. Finally, it facilitates analytic performance analysis since the
performance of this small set of kernels can be reasonably modeled with high accuracy.

Alternative storage schemes. With the advent of processors with multiple layers of cache, a number
of projects have started to re-examine how matrices should be stored in memory (a thorough review of
these projects can be found in a recent SIAM Review paper by Elmroth et al. [10]). The primary goal is to
improve performance of basic linear algebra kernels as the level-3 BLAS, a set of matrix-matrix operations
that perform O(n®) computations on O(n?) data, as well as higher level linear algebra libraries such as
LAPACK. The idea is that by storing blocks at different levels of granularity packed in memory, costly
memory-to-memory copies and/or transpositions can be avoided. These copies are currently required to
provide contiguous access to memory and/or to reduce cache and TLB misses. While conceptually the



proposed solutions are simple and often elegant, complex indexing has so far prevented general acceptance.
An additional complication comes from the fact that the filling of such data structures tends to put a
considerable indexing burden on the application.

A simple observation underlies our approach to this: Storage by recursive blocks is typically explained
as a tree structure with submatrices that are stored contiguously as leaves, and inductively as blocks of
submatrices at each other level of the tree. Thus, a data structure that reflects this tree and an API that
obeys this tree is the most natural way of expressing hierarchical matrices, and of manipulating such matrices.
Similarly, algorithms over these trees are expressed as recursive algorithms. An API for implementing
recursive algorithms that obey this tree seems a natural solution.

The observation is that if one allows elements in a FLAME object (matrix) themselves to be objects
describing matrices, then hierarchically stored matrices are naturally supported. This then allows algorithms
over hierarchically stored matrices to be coded over submatrices in a style like that shown in Fig. 4. Prototype
implementations of this approach show promise [17].

Interfaces to applications. A key weakness of ScaLAPACK has been that it does not have an interface
that allows applications to build distributed matrices without the application programmer having to know
intricate details about ScaLAPACK matrix distribution. By contrast, PLAPACK from the beginning has had
an interface that allows applications to submit submatrices to a global matrix without having to know the
distribution of that global matrix [23, 22]. We have demonstrated the effectiveness of a similar (prototype)
interface for hierarchically stored matrices [17].

7 Backward compatibility with legacy libraries

While backward compatibility is not necessary to achieve our goal of a final generation library, it is necessary
if we are to impact the computational science community. It is easy to provide an interface from the old
LAPACK subroutine specifications to a library that is generated using the proposed methodology. Backward
compatibility, however, comes at a price: often higher performance can be achieved simply by changing the
interface slightly from the one supported by LAPACK?.

While the same could be achieved for ScaLAPACK, we observe that only very sophisticated users employ
ScaLAPACK. The effort to recode applications to call a PLAPACK-like library is minimal. Thus, being
backward compatible with ScaLAPACK interface is less critical.

8 Conclusion

We have summarized a number of research projects that together provide initial evidence that large portions
of commonly used dense linear algebra libraries can be mechanically derived, coded, and analyzed. It is in
striving towards the ultimate goal of making the entire process mechanical that useful practical tools have
been, and/or will be, developed:

e The formal derivation process makes the discovery of algorithms sufficiently systematic that it can
be, and has been, applied manually by novices. This greatly reduced the time required to identify
algorithms for operations while providing confidence in the correctness of the algorithms.

3An example is the QR factorization. By allowing certain intermediate results to be passed from the QR factorization
routine to the routine that subsequently solves a linear least-squares system, recomputation of those intermediate results can
be avoided.
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e The mechanical system that implements the process can be, and has been, applied to complex oper-
ations, for which the algebraic manipulations of expressions invites errors when applied by hand [4].
This further reduces the cost of developing correct algorithms.

e The APIs for representing algorithms in code can be, and have been, used to implement algorithms
independently of the derivation process. Even without the formal derivation, they greatly reducing the
opportunity for the introduction of indexing errors, improve readability, and reduce the cost develop-
ment and maintainance of the resulting libraries.

e The mechanical derivation of cost analyses will facilitate new levels of detail of performance analyses
and will facilitate the investigation of strengths and weaknesses of proposed architectures. It will also
facilitate the tuning of libraries.

e The mechanical derivation of stability analyses is required to provide confidence in solutions computed
by the resulting libraries.

A major reason why legacy libraries are evolved into “new” libraries is that approach this preserves the
investment that has been made to ensure that they are robust. The presented techniques reduce the validity
of this reason, since now correct, highly efficient, and numerically stable algorithms and implementations
can be systematically and/or mechanically developed.
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