
FLAME 2005 Prospe
tus:Towards the Final Generation of Dense Linear Algebra LibrariesPaolo Bientinesi� Kazushige Gotoy Tze Meng Low�Enrique S. Quintana-Ort��z Robert van de Geijn� Field Van Zee �FLAME Working Note #16April 20, 2005Abstra
tWhat if one set out to develop the �nal dense linear algebra library? Su
h a library would notne
essarily have to be ba
kward
ompatible to existing libraries (although this would be preferred), butit would have to be forward
ompatible to future ar
hite
tures, languages, and fun
tionality. Invariablysu
h a �nal generation library would have to be able to generate routines from spe
i�
ation rather thantaking the form of the stati
 libraries that have evolved from EISPACK and LINPACK. In other words,we believe that the software ar
hite
ture of su
h a �nal generation library would be very di�erent fromLAPACK and S
aLAPACK. In this talk we dis
uss results from our FLAME proje
t that suggest thatme
hani
al derivation of algorithms from mathemati
al spe
i�
ation is a
hievable, as is the me
hani
alanalysis (
ost and stability), and me
hani
al
ode generation. These results suggest that the input to su
ha system would be the mathemati
al spe
i�
ations of operations to be in
luded in the library, rewrite rulesfor translating algorithms to
ode, and models of target ar
hite
tures. From this, a full-blown version ofthe system should then be able to me
hani
ally generate algorithms and implementations, pa
kaged aslibraries tuned on me
hani
ally generated performan
e analyses, with me
hani
ally generated stabilityanalyses.1 Introdu
tionAt any given time some proje
t is always pursuing the next dense linear algebra library. Su
h developmenttends to be justi�ed by the needs of
omputational s
ientists who wish to use su
h libraries as bla
k boxes
alled from appli
ation
odes. The
ontribution to s
ien
e of su
h pa
kages lies primarily with the s
ien
eit enables. Often there are
ontributions to numeri
al analysis from advan
es for individual operations andalgorithms as well. Typi
ally, the development is evolutionary: fun
tionality is added to an existing library.An alternative question that
an be asked is how to develop the �nal dense linear algebra library. Thepursuit of that question is likely to also yield
ontributions to fundamental
omputer s
ien
e sin
e it requiresthe pro
ess of developing libraries to be examined and made systemati
1. The question is meant to fo
usattention on the resear
h questions in software engineering and software ar
hite
ture rather than on the�Department of Computer S
ien
es, The University of Texas at Austin, Austin, TX 78712,fpauldj,ltm,rvdg,fieldg�
s.utexas.edu.yTexas Advan
e Computing Center, The University of Texas at Austin, Austin, TX 78712, kgoto�ta

.utexas.edu.zDepartamento de Ingenier��a y Cien
ia de Computadores, Universidad Jaume I, 12.071 { Castell�on, Spain,quintana�i

.uji.es.1One de�nition of s
ien
e is knowledge that has been redu
ed to a system.1

a
tual library that results. The Formal Linear Algebra Methods Environment (FLAME) proje
t at UT-Austin pursues this topi
.What features should one expe
t from a �nal library? The answer is that it must have the fun
tion-ality, high performan
e, portability, and a

ura
y of
urrent libraries. It also must be forward
ompatible tofuture
omputer ar
hite
tures and programming languages. More
hallenging is that it must be forward
om-patible to operations yet to be identi�ed by the
ommunity. A stati
 library (as is traditionally implemented)
annot a
hieve this. What is needed is a system that me
hani
ally develops libraries.How
an a system me
hani
ally develop high-performan
e, a

urate libraries? We observe that a linearalgebra operation is posed as a mathemati
al spe
i�
ation, an ar
hite
ture
an be des
ribed by a model, anda new language
an be a

ommodated by rewrite rules that translate algorithms to
ode. Our
on
lusionis that the system needs to take mathemati
al spe
i�
ations and ar
hite
tural models as input and mustprodu
e algorithms,
ost analyses, and stability analyses as output. A se
ond (possibly separate) system
an then translate algorithms to
ode given rewrite rules for a spe
i�ed language.The
urrent do
trine. Let us review some of the assumptions that underlie the
urrent do
trine byexamining this following quote from a re
ently proposal [7℄, funded by NSF2:\By exploiting features of modern programming languages and making S
a/LAPACK easier to use we will be in aposition to
apture a new generation of users who are not interested in using Fortran 77, the
urrent implementationlanguage. Balan
ed against this are the
ost in performan
e, memory usage or even reliability of some of thesefeatures, and the diÆ
ulty of building and maintaining one version of these very large libraries, let alone severalversions in di�erent languages. Sin
e we do not believe that we
an simultaneously maximize performan
e, memoryeÆ
ien
y, ease of use, reliability, and ease of maintenan
e, we have de
ided on the following strategy: Maintain one
ore version in Fortran 77, and provide wrappers in other languages just for the driver routines. Based on
urrentuser demand, these other languages will in
lude Fortran 95 and C, as well as sele
ted higher level languages su
has Matlab, Python and Mathemati
a (where ultimate ease of use is possible, su
h as typing x = Anb to solve Ax= b no matter what type, mathemati
al properties or data stru
ture A has). Users of the Fortran 77 version willget maximum performan
e and memory eÆ
ien
y, but worst ease-of-use. Users of the wrappers will have betterease of use and reliability, but worse performan
e and memory eÆ
ien
y in some
ases. We, the developers, willhave a tra
table amount of
ode to maintain."This quote makes
lear that the software ar
hite
ture of the next (S
a)LAPACK library will be identi
al tothat of the original LAPACK, the software ar
hite
ture of whi
h is essentially identi
al to that of the 1970spa
kage LINPACK [1, 6, 8℄. While following this do
trine will satisfy the needs of the s
ienti�

omputing
ommunity in the short run, it does not provide a solution to the perennial problem of having to extendand modify this library for new ar
hite
tures, languages, and fun
tionality. Furthermore, it pla
es a heavyburden on the library developer. We believe the
urrent do
trine
annot evolve into a �nal library.This paper. In this paper we review preliminary resear
h [12, 3, 5, 16, 18, 4℄ that fa
ilitates a me
hani
alsystem that targets most of the operations supported by the BLAS, LAPACK, S
aLAPACK, as well as manyoperations en
ountered in
ontrol theory [9, 1, 6, 15, 14℄. We will des
ribe di�erent
omponents and insightsby fo
using on a
on
rete example, the symmetri
 rank-k update operation (syrk), whi
h is a level-3 BLASoperations [9℄: C := AAT +C where C is symmetri
 and hen
e only the lower triangular part of C is storedand updated.In Se
tion 2, we present a methodology for systemati
ally deriving
orre
t algorithms. We reason thatthe methodology is suÆ
iently systemati
 that is
an be automated, a
laim supported by a prototypeme
hani
al system
oded in Mathemati
a [24℄. In Se
tion 3, we show how algorithms
an be easily mappedto
ode via the introdu
tion of appropriate Appli
ation Programming Interfa
es (APIs) [5℄. Examples of how2In subsequent dis
ussion we will refer to the new LAPACK proje
t as LAPACK07.2

new ar
hite
tural features and/or language extensions
an be a

ommodated are given in Se
tion 4 [16, 18℄.Analysis of the resulting implementations, regarding
ost and numeri
al stability, is brie
y dis
ussed inSe
tion 5. Related topi
s are mentioned in Se
tion 6. Se
tion 7 deals with ba
kward
ompatibility to lega
ylibraries. Con
lusions are given in the �nal se
tion.2 Enabling s
ien
e: formal derivation of algorithmsThe high performan
e requirement inherently means that a loop-based algorithm is desired possibly
ombinedwith re
ursion [13℄. (Details related to this
laim go beyond the s
ope of this dis
ussion.) For ar
hite
tureswith
omplex multi-level memories, subproblems that arise as the problem is blo
ked for di�erent memorylayers must often be
omputed with di�erent algorithms [13, 19℄. Thus, the system must to be ableto me
hani
ally develop a family of loop-based algorithms for
omputing the operation fromthe mathemati
al spe
i�
ation. In this se
tion we review a systemati
 approa
h to deriving loop-basedalgorithms. The methodology is suÆ
iently systemati
 that it
an, and has been, automated.The FLAME approa
h starts by systemati
ally deriving algorithms via an eight-step pro
ess that wenext reprodu
e for the symmetri
 rank-k update operation [16, 18, 3℄. We instantiate that pro
ess in the\worksheet" in Fig. 1 for a spe
i�
 algorithmi
 variant for
omputing syrk. The
olumn marked \Step"indi
ates the order in whi
h the worksheet is �lled out.Step 1: Determine the pre
ondition and post
ondition. We will let Ĉ denote the original
ontents ofC so that upon
ompletion C should
ontain C = AAT +Ĉ, whi
h is
alled the post
ondition. It des
ribes thestate of the variables upon
ompletion of the
omputation. The pre
ondition C = Ĉ and the post
onditionappear in Steps 1a and 1b in Fig.1.Step 2: Determine loop-invariants. Next, matri
es are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB � (1)where the thi
k lines indi
ate how far into the matri
es the
omputation has rea
hed. For syrk it is assumedthat CTL is square so that both CTL and CBR are symmetri
. Here the ? indi
ates the symmetri
 part ofC that is not referen
ed. For di�erent operations and/or algorithmi
 variants operands may be partitioneddi�erently.Substituting the partitioned matri
es into the post
ondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR ! = ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (2)This shows that m(CTL) should equal m(AT), where m(X) denotes the row dimension of matrix X , andthat Ĉ should be partitioned as C.The idea now is that (2) tells us all
omputation that must be performed in terms of the di�erentsubmatri
es of C and A. We wish to determine the state of matrix C at the top of a loop-body that
omputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop
omputes theresult, not all required
omputation has already been performed at the top of the loop-body. This suggeststhat the states given in Fig. 2
an be maintained as loop-invariants: they are partial results towards the �nalresult.An important is that ea
h loop-invariant has a
orresponding algorithmi
 variant. Let us pi
k Loop-invariant 1 in Fig. 2: � CTL ?CBL CBR � = ATATT + ĈTL ?ĈBL ĈBR ! :3

Step Annotated Algorithm: C := AAT + C1a nC = Ĉo4 Partition C ! � CTL ?CBL CBR � , Ĉ ! ĈTL ?ĈBL ĈBR ! ,A! � ATAB �where CTL is 0� 0, ĈTL is 0� 0, AT has 0 rows2 (� CTL CTRCBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !)3 while m(CTL) < m(C) do2,3 (� CTL CTRCBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !! ^ (m(CTL) < m(C)))5a Determine blo
k size bRepartition� CTL ?CBL CBR �! 0� C00 ? ?C10 C11 ?C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1A, ĈTL ?ĈBL ĈBR !! 0B� Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CAwhere C11 is b� b , Ĉ11 is b� b , A1 has b rows6 8><>:0� C00 ? ?C10 C11 ?C20 C21 C22 1A = 0B� A0AT0 + Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CA9>=>;8 C10 := A1AT0 +C10C11 := A1AT1 +C115b Continue with� CTL ?CBL CBR � 0� C00 ? ?C10 C11 ?C20 C21 C22 1A, � ATAB � 0� A0A1A2 1A ĈTL ?ĈBL ĈBR ! 0B� Ĉ00 ? ?Ĉ10 Ĉ11 ?Ĉ20 Ĉ21 Ĉ22 1CA7 8><>:0� C00 ? ?C10 C11 ?C20 C21 C22 1A = 0B� A0AT0 + Ĉ00 Ĉ01 Ĉ02A1AT0 + Ĉ10 A1AT1 + Ĉ11 Ĉ12Ĉ20 Ĉ21 Ĉ22 1CA9>=>;2 (� CTL CTRCBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !)endwhile2,3 (� CTL CTRCBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !! ^ : (m(CTL) < m(C)))1b nC = AAT + ĈoFigure 1: Worksheet for deriving the blo
ked algorithm for C := AAT + C (Variant 1). Grey-shaded boxesstate assertions that must hold at the indi
ated point in the algorithm. The remaining
ommands are
hosento make those assertions true. The thi
k and thin lines are used to indi
ate movement through the matri
es.The state des
ribed by the loop-invariant must hold before and after exe
ution of an iteration of the loop.Thus, it must hold at the top and bottom of the loop-body, but also before and after the loop. This isindi
ated in Fig. 1 everywhere where Step 2 appears.4

� CTL ?CBL CBR � = ATATT + ĈTL ?ĈBL ĈBR ! � CTL ?CBL CBR � = ATATT + ĈTL ?ABATT + ĈBL ĈBR !Invariant 1 Invariant 2� CTL ?CBL CBR � = ĈTL ?ĈBL ABATB + ĈBR ! � CTL ?CBL CBR � = ĈTL ?ABATT + ĈBL ABATB + ĈBR !Invariant 3 Invariant 4Figure 2: Loop-invariants for
omputing syrk.Step 3: Determine the loop-guard G. Upon
ompletion � CTL ?CBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !! ^ :Gmust imply that C = AAT + Ĉ. This suggests G : m(CTL) < m(C), whi
h is then pla
ed in Step 3.Step 4: Determine the initialization. Before
ommen
ement of the loop, the loop-invariant must betrue. This pres
ribes the initialization in Step 4 in Fig. 1.Step 5: Indi
ate progress through the matri
es. Progress is indi
ated by exposing submatri
es to beupdated and/or used, in Step 5a, and to then move the thi
k lines, in Step 5b. The initialization and theloop-guard pres
ribe the dire
tion of the movement. The range of the movement of the thi
k lines determineswhether the resulting algorithm is an unblo
ked algorithm or a blo
ked algorithm.Step 6: Determine the state before the update. Exposing submatri
es is an indexing operation.The state of those exposed submatri
es is pres
ribed by the loop-invariant, and
an be obtained via textualsubstitution of the exposed submatri
es into the loop-invariant. This is indi
ated in Step 6.Step 7: Determine the state after moving the thi
k lines. Similarly, moving the thi
k lines is anindexing operation. The state of the exposed submatri
es must updated so that the loop-invariant againbe
omes true. Determining that state requires again textual substitution of the exposed submatri
es intothe loop-invariant. This is indi
ated in Step 7.Step 8: Determine the update. Finally, by
omparing the known state in Step 6 with the desired statein Step 7, one
an dedu
e the update to be performed in Step 8.The algorithm. All states in the shaded boxes in Fig. 1 only help derive,
onstru
tively, a
orre
t algorithm.Deleting these, and temporary variables as Ĉ that are only required to prove
orre
tness, leaves the algorithm.In Fig. 3 we show all four algorithmi
 variants for syrk under the partitioning given in (1).Note: The spe
i�
ation of the operation together with the partitioning of the operands (the systemati
way in whi
h the algorithm a

esses the arrays) di
tates reasonable loop-invariants, whi
h in turn di
tateall other steps of the derivation of the algorithm.Remark 1 In [4℄ we dis
uss a prototype me
hani
al system,
oded in Mathemati
a, that implements theabove steps. We note that the s
ope of this prototype system has been shown to in
lude all of the BLAS,most of LAPACK, and it has also applied to mu
h more
omplex problems, in
luding the solution of thetriangular Sylvester equation [19℄ and the generalized triangular Sylvester equation [14℄. This suggeststhat our approa
h should be able to generate algorithms for operations that have not yetbeen identi�ed.
5

Algorithm: C = Syrk blk var1 2(A, C)Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 + C10 C21 := A2AT1 +C21C11 := A1AT1 + C11 C11 := A1AT1 +C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1Aendwhile

Algorithm: C = Syrk blk var3 4(A, C)Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1AendwhileFigure 3: Blo
ked algorithms for
omputing C := AAT + C. The left algorithm implements Variants 1 and2, whi
h
orrespond to Loop-invariants 1 and 2 in Fig. 2. The right algorithm implements Variants 3 and4, whi
h
orrespond to Loop-invariants 3 and 4 in Fig. 2. The top algorithm sweeps through C from thetop-left to the bottom-right, while the bottom algorithm a

esses the matrix in the opposite dire
tion.3 Rewriting algorithms as
odeHaving the ability to derive
orre
t algorithms solves only part of the problem sin
e translating thosealgorithms to
ode traditionally requires deli
ate indexing into arrays, whi
h exposes opportunities for theintrodu
tion of errors. As part of the FLAME proje
t, we have de�ned APIs for Matlab's M-s
ript language,for the C and Fortran programming languages, and for PLAPACK [5, 23℄. These APIs hide intri
ate indi
esusing te
hniques similar to those used by MPI [20℄ and PETS
 [2℄, allowing
ode to
losely re
e
t thealgorithm. In Fig. 4(a), we show an example of FLAME/C
ode
orresponding to algorithmi
 Variant 2,whi
h is shown in Fig. 4(d). To understand the
ode, it suÆ
es to know that C and A are des
riptors forthe matri
es C and A, respe
tively. The various routines fa
ilitate the
reation of views (referen
es) into thedata des
ribed by C and A. Think of a variable as CTL as a fan
y pointer into the array C. Furthermore, the
alls to FLA Gemm and FLA Syrk are wrappers to the BLAS
alls dgemm and dsyrk. What is most strikingabout this
ode is the absen
e of intri
ate indexing, just as in the algorithm.Remark 2 If the algorithm is stored in some meta language, rewrite rules
an be de�ned to map thealgorithm to any language. This over
omes the problem identi�ed in LAPACK07 of having to maintain thelibrary in multiple languages leading that proje
t to propose to use Fortran77 for the
ore
ode base. Thismakes our approa
h forward
ompatible to languages that have not yet been
on
eived.6

int Syrk_blk_var2(FLA_Obj C, FLA_Obj A, int nb_alg){ FLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;FLA_Obj AT, A0,AB, A1,A2;int b;FLA_Part_2x2(C, &CTL, &CTR,&CBL, &CBR, 0, 0, FLA_TL);FLA_Part_2x1(A, &AT,&AB, 0, FLA_TOP);while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){b = min(FLA_Obj_length(CBR), nb_alg);FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, FLA_BR);FLA_Repart_2x1_to_3x1(AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, FLA_BOTTOM);/*---*/FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A2, A1, ONE, C21);FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11);/*---*/FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,FLA_TL);FLA_Cont_with_3x1_to_2x1(&AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP);}}

int OpenFLA_Syrk_blk_var2(FLA_Obj C, FLA_Obj A, int nb_alg){ FLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;FLA_Obj AT, A0,AB, A1,A2;int b;FLA_Part_2x2(C, &CTL, &CTR,&CBL, &CBR, 0, 0, FLA_TL);FLA_Part_2x1(A, &AT,&AB, 0, FLA_TOP);#pragma intel omp parallel taskq {while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){b = min(FLA_Obj_length(CBR), nb_alg);FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, FLA_BR);FLA_Repart_2x1_to_3x1(AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, FLA_BOTTOM);/*---*/#pragma intel omp task
aptureprivate(A0, A1, C10, C11){FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A2, A1, ONE, C21);FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11);} /* end task *//*---*/FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,FLA_TL);FLA_Cont_with_3x1_to_2x1(&AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP);}} /* end of taskq */}(a) FLAME/C (b) OpenFLAMEint PLA_Syrk_blk_var2(FLA_Obj C, FLA_Obj A, int nb_alg){ PLA_Obj CTL, CTR, C00, C01, C02,CBL, CBR, C10, C11, C12,C20, C21, C22;PLA_Obj AT, A0,AB, A1,A2;int b;PLA_Part_2x2(C, &CTL, &CTR,&CBL, &CBR, 0, 0, PLA_TL);PLA_Part_2x1(A, &AT,&AB, 0, PLA_TOP);while (PLA_Obj_length(CTL) < PLA_Obj_length(C)){b = min(PLA_Obj_length(CBR), nb_alg);PLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,/*************/ /*********************/&C10, /**/ &C11, &C12,CBL, /**/ CBR, &C20, /**/ &C21, &C22,b, b, PLA_BR);PLA_Repart_2x1_to_3x1(AT, &A0,/* ** */ /* ** */&A1,AB, &A2, b, PLA_BOTTOM);/*---*/PLA_Gemm(PLA_NO_TRANSPOSE, PLA_TRANSPOSE,ONE, A2, A1, ONE, C21);PLA_Syrk(PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE,ONE, A1, ONE, C11);/*---*/PLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,C10, C11, /**/ C12,/**************/ /******************/&CBL, /**/ &CBR, C20, C21, /**/ C22,PLA_TL);PLA_Cont_with_3x1_to_2x1(&AT, A0,A1,/* ** */ /* ** */&AB, A2, FLA_TOP);}}

Algorithm: C = Syrk blk var2(A, C)Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsC21 := A2AT1 +C21C11 := A1AT1 +C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A,� ATAB � 0� A0A1A2 1Aendwhile(
) PLAPACK (d) AlgorithmFigure 4: Various implementations of blo
ked Variant 2.7

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

matrix dimension m

G
F

LO
P

S
/s

ec
.

OpenFLAME syrk_ln_var2 performance (one task; outer panel−panel)

Reference
OpenFLAME (n_th=4)
OpenFLAME (n_th=8)
OpenFLAME (n_th=12)
OpenFLAME (n_th=16)

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

matrix dimension m

G
F

LO
P

S
/s

ec
.

OpenFLAME syrk_ln_var2 performance (two loops, split column tasks; outer panel−panel)

Reference
OpenFLAME (n_th=4)
OpenFLAME (n_th=8)
OpenFLAME (n_th=12)
OpenFLAME (n_th=16)

Figure 5: Performan
e of SMP implementations of syrk (Variant 2). Here n th indi
ates the number ofthreads used in the experiment. Left: 1D work de
omposition. Right: 2D work de
omposition.4 Portability to di�erent ar
hite
turesThe APIs dis
ussed above
an be easily extended to target di�erent features of
urrent and next generationar
hite
tures. To illustrate this, we now
onsider SMP systems (whi
h are often programmed by addingOpenMP dire
tives to
ode) and distributed memory systems.SMP ar
hite
tures. In Fig. 4(b) we show how the loop in Fig. 4(a)
an be annotated with OpenMPdire
tives, in this
ase task queue dire
tives whi
h have been proposed for the next OpenMP standard [21℄.In that implementation, the update in the loop is taken as a single task. (In [16, 18℄ we dis
uss additionaloptimizations that
an be equally easily
oded. In that paper we also show the importan
e of
hoosing theappropriate algorithmi
 variant.)Performan
e attained by the
ode in Fig. 4(b) on a 16CPU 1.5GHz Itanium2 system is reported inFig. 5 (left). The top of ea
h graph represents the theoreti
al peak of the system: 96 GFLOPS. TheFLA Gemm and FLA Syrk
alls are wrappers to sequential BLAS implementations by Kazushige Goto [11℄.Impressive speedup is observed. In the graph to its right, we show how performan
e
an be improvedfurther for smaller problem sizes by an additional level of parallelism in the
all to FLA Gemm,
reating atwo-dimensional partitioning of the work, similar to the two-dimensional distributions used on distributedmemory ar
hite
tures.Distributed memory ar
hite
tures. In order to target distributed memory ar
hite
tures the C languagePLAPACK API
an be extended so that PLAPACK
ode looks essentially identi
al to FLAME/C
ode, asillustrated in Fig. 4(
). Naturally, su
h
ode
an be
ombined with OpenFLAME
alls to perform the lo
al
omputations on
luster ar
hite
tures with SMP nodes.In numerous papers we have demonstrated that PLAPACK
ode is
ompetitive with S
aLAPACK im-plementations.Remark 3 The extensions that support SMP and distributed memory
omputing
an be made part of therewrite rules that transform algorithms into a library for a spe
i�
 ar
hite
ture. This demonstrates howthe FLAME approa
h, in some sense, is forward
ompatible to next generation ar
hite
tures.8

5 Me
hani
al analysisWe noted that the derivation pro
ess yields many algorithmi
 variants for a given operation. Experien
e andtheory indi
ates that di�erent algorithms are best suited for di�erent ar
hite
tures, problem sizes, and/orsubproblems [19℄. If new algorithms are derived (e.g., for new operations), the stability of those algorithmsneeds to be determined. We now brie
y dis
uss these topi
s.Cost analysis. The Mathemati
a systems for deriving and implementing algorithms
an be retooled to alsoanalyze their
ost. By repla
ing operations in the body of the loop with their
ost, and the loop
onstru
tby a summation, an expression for the
ost of the algorithm
an be derived. Mathemati
a
an then beused to massage those summations into
losed-form expressions for the
ost of the algorithm. Ar
hite
turaldetails
an be added to the model to improve the a

ura
y sin
e
omplex expressions will manipulated byMathemati
a rather than by hand. We believe that the resulting analyses will be suÆ
iently a

urate that itwill be possible to me
hani
ally resolve tradeo�s between di�erent algorithms and implementations in orderto optimize the library.Stability analysis. As part of a dissertation by Paolo Bientinesi, a member of the FLAME team, thepossibility of systemati
ally and/or me
hani
ally analyzing the stability of algorithms is being pursued. Theability to me
hani
ally generate stability analyses is of great importan
e to our approa
h, sin
e it oftengenerates new algorithms with unknown stability properties. Early results look promising.6 Related topi
sAttaining high performan
e. The LAPACK07 proposal argues that the best performan
e is attained by
odes written in Fortran77 in
ombination with ATLAS-like tuning. Our experien
e has been quite di�erent.The strength of the FLAME approa
h is that it
an identify multiple algorithms for a single operation.As a result, the best algorithm
an be
hosen for a given situation and often di�erent algorithms are
hosenas subproblems be
ome small enough to �t in
a
he memory. The reason why one
an
ode at the level ofabstra
tion demonstrated in Fig. 4 is that the somewhat more
ostly way of indexing employed by FLAMEis amortized over enough
omputation that it does not adversely impa
t performan
e. However, for smallsubproblems, e.g. matrix-matrix produ
ts where one of the matri
es �ts in the L2
a
he, it be
omes ne
essaryto
all highly optimized kernels.Our approa
h identi�es the smallest unit of
omputation is for whi
h su
h kernels must be
alled, thesmallest set of su
h kernels is, the fun
tionality they must support, and the interfa
e to su
h low-level kernelsin order to a

ommodate
urrent and future ar
hite
tures. This provides a
lean separation of
on
ernbetween algorithmi
 development at a high level of abstra
tion and kernels that support performan
e. Italso enhan
es portability to new ar
hite
tures. Finally, it fa
ilitates analyti
 performan
e analysis sin
e theperforman
e of this small set of kernels
an be reasonably modeled with high a

ura
y.Alternative storage s
hemes. With the advent of pro
essors with multiple layers of
a
he, a numberof proje
ts have started to re-examine how matri
es should be stored in memory (a thorough review ofthese proje
ts
an be found in a re
ent SIAM Review paper by Elmroth et al. [10℄). The primary goal is toimprove performan
e of basi
 linear algebra kernels as the level-3 BLAS, a set of matrix-matrix operationsthat perform O(n3)
omputations on O(n2) data, as well as higher level linear algebra libraries su
h asLAPACK. The idea is that by storing blo
ks at di�erent levels of granularity pa
ked in memory,
ostlymemory-to-memory
opies and/or transpositions
an be avoided. These
opies are
urrently required toprovide
ontiguous a

ess to memory and/or to redu
e
a
he and TLB misses. While
on
eptually the9

proposed solutions are simple and often elegant,
omplex indexing has so far prevented general a

eptan
e.An additional
ompli
ation
omes from the fa
t that the �lling of su
h data stru
tures tends to put a
onsiderable indexing burden on the appli
ation.A simple observation underlies our approa
h to this: Storage by re
ursive blo
ks is typi
ally explainedas a tree stru
ture with submatri
es that are stored
ontiguously as leaves, and indu
tively as blo
ks ofsubmatri
es at ea
h other level of the tree. Thus, a data stru
ture that re
e
ts this tree and an API thatobeys this tree is the most natural way of expressing hierar
hi
almatri
es, and of manipulating su
h matri
es.Similarly, algorithms over these trees are expressed as re
ursive algorithms. An API for implementingre
ursive algorithms that obey this tree seems a natural solution.The observation is that if one allows elements in a FLAME obje
t (matrix) themselves to be obje
tsdes
ribing matri
es, then hierar
hi
ally stored matri
es are naturally supported. This then allows algorithmsover hierar
hi
ally stored matri
es to be
oded over submatri
es in a style like that shown in Fig. 4. Prototypeimplementations of this approa
h show promise [17℄.Interfa
es to appli
ations. A key weakness of S
aLAPACK has been that it does not have an interfa
ethat allows appli
ations to build distributed matri
es without the appli
ation programmer having to knowintri
ate details about S
aLAPACKmatrix distribution. By
ontrast, PLAPACK from the beginning has hadan interfa
e that allows appli
ations to submit submatri
es to a global matrix without having to know thedistribution of that global matrix [23, 22℄. We have demonstrated the e�e
tiveness of a similar (prototype)interfa
e for hierar
hi
ally stored matri
es [17℄.7 Ba
kward
ompatibility with lega
y librariesWhile ba
kward
ompatibility is not ne
essary to a
hieve our goal of a �nal generation library, it is ne
essaryif we are to impa
t the
omputational s
ien
e
ommunity. It is easy to provide an interfa
e from the oldLAPACK subroutine spe
i�
ations to a library that is generated using the proposed methodology. Ba
kward
ompatibility, however,
omes at a pri
e: often higher performan
e
an be a
hieved simply by
hanging theinterfa
e slightly from the one supported by LAPACK3.While the same
ould be a
hieved for S
aLAPACK, we observe that only very sophisti
ated users employS
aLAPACK. The e�ort to re
ode appli
ations to
all a PLAPACK-like library is minimal. Thus, beingba
kward
ompatible with S
aLAPACK interfa
e is less
riti
al.8 Con
lusionWe have summarized a number of resear
h proje
ts that together provide initial eviden
e that large portionsof
ommonly used dense linear algebra libraries
an be me
hani
ally derived,
oded, and analyzed. It is instriving towards the ultimate goal of making the entire pro
ess me
hani
al that useful pra
ti
al tools havebeen, and/or will be, developed:� The formal derivation pro
ess makes the dis
overy of algorithms suÆ
iently systemati
 that it
anbe, and has been, applied manually by novi
es. This greatly redu
ed the time required to identifyalgorithms for operations while providing
on�den
e in the
orre
tness of the algorithms.3An example is the QR fa
torization. By allowing
ertain intermediate results to be passed from the QR fa
torizationroutine to the routine that subsequently solves a linear least-squares system, re
omputation of those intermediate results
anbe avoided. 10

� The me
hani
al system that implements the pro
ess
an be, and has been, applied to
omplex oper-ations, for whi
h the algebrai
 manipulations of expressions invites errors when applied by hand [4℄.This further redu
es the
ost of developing
orre
t algorithms.� The APIs for representing algorithms in
ode
an be, and have been, used to implement algorithmsindependently of the derivation pro
ess. Even without the formal derivation, they greatly redu
ing theopportunity for the introdu
tion of indexing errors, improve readability, and redu
e the
ost develop-ment and maintainan
e of the resulting libraries.� The me
hani
al derivation of
ost analyses will fa
ilitate new levels of detail of performan
e analysesand will fa
ilitate the investigation of strengths and weaknesses of proposed ar
hite
tures. It will alsofa
ilitate the tuning of libraries.� The me
hani
al derivation of stability analyses is required to provide
on�den
e in solutions
omputedby the resulting libraries.A major reason why lega
y libraries are evolved into \new" libraries is that approa
h this preserves theinvestment that has been made to ensure that they are robust. The presented te
hniques redu
e the validityof this reason, sin
e now
orre
t, highly eÆ
ient, and numeri
ally stable algorithms and implementations
an be systemati
ally and/or me
hani
ally developed.A
knowledgments This resear
h was partially sponsored by NSF grants ACI-0305163 and CCF-0342369.Any opinions, �ndings and
on
lusions or re
ommendations expressed in this material are those of theauthor(s) and do not ne
essarily re
e
t the views of the National S
ien
e Foundation.We gratefully a
knowledge the donation of several multiple-CPU Itanium2 (1.5 GHz) servers by theHewlett-Pa
kard and their administration by UT-Austin's Texas Advan
ed Computing Center. A

ess tothe 16 CPU Itanium2 used for the results reported in this paper was arranged by NEC Solutions (Ameri
a),In
. Additional support
ame from a donation by Dr. James Tru
hard, President, CEO, and Co-Founder ofNational Instruments.Referen
es[1℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[2℄ Satish Balay, William Gropp, Lois Curfman M
Innes, and Barry Smith. PETS
 2.0 users manual.Te
hni
al Report ANL-95/11, Argonne National Laboratory, O
t. 1996.[3℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort��, and Robert A. van deGeijn. The s
ien
e of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1{26,Mar
h 2005.[4℄ Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn. Automati
 derivation of linear algebraalgorithms with appli
ation to
ontrol theory. In PARA04. to appear.[5℄ Paolo Bientinesi, Enrique S. Quintana-Ort��, and Robert A. van de Geijn. Representing linear algebraalgorithms in
ode: The FLAME APIs. ACM Trans. Math. Soft., 31(1):27{59, Mar
h 2005.[6℄ J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. S
alapa
k: A s
alable linear algebra library fordistributed memory
on
urrent
omputers. In Pro
eedings of the Fourth Symposium on the Frontiers ofMassively Parallel Computation, pages 120{127. IEEE Comput. So
. Press, 1992.11

[7℄ Jim Demmel and Ja
k Dongarra. LAPACK 2005 prospe
tus: Reliable and s
alable software for linearalgebra
omputations on high end
omputers. LAPACK Working Note 164 UT-CS-05-546, Universityof Tennessee, February 2005.[8℄ J. J. Dongarra, J. R. Bun
h, C. B. Moler, and G. W. Stewart. LINPACK Users' Guide. SIAM,Philadelphia, 1979.[9℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi
 linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[10℄ Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo K�agstr�om. Re
ursive blo
ked algorithms andhybrid data stru
tures for dense matrix library software. SIAM Review, 46(1):3{45, 2004.[11℄ Kazushige Goto. http://www.
s.utexas.edu/users/kgoto, 2004.[12℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formal linearalgebra methods environment. ACM Transa
tions on Mathemati
al Software, 27(4):422{455, De
ember2001.[13℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performan
e matrixmultipli
ation algorithms. In Vassil N. Alexandrov, Ja
k J. Dongarra, Benjoe A. Juliano, Ren�e S.Renner, and C.J. Kenneth Tan, editors, Computational S
ien
e - ICCS 2001, Part I, Le
ture Notes inComputer S
ien
e 2073, pages 51{60. Springer-Verlag, 2001.[14℄ Isak Jonsson and Bo K�agstr�om. Re
ursive blo
ked algorithms for solving triangular systems: Part II:Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Transa
tions on Mathe-mati
al Software, 28(4):416{435, De
ember 2002.[15℄ Isak Jonsson and Bo K�agstr�om. Re
ursive blo
ked algorithms for solving triangular systemsu2014part i: one-sided and
oupled sylvester-type matrix equations. ACM Trans. Math. Softw.,28(4):392{415, 2002.[16℄ Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. Parallelizing
ame
ode withOpenMP task queues. ACM Trans. Math. Soft., submitted.[17℄ Tze Meng Low and Robert van de Geijn. An API for manipulatingmatri
es stored by blo
ks. FLAPACKWorking Note #12 TR-2004-15, The University of Texas at Austin, Department of Computer S
ien
es,May 2004.[18℄ Tze Meng Low, Robert van de Geijn, and Field Van Zee. Extra
ting SMP parallelism for dense linearalgebra algorithms from high-level spe
i�
ations. In PPoPP'05, 2005.[19℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms: The triangularSylvester equation. ACM Transa
tions on Mathemati
al Software, 29(2):218{243, June 2003.[20℄ Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
k Dongarra. MPI: TheComplete Referen
e. The MIT Press, 1996.[21℄ Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv Shah, and Paul Peterson. Compilersupport of the workqueuing exe
ution model for Intel SMP ar
hite
tures. In EWOMP, 2002.[22℄ Robert van de Geijn. Zen and the art of high performan
e parallel
omputing. PLAPACK Tutorialavailable from http://www.
s.utexas.edu/users/plapa
k.12

[23℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MIT Press, 1997.[24℄ Stephen Wolfram. The Mathemati
a Book: 3rd Edition. Cambridge University Press, 1996.

13

