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Abstract

We have built a body of evidence which shows that,
given a mathematical specification of a dense linear
algebra operation to be implemented, it is possible to
mechanically derive families of algorithms and sub-
sequently to mechanically translate these algorithms
into high-performing code. In this paper, we add
to this evidence by showing that the algorithms can
be statically analyzed and translated into directed
acyclic graphs (DAGs) of coarse-grained operations
that are to be performed. DAGs naturally express
parallelism, which we illustrate by representing the
DAGs with the G graphical programming language
used by LabVIEW. The LabVIEW compiler and run-
time execution system then exploit parallelism from
the resulting code. Respectable speedup on a sixteen
core architecture is reported.

1 Introduction

The advent of multi-core and many-core architectures
has brought the concern that these new architectures
have to be programmed. How are we going to evolve
our existing code base to these hostile environments?
Programmers are considered to be ill-equipped to
meet this challenge.

We believe that, for the domain of dense linear al-
gebra, part of the answer is to take the programmer
out of the picture. Instead, we are focusing on mak-
ing the entire process mechanical by starting with a
specification of the operation to be implemented and
then mapping algorithms to a specific architecture.
Over the last decade, we have systematically built a
body of work that together provide evidence that this

goal is achievable [3, 4, 16, 17, 31].
The current paper brings the following new contri-

butions to the forefront:

• It shows that, from a high-level specification, a
directed acyclic graph (DAG) of coarse-grained
operations on coarse-grained data can be stati-
cally generated.

• It demonstrates that the methodology can target
non-traditional languages such as LabVIEW’s
graphical programming language [21], yet this
methodology can also be applied to imperative
languages such as C.

• The approach works whether the matrix is orig-
inally stored as a “flat” matrix (e.g., in column-
major format) or by blocks to improve locality.

• It illustrates how the LabVIEW compiler and
runtime execution system exploit parallelism
from a DAG.

• It reports speedup when a DAG is executed on
a sixteen core architecture.

Together these contributions move us ever closer
to making the entire process of programming high-
quality linear algebra libraries entirely mechanical for
a broad range of target architectures and languages.

The rest of the paper is organized as follows. Since
this paper targets a new audience for our work, we
build the paper around a motivating example, inver-
sion of a triangular matrix, in Section 2. This op-
eration allows us to discuss the essential information
necessary to describe the algorithm at a language-
independent level of abstraction in Section 3. In Sec-
tion 4 we describe the process that analyzes the al-
gorithm and statically generates a DAG. Section 5
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provides performance results. In Section 6, we briefly
mention prior work related to this approach. In Sec-
tion 7, we give concluding remarks on how our work
fits into the bigger picture of generating libraries en-
tirely mechanically and then point out the tantalizing
possibility that the methodology might also be able
to eliminate the software stack altogether, generating
hardware instead.

2 Inversion of a Triangular Ma-
trix

We use inversion of a triangular matrix R := U−1

where U is upper triangular (trinv) as a motivating
example in this paper.1 It is a dense linear algebra
operation that is highly representative of the most
commonly used level-3 Basic Linear Algebra Subpro-
grams (BLAS) [12] and operations supported by, for
example, LAPACK [2] and libFLAME [23].2

It is well understood that in order to attain high
performance, matrix algorithms of this kind must
be cast in terms of blocked computations so that
the bulk of the computation resides in matrix-matrix
multiplication [15]. In Figure 1, we present a blocked
algorithm for computing trinv using the Formal Lin-
ear Algebra Method Environment (FLAME) notation
for expressing linear algebra algorithms [17]. The
thick and thin partition lines have semantic meaning
and capture how algorithms move through the ma-
trices, exposing submatrices on which computation
occurs. Here, the algorithm overwrites the upper tri-
angular part of the original matrix A.

In many of the operations, it is implicitly assumed
that a matrix is upper triangular and/or only the
upper triangular part of a matrix is updated. For
any operation of the form Y := B−1Y , it is implicitly
assumed that B is upper triangular and that Y is
updated by the solution of BX = Y , also known
as a triangular solve with multiple right-hand sides
(trsm). A similar comment holds for Y := Y B−1.

Four blocked algorithms exist for computing
trinv, one of which is numerically unstable. We
present the third variant since the bulk of its compu-
tation lies with general matrix-matrix multiplication
(gemm), A02 := A02 + A01A12. For a more thorough
discussion, we refer to [5] where the inversion of a
symmetric positive definite matrix (spd-inv) is used
to illustrate that the ideal choice of algorithm for a

1Similarly, we can compute R := L−1 where L is lower
triangular.

2We have also applied this methodology to the Cholesky
factorization A→ UT U .

Algorithm: A := A−1
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endwhile

Figure 1: A blocked algorithm for computing the
inverse of an upper triangular matrix where m(B)
stands for the number of rows of B.

1 DO J = 1, N, NB

2 JB = MIN( NB , N-J+1 )

3 CALL DTRSM( ’Left ’, ’Upper ’, ’No transpose ’, ’Non -unit ’,

4 $ JB, N-J-JB+1, -ONE , A( J, J ), LDA ,

5 $ A( J, J+JB ), LDA )

6 CALL DGEMM( ’No transpose ’, ’No transpose ’,

7 $ J-1, N-J-JB+1, JB , ONE , A( 1, J ), LDA ,

8 $

A( J, J+JB ), LDA , ONE , A( 1, J+JB ), LDA )

9 CALL DTRSM( ’Right ’, ’Upper ’, ’No transpose ’, ’Non -unit ’,

10 $ J-1, JB, ONE , A( J, J ), LDA ,

11 $ A( 1, J ), LDA )

12 CALL DTRTI2( ’Upper ’, ’Non -unit ’,

13 $ JB, A( J, J ), LDA , INFO )

14 ENDDO

Figure 2: LAPACK-style implementation of the
blocked algorithm in Figure 1.

given operation is greatly affected by the character-
istics of the target platform.

Traditional programming languages force users to
express an algorithm within the syntax of the lan-
guage, which often obscures the algorithm altogether.
In Figure 2, we show a LAPACK-style implementa-
tion of the blocked algorithm of trinv. It is appar-
ent that nearly all of the semantic information found
in the algorithm shown in Figure 1 has been lost in
translation to this Fortran implementation.

The key abstraction for expressing linear alge-
bra algorithms as DAGs lies in viewing a subma-
trix block as the fundamental unit of data and op-
erations on those blocks (tasks) as the fundamental
unit of computation. By storing matrices hierarchi-
cally [11, 14, 20] with one level of indirection, each
submatrix block can be easily demarcated in order
to determine data depenencies between each task in
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1 FLA_Part_2x2( A, &ATL , &ATR ,

2 &ABL , &ABR , 0, 0, FLA_TL );

3
4 while( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) )

5 {

6 FLA_Repart_2x2_to_3x3(

7 ATL , /**/ ATR , &A00 , /**/ &A01 , &A02 ,

8 /* ************* */ /* ******************** */

9 &A10 , /**/ &A11 , &A12 ,

10 ABL , /**/ ABR , &A20 , /**/ &A21 , &A22 ,

11 1, 1, FLA_BR );

12 /* ---------------------------------------------*/

13 FLASH_Trsm( FLA_LEFT , FLA_UPPER_TRIANGULAR ,

14 FLA_NO_TRANSPOSE , FLA_NONUNIT_DIAG ,

15 FLA_MINUS_ONE , A11 , A12 );

16 FLASH_Gemm( FLA_NO_TRANSPOSE , FLA_NO_TRANSPOSE ,

17 FLA_ONE , A01 , A12 , FLA_ONE , A02 );

18 FLASH_Trsm( FLA_RIGHT , FLA_UPPER_TRIANGULAR ,

19 FLA_NO_TRANSPOSE , FLA_NONUNIT_DIAG ,

20 FLA_ONE , A11 , A01 );

21 FLASH_Trinv( FLA_UPPER_TRIANGULAR ,

22 FLA_NONUNIT_DIAG , A11 );

23 /* ---------------------------------------------*/

24 FLA_Cont_with_3x3_to_2x2(

25 &ATL , /**/ &ATR , A00 , A01 , /**/ A02 ,

26 A10 , A11 , /**/ A12 ,

27 /* ************** */ /* ****************** */

28 &ABL , /**/ &ABR , A20 , A21 , /**/ A22 ,

29 FLA_TL );

30 }

Figure 3: FLASH implementation of the blocked al-
gorithm in Figure 1.

the resulting algorithms-by-blocks. As such, the nodes
of the DAG represent tasks, and the edges repre-
sent data dependencies. See [30] for more details on
interfacing to hierarchical matrices and formulating
algorithms-by-blocks from traditional blocked linear
algebra algorithms.3

In Figure 3, we present an algorithm-by-blocks for
trinv implemented with the FLASH extension to the
FLAME/C API [24]. All the implementation details
about the matrix hierarchy are encapsulated in the
object-oriented matrix data structure. This API was
formulated to closely mimic FLAME notation, which
allows for the simple translation from a language-
independent representation to FLASH implementa-
tion, and back again if desired.

3 Requisite Semantic Informa-
tion for Static Dependence
Analysis

We build upon the work in [31] where the authors
developed a source-to-source translator that con-
verts linear algebra algorithms implementated us-
ing the FLAME/C API [6] into code with explicit
indexing and direct calls to BLAS routines [22].
This effort reduces the overhead associated with
dereferencing object-oriented matrix objects where
the greatest performance gains lie with level-2
BLAS [13] and unblocked LAPACK routines [2].

3This methodology is not applied to unblocked algorithms
because the data granularity would be an individual scalar
instruction.

1 <?xml version="1.0" encoding="ISO -8859 -1"?>

2 <Function name="FLA_Trinv" type="blk" variant="3">

3 <Option type="uplo">FLA_UPPER_TRIANGULAR </Option >

4 <Declaration >

5 <Operand type="matrix" direction="TL->BR" inout="both">

6 A

7 </Operand >

8 </Declaration >

9 <Loop>

10 <Guard >A</Guard>

11 <Update >

12 <Statement name="FLA_Trsm">

13 <Option type="side">FLA_LEFT </Option >

14 <Option type="uplo">FLA_UPPER_TRIANGULAR </Option >

15 <Option type="trans">FLA_NO_TRANSPOSE </Option >

16 <Option type="diag">FLA_NONUNIT_DIAG </Option >

17 <Parameter >FLA_MINUS_ONE </Parameter >

18 <Parameter partition="11">A</Parameter >

19 <Parameter partition="12">A</Parameter >

20 </Statement >

21 <Statement name="FLA_Gemm">

22 <Option type="trans">FLA_NO_TRANSPOSE </Option >

23 <Option type="trans">FLA_NO_TRANSPOSE </Option >

24 <Parameter >FLA_ONE </Parameter >

25 <Parameter partition="01">A</Parameter >

26 <Parameter partition="12">A</Parameter >

27 <Parameter >FLA_ONE </Parameter >

28 <Parameter partition="02">A</Parameter >

29 </Statement >

30 <Statement name="FLA_Trsm">

31 <Option type="side">FLA_RIGHT </Option >

32 <Option type="uplo">FLA_UPPER_TRIANGULAR </Option >

33 <Option type="trans">FLA_NO_TRANSPOSE </Option >

34 <Option type="diag">FLA_NONUNIT_DIAG </Option >

35 <Parameter >FLA_ONE </Parameter >

36 <Parameter partition="11">A</Parameter >

37 <Parameter partition="01">A</Parameter >

38 </Statement >

39 <Statement name="FLA_Trinv">

40 <Option type="uplo">FLA_UPPER_TRIANGULAR </Option >

41 <Option type="diag">FLA_NONUNIT_DIAG </Option >

42 <Parameter partition="11">A</Parameter >

43 </Statement >

44 </Update >

45 </Loop>

46 </Function >

Figure 4: FLAME/XML representation of the
blocked algorithm in Figure 1.

This feat was accomplished by translating high-level
FLAME/C implementations into descriptions of the
linear algebra algorithms with FLAME/XML, a pro-
gramming language-independent representation us-
ing the Extensible Markup Language (XML). The
FLAME/XML description of the algorithm is then
translated into code with explicit indexing.

Using XML frees us from burying the algorithm
underneath layers of syntactic clutter and allows us
to represent the algorithm by storing only language-
independent features.4 FLAME/XML was also de-
signed to closely resemble FLAME notation so as
to preserve the natural readability of FLAME algo-
rithms. We present the FLAME/XML representation
of the blocked algorithm of trinv in Figure 4.

In [31], the authors identified five properties com-
mon to all typical linear algebra algorithms: (1)
the name of the operation; (2) how the algorithm
proceeds through the operands; (3) whether it is a
blocked or unblocked algorithm; (4) the condition for
remaining in the loop (loop-guard); and (5) the up-

4By representing a wide range of linear algebra operations
in XML, we can view the collection of algorithms as a reposi-
tory of knowledge. As a result, we can potentially mine data
from this repository to understand and exploit the nature of
computation expressed in linear algebra algorithms.
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1 <?xml version="1.0" encoding="ISO -8859 -1"?>

2 <Function name="FLA_Trsm">

3 <Declaration >

4 <Operand type="scalar" inout="in">alpha</Operand >

5 <Operand type="matrix" inout="in">A</Operand >

6 <Operand type="matrix" inout="both">B</Operand >

7 </Declaration >

8 </Function >

9 <Function name="FLA_Gemm">

10 <Declaration >

11 <Operand type="scalar" inout="in">alpha</Operand >

12 <Operand type="matrix" inout="in">A</Operand >

13 <Operand type="matrix" inout="in">B</Operand >

14 <Operand type="scalar" inout="in">beta</Operand >

15 <Operand type="matrix" inout="both">C</Operand >

16 </Declaration >

17 </Function >

Figure 5: Input and output parameters for trsm and
gemm using the FLAME/XML representation.

dates within the loop body. In Figure 4, each of these
five semantic properties can be clearly identified.

3.1 Additional Semantic Properties

Even though those five semantic properties are suf-
ficient to perform source-to-source translation of
FLAME/C implementations, statically generating a
DAG requires two additional properties: (1) the
problem size; and (2) input and output parameters
of each operation.

Even though the problem size is not explicitly ex-
pressed within a linear algebra algorithm, it induces
the number of iterations executed by each loop.

In order to identify data dependencies, we need
the input and output parameters of each operation,
which is shown on Line 5 in Figure 4 for trinv and
Figure 5 for trsm and gemm. When dealing with al-
gorithms encoded in typical programming languages,
this information involving input and output parame-
ters is all but lost. For more details on how to system-
atically identify flow (read-after-write), anti (write-
after-read), and output (write-after-write) data de-
pendencies in linear algebra algorithms, see [9].

4 Static Generation of a Di-
rected Acyclic Graph

Our methodology consists of two phases: source code
translation and DAG generation. We first start
from a simplified algorithmic description expressed
in FLAME/XML and then translate that represen-
tation into an intermediate FLASH implementation.
The main difference between this intermediary and
the implementation shown in Figure 3 is that the
translated source code generates a separate set of
source code that builds a directed acyclic graph. This
intermediate FLASH implementation steps through
execution of the algorithm and detects data depen-

Data: Linear algebra algorithm S, block size b
Result: Directed acyclic graph {v, e}
foreach A ∈ Rm×n accessed by S do

for i to m
b do

for j to n
b do

Âi,j := ∅;
end

end
end
while Execute S do

Store Task t 7→ v;
foreach Ai,j accessed by t do

î := i
b , ĵ := j

b ;
if Âî,ĵ 6= ∅ & Âî,ĵ 6= t then

Store Dependency {Âî,ĵ , t} 7→ e;
end
if Ai,j is overwritten by t then

Âî,ĵ := t;
end

end
end

Figure 6: The process that statically generates a
DAG from a linear algebra algorithm and block size.

dencies through annotations that specify input and
output information for each operation.

The DAG generation phase, which is described
further in Figure 6, can be viewed as unrolling
loops within a linear algebra algorithm where mul-
tiple loops can be nested. For example, in the
blocked algorithm for computing trinv, the opera-
tions trsm and gemm are called, both of which are
computed using similar loop-based algorithms, so un-
rolling these nested loops involves elements of inter-
procedural analysis.

Also notice that the blocked algorithm for trinv
also consists of a recursive subproblem. Here, the
trinv subproblem is implementated via an unblocked
algorithm. This issue opens the question as to
whether we should completely unroll all loops for
both blocked and unblocked algorithms, which re-
flects the need to specify data granularity. Since we
have formulated these operations as algorithms-by-
blocks, we restrict ourselves to only unroll blocked
subproblems, which is specified on Line 2 in Figure 4.
As a result, each task mainly consists of level-3 BLAS
operations.

As stated in Section 3, the problem size is required
to generate the DAG, but actually another piece of
information is assumed: the algorithmic block size.
The problem size and block size together determine
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Figure 7: The directed acyclic graph formed by the dependencies of triangular inversion on a 3 × 3 matrix
of blocks. The plain arrows denote flow dependencies, and the arrows with a dash denote anti-dependencies.
The subscripts reflect the order in which the tasks can be executed sequentially.

the number of iterations that are executed and thus
the loop unrolling factor.

In Figure 7, we present the DAG for trinv given
a 3 × 3 matrix of blocks. In this simple example,
if the original matrix A is a 300 × 300 matrix, then
each submatrix block would be 100× 100. It is clear
from the DAG that certain tasks can be executed in
parallel, such as trsm0 and trsm1.

By using hierarchical matrix storage, we have ab-
stracted away the need to specify a block size within
the algorithm since it manifests as the size of each
contiguously stored submatrix block. When striding
over hierarchical matrices, we use a unit block size be-
cause the top-level data structure refers to a matrix
whose elements are pointers to contiguously stored
submatrix blocks, which is highlighted on Line 11 in
Figure 3.

4.1 Determining Block Size and/or
Loop Unrolling Factor

Though we cannot statically determine the problem
size due to the dynamic allocation of matrices, we
can adjust two related variables: block size and loop
unrolling factor.

If we keep the block size constant, the loop un-
rolling factor will grow as a function of the problem
size. With more code being unrolled, the instruc-
tion footprint increases, and thus we expect perfor-
mance to suffer from instruction cache misses.5 On

5Functional and dataflow programming languages can store
the DAG as code, but imperative languages may require the

the other hand, BLAS implementations are tuned for
specific block sizes which depend on the size of the
data cache, so the execution of individual tasks would
attain higher performance with a constant block size.

If we keep the loop unrolling factor constant, fewer
instruction cache misses would result, but the block
size would have to vary. For large problem sizes, indi-
vidual blocks would exceed the size of the data cache,
resulting in data cache misses.

In order to attain load balance between processors,
tasks must roughly have the same weight, which can
be defined via computational runtimes. To achieve
this goal, a simple solution is to divide the matri-
ces into uniform submatrix blocks. Poor data align-
ment might render this strategy ineffective despite
the gains in load balancing if the problem size and
loop unrolling factor are not perfectly divisible by
the data alignment length.

Different architectural features, such as data and
instruction cache sizes, will affect the strategy for
statically generating DAGs. A rudimentary heuris-
tic is to perform DAG generation for a fixed range of
loop unrolling factors and vary the block size dynam-
ically to adjust for different problem sizes.

5 Performance

In this section, we apply our methodology to a graphi-
cal programming language and show performance im-
provements from expressing computation as a DAG.

DAG to be stored separately within internal data structures.
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Figure 8: G code for the summation of three matrices.

5.1 LabVIEW

We use LabVIEW [21] and its graphical program-
ming language (G) as the testing environment for
our DAG generation methodology. G is data flow
language where virtual instruments (VI), which en-
capsulate functions, are connected via wires to repre-
sent the explicit data flow of variables. In Figure 8,
we show G code that summates three input matrices.
The input and output operands for each VI are easily
recognizable in Figure 8 where the summation VI has
two matrices as inputs and one resulting output.

G allows us to easily encode a DAG of tasks
where each VI represents a task and the wires rep-
resent flow dependencies between tasks. Due to the
data flow nature of this programming language, anti-
dependencies cannot exist because variables are never
overwritten.

In Figure 9, we show the automatically generated
G code for trinv given a 3 × 3 matrix of blocks,
which corresponds to Figure 7 without any anti-
dependencies. As you can see, handcoding this di-
agram for operations with larger problem sizes would
be a daunting task.

The runtime execution system of LabVIEW at-
tempts to exploit opportunities for parallelism within
G diagrams, but as with imperative programming
languages, complex data dependencies, interprocedu-
ral analysis, and varying control flow prevent Lab-
VIEW from fully parallelizing many computations.

LabVIEW has an inability to link with multi-
threaded BLAS libraries because it cannot explic-
itly control the threads spawned by those external
libraries. This problem became the primary motiva-
tion to develop this static DAG generation method-
ology for leveraging the LabVIEW compiler and run-
time execution system to exploit parallelism. As a
result, a LabVIEW application that controls a large-
scale telescope, which in part computes a Cholesky

factorization, can greatly benefit from our approach.

5.2 Target Architecture

All experiments were performed on a 16-core AMD
machine consisting of four 1.9 GHz quad-core
Opteron processors, each with 4 GB of general-
purpose physical memory. We used LabVIEW 8.6
running on Windows XP, which links to a single-
threaded Intel MKL 7.2 library for its BLAS and LA-
PACK functionality.

5.3 Implementations

We report the performance in GFLOPS (109 floating
point operations per second) of two trinv implemen-
tations: the single-threaded dtrtri routine present
in MKL, and DAG representations in G. We per-
formed static loop unrolling for 5×5 through 10×10
matrix of blocks, allowing the block size to vary pro-
portionally as a function of the overall problem size.
The DAG results also included the time to copy a
matrix from flat row-major storage to a hierarchical
matrix and also back to flat storage.

5.4 Results

Performance results are reported in Figure 10. Sev-
eral comments are in order:

• Due to LabVIEW’s ability to exploit the op-
portunities for parallelism exposed by a DAG,
larger loop unrolling factors provided incremen-
tal improvements in performance. Larger loop
unrolling factors create DAGs with a larger num-
ber of tasks, which leads to more opportunities
for parallelism among the tasks. For this range of
problem sizes, 1000× 1000 through 3000× 3000
in increments of 200 × 200, performance gains
reach an upper limit with a 10 × 10 matrix of
blocks.

• LabVIEW is able to provide significant speedup
versus the single-threaded MKL implementation.
However, the LabVIEW implementations exhib-
ited poor efficiency; despite having access to six-
teen cores, the speedup observed was roughly
five.

The compiler and runtime execution system that
exist within LabVIEW are designed as a gen-
eral purpose G code execution mechanism and
therefore must be flexible enough to handle com-
plex control flow constructs. On the other hand,
domain-specific runtime systems might only han-
dle computation expressed as a DAG without
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Figure 10: Performance results of single-threaded MKL versus DAG implementations of trinv.

any control flow variations, so more complex
scheduling heuristics can be employed to attain
better efficiency on different parallel architec-
tures.

• The use of hierachical matrix storage allows for
better spatial locality of submatrix blocks. Lab-
VIEW forces internal copies when a wire is split,
creating an inherent bottleneck in performance.
Even though this overhead is amortized across all
computation within the DAG, temporal locality
is lost through the allocation of new submatrix
blocks despite the inherent reuse of data. Ad-
ditional memory management is required, which
also adversely affects performance.

Anti-dependencies do not exist in G because of
the implicit copies. Despite this extra overhead,
the lack of these dependencies potentially cre-
ates additional opportunities for parallelism that
are not present when variables are explicitly read
and overwritten.

• On top of the hidden copy of submatrices at
forked wires, an explicit memory copy is re-
quired to convert flat matrices to hierarchical
ones. Storing submatrices contiguously creates
overhead up-front, but this storage scheme pre-
serves spatial locality.

Even though we used trinv as a motivating ex-

ample, the DAG generation methodology can be
applied to multiple linear algebra operations in
sequence. In [9], parallelism is extracted from
the inversion of a symmetric positive definite ma-
trix, which may be implemented by computing
the Cholesky factorization A → UT U , followed
by triangular inversion R := U−1, and then tri-
angular matrix multiplication by its transpose
A−1 := RRT . Since each of these constituent op-
erations of spd-inv are computed via loop-based
algorithms, we can apply this methodology to
generate a DAG for all three operations together.
Since the computational complexity O(n3) grows
faster than the data complexity O(n2), the over-
head of copying the matrix to a hierarchical ma-
trix becomes a smaller fraction of the overall
amount of computation.

As a result of using our DAG generation methodol-
ogy, we have attained modest performance gains us-
ing the existing tools provided by LabVIEW without
incorporating complex scheduling heuristics into the
general purpose runtime execution system.

6 Related Work

Modern superscalar computer architectures have
long used out-of-order execution techniques, akin to

8



Tomasulo’s algorithm [33], to exploit instruction-level
parallelism [19]. Data dependencies exist between the
register and memory locations of different scalar in-
structions. Once all data dependencies are fulfilled
for each operand, instructions are dispatched and
scheduled out-of-order to execute in parallel on sep-
arate functional units.

The data dependencies between scalar instruc-
tions also form a DAG where the nodes now rep-
resent individual scalar instructions as opposed to
coarse-grained tasks. As such, we can view out-of-
order superscalar execution as an analog to schedul-
ing DAGs in parallel. Recent research projects,
such as PLASMA [7], SMPSs [26], and SuperMa-
trix [8, 9, 10, 30], have leveraged the idea of DAG
scheduling in order to exploit parallelism from ma-
trix computations, such as the Cholesky factoriza-
tion [1, 18].

With the recent work on scheduling matrix com-
putations in parallel, building a DAG from an
algorithm-by-blocks is done sequentially at run-
time [7, 26, 30]. This process invokes Amdahl’s law
where the sequential component of DAG construc-
tion limits the potential speedup of the parallelized
matrix computation. The focus of this paper is
how to statically generate a DAG and thus decou-
ple the parallel scheduling of tasks in a DAG from
the static dependence analysis. We can potentially
adapt this methodology to interface with domain-
specific schedulers such as SuperMatrix in order to
eliminate this sequential overhead and provide more
dramatic speedups in performance.

The traditional approach for performing static de-
pendence analysis entails trying to recover semantic
information from an implementation of an algorithm,
usually instantiated in programming languages such
as C or Fortran [27]. The difficulty of this approach is
that semantic information is obfuscated behind many
of the implementation details such as explicit index-
ing of matrices [25]. Relatively simple information
such as the input and output parameters of each op-
eration become almost impossible to recover because
of the complexities incurred from pointer aliasing and
varying interprocedural control flow.

Earlier work on DAG scheduling of matrix compu-
tations [35] also dealt with the static generation of
a DAG but also performed the static scheduling of
tasks for distributed-memory architectures whereas
recent work is geared towards dynamic scheduling
for shared-memory architectures [7, 26, 30]. C-
based programming language extensions are pre-
sented in [26, 35] to construct a DAG whereas we
present a methodology for encapsulating linear alge-
bra algorithms in a simple, programming language-

Figure 11: A system for transforming linear algebra
operations to implementations.

independent representation. As a result, we address
the issue of progammability.

SPIRAL is a project that automatically generates
and optimizes code starting from a mathematical
specification of linear transforms [28]. Their prob-
lem domain only presents itself with a limited set
of tunable parameters, so the generated code pro-
duced by SPIRAL is quite efficient. On the other
hand, matrix computations provide a vastly larger
search space of such parameters and hence our us-
ing a simple heuristic for determining the block size
and loop unrolling factor. Thus far, the auto-tuning
of BLAS libraries has only dealt with optimizing se-
quential kernels [32, 34].

7 Conclusion

The results in this paper, in and by themselves, rep-
resent an interesting case study of how “knowledge”
stored as information in an XML description can be
statically analyzed, yielding a DAG that can then be
used to exploit parallelism. It is also provides addi-
tional evidence that it is possible to change program-
ming from an art that requires expert human un-
derstanding into a system that mechanically exploits
the knowledge of an expert human in this problem
domain.

In previous work, we showed that for a broad class
of dense linear algebra operations it is possible to
take a description of an operation and systematically
transform this description into a family of algorithms
that computes the operation [4]. The process often
yields new algorithms even when no algorithms were
previously known for the given operation [29]. Next,
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we showed that this process could be made mechani-
cal [3]. The output of this process can be a high-level
description and knowledge about those algorithms
(e.g., a cost function or numerical properties).

What we have shown in [31] and this paper is
that this knowledge can, for example, be represented
with XML, as illustrated in Figure 11. From this in-
termediate representation, a number of different im-
plementations can be obtained via relatively simple
rewrite rules. The analysis that yields a DAG dis-
cussed in this paper is just one of several possibilities.
For example, we can transform algorithms into our
FLAME/C API for sequential routines or generate
code at a level similar to that used by traditional li-
braries like LAPACK, as described in [31] which also
has a more thorough discussion about the different
outputs we have explored for that system.

We finish with a final possible output, which we
find particularly interesting. It should be possible to
map algorithms directly to hardware. After all, the G
code in Figure 9 resembles a circuit. In other words,
we may be able to mechanically generate special-
purpose hardware for commonly used linear algebra
operations, circumventing the software stack entirely.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.
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