Runtime Data Flow Scheduling of Matrix Computations
FLAME Working Note #39

Ernie Chan
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
echan@cs.utexas.edu

ABSTRACT

We investigate the scheduling of matrix computations ex-
pressed as directed acyclic graphs for shared-memory par-
allelism. Because of the data granularity in this problem
domain, even slight variations in load balance or data lo-
cality can greatly affect performance. Well-known schedul-
ing algorithms such as work stealing have proven time and
space bounds, but these bounds do not provide a discernable
indicator of performance between different scheduling algo-
rithms and heuristics. We provide a flexible framework for
scheduling matrix computations, which we use to empirically
quantify different scheduling algorithms. By building soft-
ware solutions based on hardware techniques through lever-
aging a cache coherence protocol, we develop a scheduling
algorithm that addresses both load balance and data locality
simultaneously and show its performance benefits.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance

Keywords

algorithm-by-blocks, cache coherence protocol, directed acyclic

graph, queueing theory

1. INTRODUCTION

With the emergence of multicore architectures, exploiting
parallelism has become paramount for the performance of
computationally intensive applications. The scheduling lit-
erature contains a wide range of papers and books, but
many of those scheduling algorithms and heuristics can only
be applied statically [26] |37, 41] or mainly deal with load
balance without considering data communication |11, [20].
Work stealing is a well-known scheduling algorithm that has
the proven time bound of O(T/p + D) where T is the to-
tal amount of work, p is the number of threads, and D is

the critical path length of the computation [12]. Here we
deal strictly with the scheduling of matrix computations on
shared-memory architectures, and that bound does not pro-
vide any practical insight about the potential performance
of work stealing compared to other scheduling algorithms.
In this paper, we present an analysis of different scheduling
algorithms and leverage the useful aspects of each to develop
a new scheduling algorithm for matrix computations.

In our previous papers, we have primarily focused on pro-
grammability by leveraging abstractions from the Formal
Linear Algebra Method Environment (FLAME) project |7}
8, [30L |40]. These abstractions allow us to create the sep-
aration of concerns that completely hides the exploitation
of parallelism from the code that implements the linear al-
gebra algorithms. By doing so, we developed a clean so-
lution for parallelizing matrix computations, once thought
by many to be a difficult and daunting problem. In those
papers, we focused this methodology on parallelizing Linear
Algebra PACKage (LAPACK) [4] level operations such as
the LU and QR factorizations. We used relatively simple
scheduling algorithms and did not address the many com-
plex scheduling issues presented by this problem domain yet
were still able to demonstrate impressive performance [17]
19} |47].

In order to attain high performance, it is well understood
that matrix algorithms must be cast in terms of blocked com-
putations so that the bulk of the computation is in matrix-
matrix multiplication [28]. By storing matrices hierarchi-
cally [23] and viewing submatrix blocks as the unit of data
and operations with blocks (tasks) as the unit of compu-
tation, we introduced the concept of algorithms-by-blocks.
We link to optimized Basic Linear Algebra Subprograms
(BLAS) [21} |22, |38] libraries for the execution of individ-
ual tasks. We describe the process to map matrix compu-
tations to algorithms-by-blocks and different matrix storage
schemes in [17] 47].

The key abstraction for exploiting parallelism lies with map-
ping an algorithm-by-blocks to a directed acyclic graph (DAG)
where tasks represent the nodes of the graph and data de-
pendencies (flow, anti, and output) between tasks represent
the edges. See [19] on how to detect all three types of data
dependencies within linear algebra algorithms.

We developed the SuperMatrix runtime system through a
clear separation of concerns where we divide the process of

exploiting parallelism into two phases: analyzer and dis-
patcher. The analyzer phase constructs a DAG by storing
tasks while sequentially stepping through the execution of
an algorithm-by-blocks alongside detecting data dependen-
cies between all tasks. Only the input and output parame-
ters of each task are needed to detect dependencies. Once
the analyzer is done, the dispatcher phase is invoked which
dispatches and schedules tasks to threads. We focus on this
second phase and the ramifications of scheduling in this pa-
per.

The current paper brings the following contributions to the
forefront:

e A description of the algorithm that dispatches tasks to
threads.

e Discussions of queueing theory and its application to
the problem domain of scheduling matrix computa-
tions.

e A review and analysis of dynamic scheduling algo-
rithms, which show that solely focusing on load balanc-
ing is insufficient for attaining the best performance.

e A new scheduling algorithm that addresses both data
locality and load balancing simultaneously by using
hardware techniques in software.

Together these contributions show that scheduling should
incorporate information about the underlying architecture
as opposed to being oblivious to it, all done without adding
exorbitant complexity to the runtime system.

The rest of the paper is organized as follows. In Section [2]
we describe the process for dispatching tasks to threads in
SuperMatrix. We discuss queueing theory in Section [3] Dif-
ferent scheduling algorithms are described in Section @] We
introduce a new scheduling algorithm in Section [5| for which
we provide performance results in Section [} We provide re-
lated work in Section [7]and conclude the paper in Section
where we also discuss future work.

2. SUPERMATRIX RUNTIME SYSTEM

In this section, we focus on the dispatcher phase of the Su-
perMatrix runtime system. We use the Cholesky factoriza-
tion as a motivating example to illustrate the general algo-
rithm for dispatching tasks to threads. Despite using this
operation in several of our previous papers, it continues to be
highly representative of other linear algebra operations and
is an excellent vehicle for describing the scheduling mecha-
nisms in this paper.

2.1 Cholesky factorization

The Cholesky factorization of a symmetric positive definite
matrix A € R"*" is given by A — LLT where L is lower
triangular.

The blocked right-looking algorithm for computing the Cholesky

factorization consists of a recursive subproblem (cHOL), fol-
lowed by a block-panel triangular solve with multiple right-
hand sides (TRSM), then a panel-panel symmetric rank-k

Az g =

-T
A2‘1A1,1
TRSM7

Az g —i=
T
A2,1A2,1

Figure 1: The directed acyclic graph for the
Cholesky factorization on a 3 x 3 matrix of blocks
where A —= B represents A .= A — B.

update (SYRK), and finally the recursive invocation. This re-
cursive algorithm is typically reformulated as a loop-based
algorithm where the recursive subproblem is implemented
via an unblocked algorithm. We can then take the iterative
algorithm and convert it to an algorithm-by-blocks. See [19]
for further details about this operation and its different al-
gorithmic variants.

In Figure [1} we illustrate the DAG for the Cholesky factor-
ization on a 3 X 3 matrix of blocks with each task’s input and
output parameters. The names of each task are underlined
where the subscript denotes an order in which a task can be
sequentially executed by the algorithm-by-blocks.

In the DAG, a CHOL task overwrites a block that is later
read by a TRSM task, which leads to flow dependencies from
the CHOL to the TRSM tasks. For instance, CHOLg overwrites
Ag,o while both TRSM; and TRSMz read it. Similar flow de-
pendencies occur between TRSM and SYRK. General matrix-
matrix multiplication (GEMM) resides in the DAG since it is
a subproblem of the panel-panel SYRK. The recursive invo-
cation for the Cholesky factorization accesses the submatrix,
which may consist of a conglomeration of many blocks, that
is overwritten by the panel-panel sYRK. This fact leads to
the remaining dependencies in the DAG where for instance
SYRK3 and CHOLg both overwrite Aq ;.

foreach task in DAG do
if task is ready then
Enqueue task
end
end
while tasks are available do
Dequeue task
Execute task
foreach dependent task do
Update dependent task
if dependent task is ready then
Enqueue dependent task
end
end
end

Figure 2: The algorithm that all threads execute in
order to dispatch and schedule tasks from a directed
acyclic graph.

2.2 Dispatcher

Once the DAG has been fully constructed, the dispatcher
phase is invoked where the threads are spawned, tasks are
scheduled and dispatched to threads, and finally the threads
are joined back together once all tasks have been executed.
Figure [2| presents the algorithm that every thread performs
in order to dispatch tasks. For more details on the inter-
face and implementation of the SuperMatrix runtime sys-
tem, see [18].

If there is a directed edge from node ¢; to node t;, then t;
is the parent of t;, and ¢; is the child of ¢;. A root is a
node with no parents. We define a ready task as one that
is either a root or all of its parents have been executedEI A
task is available if it is ready and waiting to be executed.
A dependent task is simply the child of a certain task.
We update a dependent task by notifying it that one of its
parents has been executed. The enqueue and dequeue rou-
tines perform the scheduling of tasks, which we will discuss
further in Section [l

For example in Figure[l} CHOLg is the only root in the DAG
and thus is enqueued as an initial ready task. A particular
thread will dequeue that task, execute it, and then update
its dependent tasks TRSM; and TRSM2, both of which will
then become ready.

The need for mutual exclusion arises only at four modu-
larized locations within the dispatcher. The first two occur
when invoking the enqueue and dequeue routines. The third
involves updating each dependent task, and the final one
comes when checking the terminating condition of the loop
to see if any ready and available tasks remain.

2.3 Proof of correctness

When an algorithm-by-blocks is mapped to DAG, directed
edges exist because of the nature where one task produces
a value and a subsequent task consumes that value. The
graph is acyclic since a sequential execution of tasks exists
where a task cannot depend upon a task that occurs after it

!'We use the words task and node interchangeably.

does, and hence there cannot exist any loops. A tree is not
formed since a task can depend on more than one task.

The algorithm in Figure [2] is guaranteed to terminate given
an arbitrary DAG. A simple proof by contradiction can be
used to validate this fact. Assume that there exists at least
one task that is not executed. That extraneous task must
have at least one un-executed parent; otherwise it would be
ready and available. This one un-executed parent can only
exist if inductively one of its parents also has not been exe-
cuted. Since we have a finite set of tasks in the DAG, there
must exist an un-executed task that is a root. If no such task
exists, then there exists a loop in the graph, and this fact
breaks the constraint of no longer having an acyclic graph.
If there does exist a root that has not been executed, then
this situation leads to a contradiction since that task would
be ready and subsequently executed by the dispatcher.

3. QUEUEING THEORY

In this section, we give an overview of classic definitions
and results from queueing theory. We apply queueing the-
ory to the scheduling of matrix computations mapped to a
DAG in order to better help us analyze different scheduling
algorithms in Section [5.3] instead of attempting to provide
asymptotic time and space bounds.

Queueing theory was first developed to analyze communica-
tion networks [24], and it is the study of waiting lines where
customers from a source must wait for a service [29]. In
this problem domain, customers are tasks, and the source
is a DAG, and a service is execution of those tasks on a
processing element by a thread.

We use Kendall’s notation [33] for describing queueing sys-
tems:

A/B/c/K/m/Z.

A is the arrival distribution, and B is the service time dis-
tribution. c¢ is the number of the servers in the system. K
is the maximum capacity of a queue, and m is the number
of customers in the source. Z is the the queue discipline.

We assume that the arrival and service time distributions are
both exponential, which is denoted with M. For instance the
exponential distribution for arrival times can be described
as

Pr<t]=1-e*

where 7 is the interarrival time of the next customer to the
system and A is the arrival rate of customers at some time
t [3]. There is also a general distribution G where no as-
sumptions are made about the distribution. The number
of servers equals the number of threads p. Kendall’s nota-
tion can be abbreviated to the first three categories where
typically the maximum capacity and the size of the source
are both assumed to be infinite and the queue discipline
is first-in first-out (FIFO). For instance an M /M /p system
represents M /M /p/oco/oco/FIFO.

In Table[I] we present some common symbols used in queue-
ing theory. Little’s formula [39] for the expected number of
customers in the queueing system in a steady state is

L= \W. (1)

| Queueing Theory Definitions |

Expected number of customers in the system
Average customer arrival rate to the system
Expected time a customer spends in the system
Expected time a customer spends in a queue
Expected customer service time

Average customer service rate per server

Server utilization

btﬁﬁ%»h

Table 1: A list of some basic queueing theory defini-
tions where the expected values result from a steady
state of the queueing system.

A queueing system reaches a steady state after a sufficient
number of customers have arrived to fill the queues, and thus
the expected number of customers in the system is indepen-
dent of the time elapsed. The expected time of customers
spent in the system is

W =W, + W, (2)

which equals the waiting time in a queue plus the time for
servicing. The average service rate per server is

m= 3)

which is the rate customers are processed when a server is
busy. Server utilization is then

A
” (4)

which represents the probability any server in the system is
busy. We will assume that p < 1 in order for the queueing
system to reach a steady state.

p =

Whenever a queueing system decreases its expected waiting
time or increases server utilization, we equate that to an
increase in load balance. We can also model a decrease in
data communication by a decrease in the expected service
time or inversely as an increase in the average service rate.

3.1 Single vs. multiple queues

In Figure [3] we depict two multi-server queueing systems.
A single-queue multi-server system is in the left where all
servers access one queue, which represents an M/M /p sys-
tem. A multi-queue multi-server system is in the right where
each server has its own dedicated queue, which represents a
system with p separate M /M /1 queues.

It is quite intuitive that servicing multiple servers using a
single queue is more efficient than doing so from separate
queues. There is nonzero probability that a customer will
be waiting for a service in one of the p independent queues
while another server is idle. On the other hand, that sit-
uation cannot occur in an M/M/p queue since a customer
at the head of the queue is serviced as soon as a server is
available. As an example, grocery stores use independent
M/M/1 queues to service each cashier in order to delay the
time shoppers spend waiting to get checked out, which al-
lows the stores to entice shoppers with last minute candy and
magazine purchases. Banks use an M /M /p queue where a
single line services p tellers to reduce the time customers
spend waiting in line.

DO

Figure 3: Depictions of a single-queue multi-server
system (left) and a multi-queue multi-server system
(right) each with p processing elements.

This fact was proven in [51]. If we denote the expected
waiting time within a queue of an M/M/p queue as W, and
p-M/M/1 queues as W7, then the authors showed that

W, <Wwp

where W! = WP and A' = A?. One of their methods of proof
does not require the assumption of an exponential distribu-
tion for either the arrival or service times, so this analysis
can apply to G/G/p and p-G/G/1 queueing systems.

3.2 Conservation law of priority queues

Many queue disciplines exist besides FIFO such as last-in
first-out (LIFO), random selection for service (RSS), or pri-
ority service (PRI). A priority service is one where customers
are assigned priorities, and the queue is sorted according to
those priorities. Ties can be broken between customers with
the same priority according to a FIFO order. We will deal
with nonpreemptive priority queues where a customer will
complete its service even if a customer with a higher priority
arrives.

If we denote the expected waiting time of customers in a
system with a FIFO queue discipline as WF¥C and one
with priority service as WTR! then the conservation law
states that

FIFO PRI
w =W

The conservation law applies to any queue discipline as long
as the priority is not dependent upon service times and
servers are not left intentionally idle while customers wait.
This law was proven in 34} 35] for M/G/1 queues and then
extended to G/G/1 queues in [49] and finally to G/G/p
queues in [6]. The conservation law is also quite intuitive
since it is an example of a zero-sum game. The time a cus-
tomer saves waiting in the queue by getting serviced earlier
results in another customer having to wait longer. While
the expected waiting time will stay the same, its distribu-
tion will change to have a wider variance when using PRI
instead of FIFO queue discipline. The arrival and service
time distributions are not affected by the varying use of
queue disciplines.

3.3 Application of queueing theory to matrix

computations
A single queue implementation requires the need for mutual
exclusion when enqueueing and dequeueing from that shared

resource. This bottleneck can potentially limit the speedup
of parallel applications through serializing the access to that
single queue. This overhead is nearly negligible in this prob-
lem domain because the data granularity of each task greatly
outweighs the cost of acquiring mutual exclusion. Each task
is composed of matrix computations which perform O(n?)
operations on O(n?) data where n is the matrix dimension.

In order to quantify the scheduling of matrix computations
to queueing theory, we need to make several simplifying as-
sumptions. The arrival times of tasks do not quite follow
an exponential distribution since the enqueueing of tasks
is dependent on the structure of the source DAG and is
only done when a task’s parent tasks have finished execu-
tion. Since threads execute and enqueue tasks simultane-
ously once reaching a steady state, we make the simplifying
assumption of an exponential arrival time distribution.

As we will show in Section[5] the service times of each task do
not follow a Markovian property where each is “memoryless”
of the ones executed before itself. For the time being, we
will assume that we can model the execution times of each
task using its floating point operation count, which do not
depend upon the state of tasks executed previously. We
store hierarchical matrices where every submatrix block has
the same block size b only with the exception of the edge
cases. As a result each task operates on blocks of equal size,
so the computational costs of each task have the same order
of magnitude O(b*). We generally chose a block size so that
the matrix operands of a task roughly fill intermediate levels
of cache on a processing element.

We know that the maximum queue capacity and the size
of the source is K where K is now defined as the num-
ber of tasks in a DAG. We then have M/M/p/K/K and
p-M/M/1/K/K queues where each have a FIFO or PRI
queue discipline. In the p-M/M/1 queue system, each queue
is bounded to K because of the case where all tasks are as-
signed to one particular queue. The analysis of a queueing
system can be simplified by assuming infinite queue capacity
and source size.

Through these simplifying assumptions, we can apply the
analysis of these multi-server systems for scheduling matrix
computations. Note that both the single versus multiple
queue and priority queue analyses can be applied to systems
with general arrival and service time distributions. As such,
the use of a single queue implementation results in better
load balancing since it reduces the time tasks spend waiting
to be executed by a thread and thus increases the server
utilization where the threads are kept busy executing more
frequently.

4. SCHEDULING ALGORITHMS

How threads enqueue and dequeue tasks within the dis-
patcher determines the scheduling of those tasks. We present
three scheduling algorithms and heuristics for priority queues,
which can applied each of those three.

4.1 Single FIFO queue

Here all tasks are enqueued at the tail of a single queue, and
all threads dequeue tasks from the head, which results in a
FIFO order. Whenever tasks are ready and available, an idle

thread will immediately dequeue a task to execute as soon
as it gains mutual exclusion to the global queue. Because of
this property, this scheduling algorithm reduces the amount
of time each thread does not perform useful computation.

4.2 Data affinity

We introduced the idea of data affinity in [17] where tasks are
assigned to threads according to a simple owner computes
rule. A thread executes all tasks that overwrite a particular
block. One task to thread assignment is a two-dimensional
block cyclic (2D) distribution where blocks are mapped to
a mesh of threads according to its row and column indices
within the matrix of blocks. This 2D assignment was in-
spired by its previous use on distributed-memory architec-
tures in libraries such as ScaLAPACK [9]. Another example
is a round-robin assignment of blocks to threads.

Each thread has its own associated FIFO queue from which
it dequeues. A thread will need to enqueue ready dependent
tasks to the particular queue that task is assigned, which
might not be itself.

Data affinity attempts to optimize for data locality. By only
allowing one thread to overwrite a particular block, we try
to restrict the total number of threads that access a block.
If thread affinity is used where a thread is bound to a cer-
tain processing element by the operating system, then we
reduce data communication through this conceptually sim-
ple scheduling algorithm.

4.3 Work stealing

Work stealing also has separate FIFO queues for each thread.
All initial ready tasks are assigned to a particular thread. As
tasks execute, all of the ready dependent tasks are enqueued
to the same thread that executes their parent. If a task has
multiple parents, then the thread that performs the last up-
date to enable that dependent task to become ready will
enqueue the task onto its own queue. If an idle thread’s as-
sociated queue is empty, it will attempt to steal a task from
the tail of a randomly selected thread’s queue until one is
found or all tasks are executed [12].

A work stealing optimization for data locality was addressed
in [1] where each thread has an associated mailbox along
with its queue. A thread will enqueue a ready dependent
task onto its own queue as usual but will also place it in the
task’s assigned mailbox. Before a thread attempts to steal,
it will first check its mailbox to see if there are any ready
and available tasks. Again, a 2D distribution can be used
to assign tasks to threads’ mailboxes.

4.4 Priority queue heuristics

The above three scheduling algorithms all use FIFO queues
where the scheduling of tasks is dependent upon the order
in which the tasks are stored. Instead, each of the three can
use priority queues where tasks are sorted according to a
certain heuristic.

Incomparable nodes in a DAG are a set of nodes for which
there is not a directed path between any pair of nodes where
a path is a sequence of edges connecting two nodes. As such,
incomparable nodes can potentially be executed in parallel.

| Scheduling | Queues [Queueing System |
Single FIFO queue 1 M/M/p
Data affinity P p-M/M/1
Work stealing D p-M/M/1
Cache affinity 1 M/M/p/oo/oo/PRI

Table 2: A list of the different scheduling algorithms
and the number of queues and the type of queue-
ing system used by each where p is the number of
threads.

In Figure SYRK5s and CHOLg¢ are incomparable. When
given the choice between scheduling those two tasks, CHOLg
could be selected first because it has three descendants ver-
sus just two of SYRKs. A node ¢; is a descendant of node ¢; if
there is a directed path from ¢; to ¢;. This example demon-
strates the use of sorting tasks according to the height of a
node where the height is the longest path from a node to a
leaf. A leafis a node with no children, and CHOLg is the only
leaf in this DAG. This heuristic favors tasks on the critical
path of execution, the height of a root in the DAG, which
in this example is seven where CHOLy — TRSM; — SYRK3 —
CHOLg — TRSM7 — SYRKg — CHOLg must be executed in
order.

Another heuristic is the number of children of a task. For
instance, TRSMz would be selected before SYRK3 in this case
despite both tasks having the same height. The total num-
ber of descendants of a task is another heuristic. We can
also augment the different heuristics by using a weighted
sum according to the floating point operation count of each
task. These heuristics are all dependent upon the structure
of the DAG.

4.5 Summary

We provide an overview of these different scheduling algo-
rithms along with the number of queues required for each
and the type of queueing systems each represents in Table
from which we will discuss cache affinity in Section 5] Work
stealing is akin to a multi-queue multi-server queueing sys-
tem with jockeying where tasks can switch queues to ones
with shorter waiting lines.

A single queue implementation reduces the time threads
are idle despite introducing a bottleneck through the need
to gain mutual exclusion in order access the global queue.
Scheduling with data affinity is highly dependent upon the
task to thread assignment which may create wide load inbal-
ances, yet the cost of enqueuing and dequeuing from queues
dedicated to each thread is much less expensive. Work steal-
ing also optimizes for load balancing without the global bot-
tleneck, yet it introduces an extra level of randomness into
the scheduling.

We do not provide results for work stealing and data affinity
in Section [6] because we show in [I8] that work stealing and
a single FIFO queue attain the same performance signature
since both attempt to only optimize for load balance and
that 2D data affinity usually under-performs compared to
the others because of its poor load balancing properties. We
also explain that the mailbox optimization for work stealing
does not provide a significant performance increase since the

number of steals incurred in this problem domain typically
is quite low compared to the total number of tasks.

S. CACHE AFFINITY

In Section [4] we presented several different scheduling al-
gorithms that attempt to optimize for either load balance
or data locality. In this section, we describe and analyze a
new scheduling algorithm that strives to balance these two
aspects simultaneously.

The performance of a single FIFO queue and 2D data affinity
are roughly the same when executing the Cholesky factoriza-
tion with a 5000 x 5000 matrix on the architecture described
in Section After instrumenting the code and gathering
the beginning and ending times of each task, we found that
each thread was idle for almost 25% of the parallel execu-
tion time when using 2D data affinity while the single FIFO
queue incurred idle threads only 6% of the time. A single
queue provides better load balance than multiple queues as
explained in Section [3] which is highlighted by this example,
yet the explanation for the similar performance signatures
despite this discrepancy lies with the reduction in data com-
munication.

5.1 A brief overview of a cache coherence pro-

tocol
We will assume a write-once cache coherence protocol is used
to provide the shared-memory parallelism abstraction [5}
27].

A cache line can be one of four states. An invalid cache
line is one that has been invalidated by updates to the same
data on another cache, so the data is incoherent. It is valid
if it has been read into the cache and is not modified. A
cache line is reserved if it is the only copy of the data in
any cache. It is dirty if the cache line has been modified,
but the data has not been written back to main memory.

When a thread accesses a cache line, only one of four occur-
rences can happen. On a read hit, the data is in the cache
and no state change occurs. A thread reads from main mem-
ory for a read miss, but if there is a dirty copy in any other
cache, it first must be written back. Any dirty or reserved
cache lines will then become valid ones. On a write hit,
dirty or reserved cache lines are modified and set to dirty.
Valid cache lines become reserved, and then the modified
data is immediately written back to main memory, and all
other copies will become invalid. A write miss invokes the
same state changes as a read miss followed by a write hit.

5.2 Scheduling with software caches

Data affinity performs particurlarly well because there is
a high likelihood that there is a cache hit for the blocks
updated by each task. We want to replicate this behavior
without needing the restriction of using multiple queues. In
order to do so, we maintain a software cache for each thread
that approximates the contents of the physical cache for the
associated processing element to which a thread is mapped.
The data granularity in this problem domain allows us to
amortize the cost of managing these software caches quite
efficiently.

| Stage | Thread 1 Thread 2 |
1 CHOLg
(Ao.0)
9 TRSM1 TRSMg
(A1,0,40,0) (Az,0,A40,0)
3 SYRK3 GEMMg
(A1,1,A1,0,40,0) (A2,1, A0, A1,0, A0,0)
4 SYRK35 CHOLg
(Az2, 42,0, A1,0) (A1,1,A421,A20,A10)
5 TRSM~7
(A21,A11, Az, Az0)
6 SYRKSg
(Az2,A21,A11,A20)
7 CHOLg
(A2, A21,A11,A2,0)

Figure 4: Simulated SuperMatrix execution of the
DAG from Figure [I] using a single FIFO queue with
two threads where the first thread gains mutual ex-
clusion before the second thread. For illustrative
purposes, this simulation assumes that each thread
performs lock-step synchronization after executing
a single task, which we denote as a single stage. We
also show the valid contents of the cache for each
thread after the execution of every stage updated
via the simplified write-once cache coherence proto-
col. Each cache has a capacity of four blocks and
is ordered according to the most recently used from
left to right. The blocks colored in blue incur a cache
miss while the ones in red have a cache hit.

We make several simplifying abstractions. The software
cache uses a least recently used (LRU) replacement policy.
Each cache line is the size of a submatrix block, and the
cache is fully associative. The cache is kept coherent using a
simplified write-once protocol where each cache line is either
valid or invalid, ignoring the reserved and dirty states. We
can also simulate a subset of threads sharing a cache.

In Figure [d we present the blocks residing in the cache of
each thread during the simulated execution of the DAG from
Figure[[] In the first two stages, there is only one cache hit
with Ap,0 on thread 1 since the caches are cold. On the
other hand, the last two stages have three cache hits since
the cache on thread 1 has sufficiently warmed up. Since we
are using a single FIFO queue scheduling algorithm where
the first thread always gains mutual exclusion before the
second thread, thread 1 executes SYRKs while thread 2 gets
CHOL¢ in stage 4. Ideally thread 1 would execute CHOLg
since that task updates A1,1 which resides in thread 1’s cache
beforehand. Instead accessing Aj 1 results in a cache miss
for thread 2 and incurs a write invalidation on thread 1.

While only using a single queue, the dequeue routine lever-
ages the software cache to provide cache affinity, which is
described in Figure [5| By returning a task with a cache hit
or the head of the queue, data communication is reduced
or the task with the highest priority is executed. Instead
of enqueuing tasks in a simple FIFO order where priority is
set by the arrival times of each task, we modify the enqueue

foreach task in queue do
foreach output block of task do
if block resides in software cache then
Record first task with cache hit
end
end
end
if task has cache hit then
Return task

else
Return head task of queue
end
Figure 5: The routine for dequeuing a task when

using cache affinity.

routine to maintain a priority queue by sorting tasks accord-
ing to their height within the DAG. After dequeuing a task,
the dispatcher now must have to update the software caches
according to the simplified write-once cache coherence pro-
tocol.

A similar software cache mechanism has been used to par-
allelize out-of-core matrix computations with graphics pro-
cessors |44]. Since GPUs require the explicit communication
of data into their local stores, blocks residing on each GPU
are logged in a software cache to control the movement of
data. That approach only uses the software cache to manage
memory whereas we use it here for the scheduling of tasks.

5.3 Analysis

The proposed cache affinity priority queue scheduling algo-
rithm strives to balance data locality and load balancing.
We will analyze this scheduling algorithm using the basic
concepts from queueing theory described in Section [3]

5.3.1 Load balancing
We start with a single queue implementation because of its
load balancing properties.

Let’s first assume that we just use a priority queue sorted
by the heights of each task in order to further improve the
load balancing properties and thus not leverage the software
caches. If the arrival remains constant, the conservation law
states that waiting time is the same in a FIFO queue as a
priority queue.

Prioritizing tasks on the critical path of execution results in
a faster arrival of tasks so that
A\FIFO ~ \PRI

We then apply Little’s formula in to get
[FIFO [PRI

This inequality invalidates the conservation law when ap-
plied to DAG scheduling since we cannot assume that the
waiting times remain constant.

Since the average arrival rate increases and the service time
W is unaffected, we know from that

FIFO PRI
p <p .

The single-queue multi-server system has the property that
idle threads will immediately attempt to dequeue any ready
and available tasks. Since the expected number of tasks on
the queue may increase with the use of a priority queue,
there is a higher probability that a thread will have a task
to dequeue and execute. Even though the waiting times of
tasks on the queue may increase, the use of this heuristic
decreases the time tasks wait till becoming ready and avail-
able. Since the rate at which threads execute tasks remains
the same or even better, the overall time to execute all tasks
in a DAG will then decrease.

5.3.2 Data locality

When a cache miss occurs for a task, O(b*) data must be
moved from main memory to the cache. On modern mi-
croarchitectures, a memory operation (memop) is at least
an order magnitude slower than a floating point operation
(flop). As a result, this data communication overhead can
be prohibitive to performance despite each task perform-
ing O(b®) operations if a significant number of tasks incur a
cache miss. We prioritize the output operands in order to
reduce the number of write invalidations incurred during a
write hit, which do not happen for just a read miss.

The probability of a cache hit for a task is a function of five
parameters: the number of threads, cache size, block size,
problem size, and access patterns within the DAG. The last
parameter makes this probability dependent upon the tasks
that have previously executed by a thread. This fact breaks
the Markovian property of the exponential distribution for
service times. The only parameter that we can tune is the
block size in order to adjust the cache hit ratio. Each thread
groups tasks into two priorities, cache hit or miss, according
to the blocks residing in its software cache. This prioritiza-
tion sorts tasks according to service times, so once again the
conservation law cannot be applied here.

Let’s now assume that we just use a cache hit or miss priority
service without sorting tasks according to their heights and
that C' > 0 where

C=EDQ]|

which is the expected value of « for all tasks. By reducing
the number of cache misses, we decrease the time to execute
each task, and thus from

FIFO

i < uPRI

Since the enqueuing of tasks is directly tied to their execu-
tion, we will assume that

\PRI _ \FIFO (uPBl uFIFO)p

so that from

FIFO PRI
p ~p .
If server utilization is roughly the same, then the resulting
reduction in the service time will decrease the overall time

it takes to execute all tasks in the DAG.

5.3.3 Addressing both simultaneously

By sorting tasks according to their heights and prioritizing
tasks with a cache hit, we attempt to keep the server uti-
lization the same while simultaneously reducing the service

time and increasing the arrival rate of tasks. We improve
the load balance because threads are kept busy through the
use of a single queue without sacrificing data locality.

The performance of this scheduling algorithm depends upon
the the expected value of 7. If C' = 0, then no cache hits will
occur, and threads will always dequeue tasks at the head of
the queue which have the greatest height. Load balance will
be improved as we have shown beforehand. If C' = 1, then
each task will incur a cache hit, and once again threads will
dequeue the head of the queue where the service times of
each task will decrease. This situation will lead to the near
optimal scheduling of tasks for both load balance and data
locality. Since 0 < C < 1, both aspects will contribute to
decrease the overall time to execute all tasks.

6. PERFORMANCE

In this section, we show that the use of cache affinity yields
a performance improvement. We also compare SuperMatrix
with other high-performance dense linear algebra libraries.

6.1 Target architecture

All experiments were performed on an SGI Altix 350 ma-
chine using double-precision floating-point arithmetic. This
cache coherent non-uniform memory access (ccNUMA) ar-
chitecture consists of eight nodes, each with two 1.5 GHz
Intel Itanium?2 processors, providing a total of 16 CPUs and
a theoretical peak performance of 96 GFLOPS (96 x 10°
floating point operations per second). The nodes are con-
nected via an SGI NUMAlink connection ring and collec-
tively provide 32 GB (32 x 230 bytes) of general-purpose
physical RAM, and each Itanium2 processor contains a 6
MB (6 x 22° bytes) L3 cache and a 256 KB (256 x 2" bytes)
L2 cache. The OpenMP implementation provided by the
Intel compiler 9.0 served as the underlying threading mech-
anism used by SuperMatrix. Performance was measured
by linking to the Intel Math Kernel Library (MKL) 8.1 li-
brary as a high-performance implementation of the BLAS.
We linked to MKL instead of GotoBLAS 1.26, another high-
performance BLAS library, because MKL provides superior
performance for the execution of individual tasks given their
small problem sizes on this particular computer architecture.

6.2 Implementations

We report the performance (in GFLOPS) of three different
implementations for the Cholesky, LU, and QR factoriza-
tions. 16 threads mapped to each processor and storage
block sizes of 192 and 256 were used for all experiments
when possible.

e SuperMatrix
We adapted the implementations provided within the
open source library libflame [52] which require ma-
trices to be stored hierarchically. For the execution
of individual tasks on each thread, we linked to serial
MKL. We compare two implementations of SuperMa-
trix: a single FIFO queue and cache affinity.

Since the traditional algorithms for computing the LU
and QR factorizations do not map well to algorithms-
by-blocks, SuperMatrix uses LU with incremental piv-
oting [43] 45| and incremental QR based on House-
holder transformations 31} |46].

e Multithreaded MKL
The default implementations provided by MKL exploit
parallelism internally and assume matrices are stored
in the traditional column-major order.

MKL implements traditional LU with partial pivoting
and blocked QR factorizations.

e PLASMA
These implementations also assume flat storage but
internally convert matrices into hierarchical ones with
one level of blocking. We adjusted the storage block
size to match those used by SuperMatrix, but other-
wise we did not further tune the code.

PLASMA 2.0.0 uses static pipelining to perform its

parallel scheduling [2]. Each thread executes an algorithm-

by-blocks sequentially and stalls if a task is not ready
or tries to execute the first ready and available task
otherwise. A DAG is never explicitly constructed. Static
pipelining is akin to in-order scheduling compared to
out-of-order scheduling with SuperMatrix.

PLASMA uses POSIX Threads as its underlying thread-
ing mechanism, and we linked it to serial MKL. PLASMA
also implements LU with incremental pivoting and in-
cremental QR based on Householder transformations 14}
15].

6.3 Results

Performance results are reported in Figures |§| (left) and IE
Several comments are in order:

e Cache affinity provides the same load balancing be-
havior as a single FIFO queue, so the difference in
performance between the two stems strictly from the
decrease in data communication.

We illustrate this behavior in Figure [f] (right) for the
Cholesky factorization. The idle thread ratio, which
is the complement to server utilization, shows the to-
tal time all threads perform no useful computation di-
vided by the parallel execution time of the dispatcher
for which both the single FIFO queue and cache affin-
ity are nearly identical. As this ratio converges to zero,
load balance is maximized since all threads will be ex-
ecuting tasks throughout the entire duration of their
lifetimes.

Despite having the same load balancing properties,
cache affinity still significantly outperforms a single
FIFO queue in Figure [6] (left). Since we simulate the
blocks residing in the software caches, we can deter-
mine which tasks incur a cache hit or miss. We also
show the simulated cache hit ratio for each task’s out-
put blocks compared to the total number of tasks. As
this ratio converges to one, data locality is optimized
since every task incurs a cache hit when overwriting its
output blocks. Here we can clearly see a divergence in
behavior between the two scheduling algorithms and
hence the difference in performance.

e The performance benefits of cache affinity on this ma-
chine exist because of the large cache on an Itanium2
processor. Approximately twenty-one 192 x 192 blocks
can fit into the 6 MB L3 cache on each processor. The

benefits of optimizing for data locality can be miti-
gated when the lower levels of cache are quite small.
For instance the AMD Opteron quad-core processor
has a 2 MB L3 cache that is shared between all four
cores. As a result, only seven 192 x 192 blocks can re-
side in the cache, and thrashing will occur frequently
where threads continuously evict blocks from the cache
since tasks in this problem domain access from one up
to three or more matrix operands.

e MKL 8.1 is not the latest version, but it is the only
one available on this machine. The performance of
multithreaded dpotrf in Figure [f] (left) is dramati-
cally improved in later versions of MKL, but we expect
the newer implementations of the Cholesky, LU, and
QR factorizations to roughly match the performance
curves of dgetrf and dgeqrf from Figure[7]

e SuperMatrix outperforms PLASMA because of its abil-
ity to better exploit parallelism from a DAG and the
matrix copy overhead in PLASMA.

e There is a precipitous decline in performance displayed
by SuperMatrix implementations for asymptotically
large problem sizes. We conjecture that due to the
out-of-order scheduling, blocks are accessed in an er-
ratic order across the entire matrix, which causes a
greater number of translation lookaside buffer (TLB)
misses for large problem sizes. Cache affinity optimizes
for lower levels of cache but does not yet consider the
TLB. Tuning the block size to be evenly divisible by
the page size slightly alleviates this problem.

7. RELATED WORK

The implications of optimizing for the cache of shared-memory
parallel architectures were explored in [53]. Even though the
disparity between memory latency and processor speeds in
architectures at the time did not provide any tangible per-
formance gains, the authors had the foresight to anticipate
the need for cache affinity. Their approach saves the last
task executed by a thread in order to find subsequent tasks
whereas we use a more data-centric approach that records
the blocks accessed by each thread.

SMP Superscalar (SMPSs) [42] is a general purpose runtime
system that also constructs a DAG using the input and out-
put operands of tasks, which are denoted using compiler
directives in the code. SMPSs uses work stealing for its par-
allel scheduling of tasks, yet it is not domain-specific to ma-
trix computations like PLASMA and SuperMatrix. SMPSs
begins execution of tasks as soon as one is generated whereas
SuperMatrix delays execution until the entire DAG has been
constructed, yet we have evidence that the DAG for matrix
computations can be statically generated [16].

Several other general-purpose parallel schedulers exist such
as Cilk [13] and Intel Thread Building Blocks (TBB) [36],
both of which also use work stealing, and TBB implements
the mailbox optimization [48]. These systems are different
than the ones previously introduced because Cilk and TBB
construct a DAG from user defined dependencies between
tasks. This approach exploits control-level parallelism, which
is specified by the order in which operations appear in the

Cholesky factorization on 16

Itanium2 CPUs with MKL 8.1
T T

T T T T T
90 T
80 !
701
60

%

& 50

T SuperMatrix nb=192 FIFO

o — — SuperMatrix nb=192 Caching
40 —+— SuperMatrix nb=256 FIFO |1

—— SuperMatrix nb=256 Caching
30 —6— Multithreaded MKL dpotrf
—#— PLASMA nb=192
PLASMA nb=256
201
10
0 !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

Figure 6: Left: Performance of Cholesky

Cholesky factorization on 16

Itanium2 CPUs with MKL 8.1
T T

1 T T T T T
0.9+ — - - T T
0.8 q
0.7 q
0.6 o
SuperMatrix nb=256 cache hit FIFO
2 o5l — — SuperMatrix nb=256 cache hit Caching | |
g : —+— SuperMatrix nb=256 idle thread FIFO
SuperMatrix nb=256 idle thread Caching
0.4F B
031 4
0.2 q
01F h \ 4
qrrw‘\k?”‘***:f—%ffi
0 . . . ! n . i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

factorization on a 16 Itanium2 processor system linked with the

Intel MKL 8.1 library. Right: Comparison of load balance versus data locality for the Cholesky factorization.
The cache hit ratio measures data locality, which consists of the number of tasks that incur a simulated cache
hit for one of its output matrix operands divided by the total number of tasks. The idle thread ratio measures
load balance, which consists of the average time each thread does not perform any useful computation divided

by the total time incurred by the dispatcher.

LU factorization on 16 Itanium2 CPUs with MKL 8.1

T T T T T T T T
SuperMatrix nb=192 FIFO
90H — — SuperMatrix nb=192 Caching b
—+— SuperMatrix nb=256 FIFO
SuperMatrix nb=256 Caching
801 o Multithreaded MKL dgetrf 7
—#— PLASMA nb=192
70 PLASMA nb=256]
601
2
% so
3
w
U]
40
30
201
10+
//
0 s I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

QR factorization on 16 Itanium2 CPUs with MKL 8.1

T T T T T T T T
SuperMatrix nb=192 FIFO
90H — — SuperMatrix nb=192 Caching]
—+— SuperMatrix nb=256 FIFO
SuperMatrix nb=256 Caching
801 o Multithreaded MKL dgeqrf)
—#— PLASMA nb=192
70 PLASMA nb=256 .
60
2
% 50
]
w
U]
40
301
201
10+
r/’
0 * I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

Figure 7: Performance of LU (left) and QR (right) factorizations.

code, as opposed to the data flow parallelism employed by
SuperMatrix.

Cache-oblivious algorithms are designed using recursive di-
vide and conquer algorithms, which have proven asymptotic
time and memory traffic bounds, without specific knowledge
of the underlying memory hierarchy |10} |25, 32} [55]. Cache-
oblivious algorithms recursively subdivide a problem until
a subproblem fits into the cache regardless of the cache’s
size, so this approach eliminates the need to tune algo-

10

rithms for specific computer architectures. Our cache affin-
ity scheduling algorithm is fundamentally different from the
cache-oblivious approach since we inherently depend upon
the size of the cache to exploit data locality.

8. CONCLUSION

In this paper, we have shown that data locality is paramount
for scheduling. Along with load balancing, both aspects
must be considered simultaneously rather than separately.
By leveraging the cache coherence protocol on shared-memory

parallel architectures, we have developed a cache affinity
scheduling algorithm that attains a significant increase in
performance.

Future work

The use of a single queue to which all threads access will not
be scalable to many-core architectures. We are investigat-
ing heuristics for assigning tasks to multiple queues, each of
which are accessed by a subset of threads. We intend to ex-
ploit the recursive nature of dense linear algebra algorithms
to aide these heuristics. In doing so, we anticipate that this
partitioning of threads can help reduce the number of TLB
misses for asymptotically large problem sizes.

We only presented results with two block sizes that roughly
match either the L2 cache or page size. This issue begs the
question of how to tune the block size. Thus far, auto-tuning
of matrix computations has only dealt with sequential ker-
nels [50} [54], but adjusting the block size now brings into
account the extra dimension of parallelism versus the gran-
ularity of tasks.

Additional information
For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/|

9. ACKNOWLEDGMENTS

We thank the members of the FLAME team for their sup-
port. This research was partially sponsored by NSF grants
CCF-0540926 and CCF-0702714.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation (NSF).

10. REFERENCES

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The
data locality of work stealing. In SPAA ’00:
Proceedings of the Twelfth ACM Symposium on
Parallel Algorithms and Architectures, pages 1-12, Bar
Harbor, ME, USA, July 2000.

[2] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra.
Comparative study of one-sided factorizations with
multiple software packages on multi-core hardware.
LAPACK Working Note #217 UT-CS-09-642, The
University of Tennessee at Knoxville, Department of
Computer Science, April 2009.

[3] A. O. Allen. Probability, Statistics, and Queueing
Theory with Computer Science Applications.
Academic Press, San Diego, 1990.

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford,

J. Demmel, J. J. Dongarra, J. D. Croz,

S. Hammarling, A. Greenbaum, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide (Third ed.).
SIAM, Philadelphia, 1999.

[5] J. Archibald and J.-L. Baer. Cache coherence
protocols: Evaluation using a multiprocessor
simulation model. ACM Transactions on Computer
Systems, 4(4):273-298, November 1986.

11

[6] B. Bartsch and G. Bolch. A conservation law for
G/G/m queueing systems. Acta Informatica,
10(1):105-109, March 1978.

[7] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S.
Quintana-Orti, and R. A. van de Geijn. The science of
deriving dense linear algebra algorithms. ACM
Transactions on Mathematical Software, 31(1):1-26,
March 2005.

[8] P. Bientinesi, E. S. Quintana-Orti, and R. A. van de
Geijn. Representing linear algebra algorithms in code:
The FLAME application programming interfaces.
ACM Transactions on Mathematical Software,
31(1):27-59, March 2005.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,

J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.

Whaley. ScaLAPACK Users’ Guide. STAM,

Philadelphia, 1997.

G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,

V. Ramachandran, S. Chen, and M. Kozuch. Provably

good multicore cache performance for

divide-and-conquer algorithms. In SODA ’08:

Proceedings of the Nineteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 501-510,

San Francisco, CA, USA, January 2008.

G. E. Blelloch, P. B. Gibbons, and Y. Matias.

Provably efficient scheduling for languages with

fine-grained parallelism. Journal of the ACM,

46(2):281-321, March 1999.

R. Blumofe and C. Leiserson. Scheduling

multithreaded computations by work stealing. Journal

of the ACM, 46(5):720-748, September 1999.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.

Leiserson, K. H. Randall, and Y. Zhou. Cilk: An

efficient multithreaded runtime system. Journal of

Parallel and Distributed Computing, 37(1):55-69,

August 1996.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra.

Parallel tiled QR factorization for multicore

architectures. Concurrency and Computation: Practice

and Experience, 20(13):1573-1590, September 2008.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A

class of parallel tiled linear algebra algorithms for

multicore architectures. Parallel Computing,

35(1):38-53, January 2009.

E. Chan, J. Nagle, F. G. Van Zee, and R. van de

Geijn. Transforming linear algebra libraries: From

abstraction to parallelism. FLAME Working Note #38

TR-09-17, The University of Texas at Austin,

Department of Computer Sciences, May 2009.

E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and

R. van de Geijn. SuperMatrix out-of-order scheduling

of matrix operations for SMP and multi-core

architectures. In SPAA ’07: Proceedings of the

Nineteenth ACM Symposium on Parallelism in

Algorithms and Architectures, pages 116—125, San

Diego, CA, USA, June 2007.

E. Chan. Principles and practice of thread-level

parallelism in the SuperMatrix runtime system.

Technical report, The University of Texas at Austin,

Department of Computer Sciences, August 2009.

Submitted to IPDPS ’10: The 24th IEEE

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

http://www.cs.utexas.edu/users/flame/

[22]

[23]

International Parallel and Distributed Processing
Symposium.

E. Chan, F. G. Van Zee, P. Bientinesi, E. S.
Quintana-Orti, G. Quintana-Orti, and R. van de
Geijn. SuperMatrix: A multithreaded runtime
scheduling system for algorithms-by-blocks. In PPoPP
’08: Proceedings of the Thirteenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 123-132, Salt Lake City, UT,
USA, February 2008.

M. Cosnard and E. Jeannot. Compact DAG
representation and its dynamic scheduling. Journal of
Parallel and Distributed Computing, 58(3):487-514,
September 1999.

J. J. Dongarra, J. Du Croz, S. Hammarling, and

I. Duff. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical
Software, 16(1):1-17, March 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.
Hanson. An extended set of FORTRAN basic linear
algebra subprograms. ACM Transactions on
Mathematical Software, 14(1):1-17, March 1988.

E. Elmroth, F. Gustavson, 1. Jonsson, and

B. Kagstrom. Recursive blocked algorithms and
hybrid data structures for dense matrix library
software. STAM Review, 46(1):3-45, 2004.

A. K. Erlang. The theory of probabilities and
telephone conversations. Nyt Tidsskrift for Matematik,
20(B):33-39, 1909.

M. Frigo, C. E. Leiserson, H. Prokop, and

S. Ramachandran. Cache-oblivious algorithms. In
FOCS ’99: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, pages 285-297,
New York, NY, USA, October 1999.

A. Gerasoulis and Y. Yang. A comparison of clustering
heuristics for scheduling directed acycle graphs on
multiprocessors. Journal of Parallel and Distributed
Computing, 16(4):276-291, December 1992.

J. R. Goodman. Using cache memory to reduce
processor-memory traffic. In ISCA ’83: Proceedings of
the Tenth Annual International Symposium on
Computer Architecture, pages 124-131, Stockholm,
Sweden, 1983.

K. Goto and R. A. van de Geijn. Anatomy of a
high-performance matrix multiplication. ACM
Transactions on Mathematical Software,
34(3):12:1-12:25, May 2008.

D. Gross and C. M. Harris. Fundamentals of Queueing
Theory (Third ed.). John Wiley & Sons, New York,
1998.

J. A. Gunnels, F. G. Gustavson, G. M. Henry, and

R. A. van de Geijn. FLAME: Formal linear algebra
methods environment. ACM Transactions on
Mathematical Software, 27(4):422-455, December
2001.

B. C. Gunter and R. A. van de Geijn. Parallel
out-of-core computation and updating the QR
factorization. ACM Transactions on Mathematical
Software, 31(1):60-78, March 2005.

F. G. Gustavson. Recursion leads to automatic
variable blocking for dense linear-algebra algorithms.
IBM Journal of Research and Development,

12

33]

(34]

(35]

(36]

(37]

(38]

39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

41(6):737-756, November 1997.

D. G. Kendall. Stochastic processes occurring in the
theory of queues and their analysis by the method of
the imbedded Markov chain. Annals of Mathematical
Statistics, 24(3):338-3854, 1953.

L. Kleinrock. A conservation law for a wide class of
queueing disciplines. Naval Research Logistics
Quarterly, 12(2):181-192, 1965.

L. Kleinrock. Communication Nets; Stochastic
Message Flow and Delay. Dover Publications, 1972.
A. Kukanov and M. J. Voss. The foundations for
scalable multi-core software in Intel® Threading
Building Blocks. Intel Technology Journal,
11(4):309-322, November 2007.

Y.-K. Kwok and I. Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task
graphs to multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 7(5):506-521, May
1996.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Transactions on Mathematical Software,
5(3):308-323, September 1979.

J. D. C. Little. A proof for the queuing formula:

L = A\W. Operations Research, 9(3):383-387,
May—June 1961.

T. M. Low and R. van de Geijn. An API for
manipulating matrices stored by blocks. FLAME
Working Note #12 TR-04-15, The University of Texas
at Austin, Department of Computer Sciences, May
2004.

C. McCreary, A. Khan, J. Thompson, and

M. McArdle. A comparison of heuristics for scheduling
DAGs on multiprocessors. In IPPS ’94: Proceedings of
the Eighth International Parallel Processing
Symposium, pages 446—451, Cancun, Mexico, April
1994.

J. M. Perez, R. M. Badia, and J. Labarta. A
dependency-aware task-based programming
environment for multi-core architectures. In Cluster
’08: Proceedings of the 2008 IEEE International
Conference on Cluster Computing, pages 142-151,
Tsukuba, Japan, September 2008.

E. Quintana-Orti and R. A. van de Geijn. Updating an
LU factorization with pivoting. ACM Transactions on
Mathematical Software, 35(2):11:1-11:16, July 2008.
G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti,
and R. A. van de Geijn. Solving dense linear systems
on platforms with multiple hardware accelerators. In
PPoPP ’09: Proceedings of the Fourteenth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 121-130, Raleigh, NC,
USA, February 2009.

G. Quintana-Orti, E. S. Quintana-Orti, E. Chan,

R. van de Geijn, and F. G. Van Zee. Design of scalable
dense linear algebra libraries for multithreaded
architectures: The LU factorization. In MTAAP ’08:
Proceedings of the 2008 Workshop on Multithreaded
Architectures and Applications, pages 1-8, Miami, FL,
USA, April 2008.

G. Quintana-Orti, E. S. Quintana-Orti, E. Chan,

R. A. van de Geijn, and F. G. Van Zee. Scheduling of

QR factorization algorithms on SMP and multi-core
architectures. In PDP ’08: Proceedings of the
Sixteenth Euromicro International Conference on
Parallel, Distributed and Network-Based Processing,
pages 301-310, Toulouse, France, February 2008.

G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de
Geijn, F. G. Van Zee, and E. Chan. Programming
matrix algorithms-by-blocks for thread-level
parallelism. ACM Transactions on Mathematical
Software, 36(3):14:1-14:26, July 20009.

A. Robison, M. Voss, and A. Kukanov. Optimization
via reflection on work stealing in TBB. In HIPS ’08:
Proceedings of the Thirteenth International Workshop
on High-Level Parallel Programming Models and
Supportive Environments, pages 1-8, Miami, FL, USA,
April 2008.

L. Schrage. An alternative proof of a conservation law
for the queue G/G/1. Operations Research,
18(1):185-187, January—February 1970.

J. G. Siek, I. Karlin, and E. R. Jessup. Build to order
linear algebra kernels. In POHLL ’08: Proceedings of
the 2008 Workshop on Performance Optimization for
High-Level Languages and Libraries, pages 1-8,
Miami, FL, USA, April 2008.

13

[51]

[52]

[53]

[54]

[55]

D. R. Smith and W. Whitt. Resource sharing for
efficiency in traffic systems. Bell System Technical
Journal, 60(1):39-55, January 1981.

F. G. Van Zee. libflame: The Complete Reference.
http://www.lulu.com/content/5915632/, 2009.

R. Vaswani and J. Zahorjan. The implications of cache
affinity on processor scheduling for multiprogrammed,
shared memory multiprocessors. ACM SIGOPS
Operating Systems Review, 25(5):26-40, October 1991.
R. C. Whaley and J. J. Dongarra. Automatically
tuned linear algebra software. In SC ’98: Proceedings
of the 1998 ACM/IEEE Conference on
Supercomputing, pages 1-27, San Jose, CA, USA,
November 1998.

A. N. Yzelman and R. H. Bisseling. Cache-oblivious
sparse matrix-vector multiplication by using sparse
matrix partitioning methods. SIAM Journal on
Scientific Computing, 31(4):3128-3154, July 2009.

	Introduction
	SuperMatrix Runtime System
	Cholesky factorization
	Dispatcher
	Proof of correctness

	Queueing Theory
	Single vs. multiple queues
	Conservation law of priority queues
	Application of queueing theory to matrix computations

	Scheduling Algorithms
	Single FIFO queue
	Data affinity
	Work stealing
	Priority queue heuristics
	Summary

	Cache Affinity
	A brief overview of a cache coherence protocol
	Scheduling with software caches
	Analysis
	Load balancing
	Data locality
	Addressing both simultaneously

	Performance
	Target architecture
	Implementations
	Results

	Related Work
	Conclusion
	Acknowledgments
	References

