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Abstract

In our previous work, we have presented a systematic methodology for parallelizing dense matrix computations
using a separation of concerns between the code that implements a linear algebra algorithm and a runtime system
that exploits parallelism for which only relatively simple scheduling algorithms were used to parallelize a wide range
of dense matrix computations. We have extended the runtime system to utilize multiple hardware accelerators yet
constrained its use to a particular scheduling algorithm. In this paper, we develop a new domain-specific scheduling
algorithm that addresses load balance and data locality simultaneously, which is motivated by queueing theory. In
order to apply this domain-specific scheduling algorithm for utilizing multiple hardware accelerators, we implement
a new software managed cache coherency mechanism that allows for the use of any scheduling algorithm. We pro-
vide performance results that validate that our domain-specific scheduling algorithm consistently attains exceptional
performance on a homogeneous multicore platform and heterogeneous platform with multiple hardware accelerators.

1 Introduction

Exploiting parallelism is becoming paramount for attaining high performance on current multicore and future many-
core computer architectures [28]]. As a result, handling the burgeoning complexities of these parallel computing
platforms is falling upon programmers. We advocate the adoption of a clear separation of concerns between algorithms
and architectures where parallelism is exploited from the inherent data flow of the computation as opposed to the
explicit control flow specified by the implementation. Providing the software tools and abstractions for implementating
this separation of concerns for a vast range of problem domains remains a preeminent challenge in computer science,
so we focus on dense matrix computations.

We have developed a simple yet elegant methodology for parallelizing dense matrix computations on shared-
memory computer architectures for which we coined the name SuperMatrix [18]139]. We map a dense linear algebra
operation to a directed acyclic graph (DAG) and then use out-of-order scheduling techniques, akin to superscalar
computer architectures, to exploit parallelism. We have applied this methodology to parallelize many Linear Alge-
bra PACKage (LAPACK) [4] level operations, including Cholesky factorization [20], LU factorization with partial
pivoting [19] and incremental pivoting [37]], QR factorization [38]], and inversion of a symmetric positive definite ma-
trix [21] along with the entire level-3 Basic Linear Algebra Subprograms (BLAS) [22]. In previous work, we have
presented the general methodology for parallelizing these operations on shared-memory computer architectures while
only using relatively simple scheduling algorithms.

We have also extended SuperMatrix to utilize multiple hardware accelerators [36] such as graphics processors.
The key to our methodology is that we encapsulate the complexities of exploiting parallelism within a runtime system.
As a result, the code that implements a dense linear algebra algorithm remains constant while the modular runtime
system adapts to different computing environments whether it be homogeneous multicore platforms or heterogeneous
platforms with multiple hardware accelerators. It is this separation of concerns that allows us to easily adapt to different
environments with various scheduling algorithms.

The contributions of the present paper include:
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Figure 1: Unblocked algorithm and algorithm-by-blocks for the reduction from a symmetric definite generalized
eigenproblem to standard form (left and right, respectively). Here a loop will not be executed if its terminal index is
—1.

where A; j, L; j € R®Yand N = [3]andi,j=0,---



e A description of a new and previously unpublished domain-specific scheduling algorithm that addresses load
balance and data locality simultaneously, which is motivated by queueing theory.

e A novel software managed cache coherency mechanism that handles the explicit movement of data between
main memory and multiple hardware accelerators and ultimately facilitates the use of any scheduling algorithm.

e An implementation of an operation that is a key component for a generalized eigensolver that provides excep-
tional performance on two vastly different computing platforms using SuperMatrix. We use this operation to
demonstrate that the methodology provides the infrastructure to easily prototype and support a wide range of
dense matrix computations for which the domain-specific scheduling algorithm and software managed cache
coherency mechanism can be applied to all of those operations.

Together these contributions provide further evidence of the extensibility and flexibility of our methodology for ex-
ploiting parallelism from dense matrix computations.

The rest of the paper is organized as follows. We describe a motivating example used throughout the paper in Sec-
tion[2] We provide an overview of the basic methodology for exploiting parallelism from dense matrix computations
in Section[3] Section]proposes a new domain-specific scheduling algorithm. We apply this methodology for use with
multiple hardware accelerators in Section[5} Performance results are provided in Section |6l We discuss related work
in Section[7)and future work in Section[8] We conclude the paper in Section [0}

2 Reduction from a Symmetric Definite Generalized Eigenproblem to Stan-
dard Form

Let A, B € R™*™ where A is a symmetric matrix and B is a a symmetric positive definite matrix. One formulation of
the generalized eigenproblem is given by
ABx = A\x

where ) is an eigenvalue of AB corresponding to the eigenvector x. Since B is a symmetric positive definite matrix,
a lower triangular matrix L can be computed via the Cholesky factorization where

B=1LL"

so that
ALLT 2z = \x.

By multiplying this equation by L7,
LTALL"z = ALz

so that
My = \y

which is a standard eigenproblem where M = LT AL and y = LTx. As a result, the reduction from a symmetric
definite generalized eigenproblem to standard form

A—LTAL

is computed in order to leverage that A and B are both symmetric matrices instead of explicitly multiplying AB,
which destroys symmetry and is computationally expensive.

2.1 Algorithm-by-Blocks

In Figure[T] (left), we present an unblocked algorithm for computing the reduction from a symmetric definite gener-
alized eigenproblem to standard form where « and A denote scalar elements of A and L, respectively. Typically, this
unblocked algorithm is implemented using level-1 and level-2 BLAS [25] 33]] routines such as y := az + y (AXPY),
z = ax (SCAL), triangular matrix-vector multiplication (TRMV), and symmetric rank-2 update (SYR2).

In Figure [1] (right), we partition both matrices using a block size b, which results in a matrix of blocks. By view-
ing submatrix blocks as the fundamental unit of data and operations on blocks, or tasks, as the fundamental unit of



computation, we formulate an algorithm-by-blocks. We juxtapose the unblocked algorithm and algorithm-by-blocks
in Figure [1| to show that these algorithms are nearly identical except here the operations being performed are now
level-3 BLAS [24] routines on submatrix blocks such as general matrix-matrix multiplication (GEMM), triangular
matrix-matrix multiplication (TRMM), symmetric matrix-matrix multiplication (SYMM), and symmetric rank-2k up-
date (SYR2K). A recursive subproblem (SYGST) occurs within the algorithm-by-blocks for which we simply invoke
the unblocked algorithm.

Each matrix of blocks is typically stored as a hierarchical matrix using one level of blocking in order to gain
spatial locality when accessing each block for the execution of a task [26]. Note that the loops in Figure[I]are shown
in order to make this paper self-contained. The code that generates the DAG is actually implemented using a stylized
application programming interface that encapsulates all the details of storing the tasks and indexing a hierarchical
matrix [14, 18] 34].

3 SuperMatrix Runtime System

Instead of exposing the details of parallelization within the code that implements a linear algebra operation, we de-
veloped the SuperMatrix runtime system through a clear separation of concerns [18} 20} 21} 139] where we divide the
process of exploiting parallelism into two distinct phases: analyzer and dispatcher. During the analyzer phase, the
execution of tasks is delayed, and instead the DAG is constructed dynamically for which only the input and output
matrix operands of each task are needed to perform the dependence analysis. Once the analyzer is done, the dispatcher
phase is invoked which dispatches and schedules tasks to threads.

3.1 Analyzer

The process for constructing a DAG from an algorithm-by-blocks is quite simple. Instead of executing the tasks as
they occur sequentially within the algorithm-by-blocks, the analyzer saves each task onto a global storage space and
detects data dependencies between all tasks automatically. Once all tasks have been saved, a DAG is implicitly formed
where the tasks represent the vertices of the graph and data dependencies represent the edges.

We present the DAG for the reduction from a symmetric definite generalized eigenproblem to standard form given
a 3 x 3 matrix of blocks in Figure[2] Notice that SYGST, overwrites the block Ay ¢ while SYR2K3 reads and later
overwrites that same block. This situation leads to a read-after-write, or flow, data dependency between these two
tasks and hence the directed edge in the DAG. Also notice that SYGST( occurs from the first iteration of the outer j-
loop in Figure [T (right) while SYR2K3 occurs from the second iteration of that loop, which represents a loop-carried,
inter-iterational data dependency. We can view constructing the DAG as dynamically unrolling the triply nested loops
from an algorithm-by-blocks.

The DAG for a 3 x 3 matrix of blocks is quite trivial, so we also present the DAG given a 10 x 10 matrix of blocks
in Figure 3| As we can see, there exists many opportunities for exploiting parallelism within this large DAG.

Constructing the DAG can be done in parallel with the dispatcher phase, but for this problem domain, the analyzer
costs little both in terms of execution time and memory space.

3.2 Dispatcher

Once the DAG has been fully constructed, the dispatcher phase is invoked where the threads are spawned, tasks are
scheduled and dispatched to threads, and finally the threads are joined back together once all tasks have been executed.
Figure ] presents the algorithm that every thread performs in order to dispatch and schedule tasks.

Let us represent a DAG as (V, E') where V is the set of vertices and E is the set of edges. In this context, t;,t; € V
are vertices in the graph, and (t;,t;) € E is a directed edge from ¢; to ¢;.

If there is a directed edge from vertex ¢; to vertex t;, then t; is the parent of ¢;, and ¢; is the child of ¢;. A root is
a vertex with no parents whereas a leaf is a vertex with no children. We define a ready task as one that is either a root
or all of its parents have been executed. A task is available if it is ready and waiting to be executed. A dependent
task is the child of a given task. We update a dependent task by notifying it that one of its parents has been executed.
The manner in which the enqueue and dequeue routines implement a queue of ready and available tasks determines
the scheduling of tasks.



Figure 2: The directed acyclic graph for the reduction from symmetric definite generalized to standard form given a
3 x 3 matrix of blocks with the input and output operands of each task enumerated. The subscripts within the tasks’
names denote the order in which each task occurs sequentially within the algorithm-by-blocks. Here the notation
A += Brepresents A := A + B, and AT B + ... denotes ATB + BT A.
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Figure 3: The directed acyclic graph for the reduction from a symmetric definite generalized eigenproblem to standard
form given a 10 x 10 matrix of blocks.



For example, there are three roots in the DAG presented in Figure E} SYGSTy, TRMM1, and TRMM~. All of these
roots are enqueued as initial ready tasks by the dispatcher. Some thread will dequeue a task, which is determined
by the scheduling algorithm, such as TRMMy;. That thread will execute the task and then update its dependent task
GEMMg, which will then become ready. This process is repeated until all tasks are executed.

The determination of which threads will execute which tasks is done by the enqueue and dequeue routines. Here
we discuss two scheduling algorithms for which we motivate using queueing theory: 2D data affinity and a single
FIFO queue.

3.2.1 2D Data Affinity

We introduced the idea of data affinity in [20]] where tasks are assigned to threads according to a simple owner com-
putes rule. A thread executes all tasks that overwrite a particular block. One task to thread assignment is a two-
dimensional block cyclic (2D) distribution where blocks are mapped to a mesh of threads according to its row and
column indices within the matrix of blocks. This 2D assignment was inspired by its previous use on distributed-
memory architectures in libraries such as ScaLAPACK [15] and PLAPACK [42].

Each thread has its own associated queue from which it dequeues. A thread may need to enqueue ready dependent
tasks to the particular queue that task is assigned, which might not be itself.

Data affinity attempts to optimize for data locality. By only allowing one thread to overwrite a particular block,
we try to restrict the total number of threads that access a block. If thread affinity is used where a thread is bound to
a certain processing element by the operating system, then we reduce data communication through this conceptually
simple scheduling algorithm.

3.2.2 Single FIFO Queue

Here all tasks are enqueued at the tail of a single queue, and all threads dequeue tasks from the head, which results in
a first-in first-out (FIFO) order. Whenever tasks are ready and available, an idle thread immediately dequeues a task to
execute as soon as it gains mutual exclusion to the global queue. Because of this property, this scheduling algorithm
reduces the amount of time each thread idles.

3.2.3 Queueing Theory

Queueing theory was first developed to analyze communication networks [27], and it is the study of waiting lines
where customers from a source must wait for a service [30]. In this problem domain, the customers are tasks; the
source is a DAG; and the servers are threads.

In Figure[5] we depict two multi-server queueing systems. A single-queue multi-server system is on the left where
all servers access one queue. A multi-queue multi-server system is on the right where each server has its own dedicated
queue.

It is quite intuitive that servicing multiple servers using a single queue is more efficient than doing so from separate
queues. There is nonzero probability that a customer will be waiting for a service in one of the p independent queues
while another server is idle. On the other hand, that situation cannot occur using a single queue since a customer at
the head of the queue is serviced as soon as a server is available. This insight was proven in [40].

2D data affinity implements a multi-queue multi-server system while a single FIFO queue implements a single-
queue multi-server system. By reducing the idle time of each thread, a single FIFO queue attempts to maximize load
balance, yet no effort is made to address data locality since any task can be executed by any thread. On the other hand,
2D data affinity attempts to minimize data communication by maintaining data locality even though it sacrifices load
balance. The issue is how to address both scheduling aspects of load balance and data locality simultaneously.

4 Cache Affinity

We have shown in [20] that 2D data affinity performs particurlarly well because there is a high likelihood that there
is a cache hit for the blocks updated by each task. We want to replicate this behavior without the restriction of using
multiple queues. In order to do so, we maintain a software cache for each thread that approximates the contents of the
physical cache for the associated processing element to which a thread is mapped. The data granularity in this problem
domain allows us to amortize the cost of managing these software caches quite efficiently.



foreach task in DAG do

if rask is ready then
| Enqueue task

while rasks are available do
Dequeue task
Execute task

foreach dependent task do
Update dependent task

if dependent task is ready

then
Enqueue dependent

task

Figure 4: The algorithm that all threads execute in order to dispatch and schedule tasks from a directed acyclic graph.

|
DO

DOO

Figure 5: Depictions of a single-queue multi-server system (left) and a multi-queue multi-server system (right), each
with p processing elements.



We make several simplifying assumptions. The software cache uses a least recently used (LRU) replacement
policy. Each cache line is the size of a submatrix block, and the cache is fully associative. The cache is kept coherent
using a write-once protocol.

Our new domain-specific scheduling algorithm with cache affinity [[18]] is a amalgamation of two simple concepts:
software caches and a single priority queue.

4.1 Write-Once Cache Coherence Protocol

Here we provide a brief overview of a write-once cache coherence protocol, which is used to provide the shared-
memory parallel abstraction [} 29] where a cache line can be in one of four states. An invalid cache line is one that
has been invalidated by updates to the same data on another cache, so the data is incoherent. It is valid if it has been
read into the cache and is not modified. A cache line is reserved if it is the only copy of the data in any cache. It is
dirty if the cache line has been modified, but the data has not been written back to main memory.

When a thread accesses a cache line, only one of four occurrences can happen. On a read hit, the data is in the
cache, and no state change occurs. A thread reads from main memory for a read miss, but if there is a dirty copy in
any other cache, it first must be written back to main memory. Any dirty or reserved cache lines will then become valid
ones. On a write hit, dirty or reserved cache lines are modified and set to dirty. Valid cache lines become reserved,
and then the modified data is immediately written back, and all other copies become invalid. A write miss invokes the
same state changes as a read miss followed by a write hit.

4.2 Priority Queue Heuristics

A key insight in developing this new scheduling algorithm is that all ready and available tasks waiting on a queue can
be executed in parallel, so those tasks can be reordered in any fashion. As a result, a priority queue can be used instead
of a FIFO one where tasks are sorted according to certain heuristics when they are enqueued.

Incomparable vertices in a DAG are a set of vertices for which there is not a directed path between any pair of
vertices where a path is a sequence of edges connecting two vertices. As such, incomparable vertices can potentially
be executed in parallel. For example in Figure [2, GEMM;3 and SYMM;j7 are incomparable. When given the choice
between scheduling those two tasks, GEMM13 could be selected first because it has three descendants versus just one
for SYMM ;7. A vertex ¢; is a descendant of vertex ¢; if there is a directed path from ¢; to ¢;. This example demonstrates
the use of sorting tasks according to the height of a vertex where the height is the longest path from a vertex to a leaf.

This heuristic favors tasks on the critical path of execution, which attempts to increase load balance by enabling
tasks to become ready and available earlier than they would be if scheduled in FIFO order.

4.3 Overview

The intuition behind cache affinity is quite simple. A single priority queue is used for its load balance properties, and
each thread searches that single queue for a task whose operands are already logged on the thread’s software cache to
preserve data locality.

The dequeue routine now leverages the software cache to provide cache affinity, which is described in Figure [6]
By returning a task with a cache hit or the head of the queue, data communication is reduced, or the task with the
highest priority is executed. Instead of enqueuing tasks in a FIFO order where priority is set by the arrival times of
each task, we modify the enqueue routine to maintain a priority queue by sorting tasks according to their height within
the DAG. After dequeuing a task, the dispatcher now must have to update the software caches according to a simplified
write-once cache coherence protocol where each cache line is either valid or invalid, ignoring the reserved and dirty
states.

When a thread executes a task, the software caches are updated with the following two steps. (1) Update the
software cache belonging to the thread that executes the particular task with the task’s input and output matrix block
operands. If the block already resides in the software cache, there is a cache hit, and the block is marked as most
recently used. If there is a cache miss, then the least recently used block is evicted, and the block is logged as most
recently used onto the software cache. (2) Write invalidate all copies of the output blocks residing on the other software
caches.

The proposed cache affinity scheduling algorithm attempts to address both load balance and data locality simulta-
neously, which neither 2D data affinity nor a single FIFO queue achieves.



S Multiple Hardware
Accelerators

We have thus far described the basic mechanisms for exploiting parallelism on shared-memory computer architectures
where each processing core is a traditional central processing unit (CPU). We now apply this methodology to support
the use of multiple hardware accelerators where the key difference is the explicit movement of data between main
memory and the memory address space of each accelerator.

5.1 Graphics Processing Units

We primarily handle the case where an accelerator is a graphics processing unit (GPU), yet this methodology can
support nearly any type of accelerator. We view a GPU as a single accelerator instead of trying to exploit parallelism
within a GPU which contains hundreds of individual streaming processors. We rely on the existence of tuned compu-
tational kernels for the execution of tasks on a single GPU, such as CUBLAS [23]], which is a BLAS library for GPUs
that exploits thread-level parallelism between the many streaming processors.

In order to execute a task on a GPU, the matrix operands of the task must be explicitly moved to the local memory
of a GPU. Once a task completes, the updated data must eventually be transferred back to main memory to keep the
state of memory consistent.

5.2 Hybrid Execution Model

We assume a very simple model for a heterogeneous platform with multiple hardware accelerators where a CPU
spawns threads that are mapped to different GPUs. The CPU in this case may itself also be a homogeneous multicore
platform. The threads reside on the CPU and handle the scheduling of tasks. Once a task is selected, the thread
dispatches that task to the GPU and handles the data transfers so that a computational kernel can be invoked to execute
the task on the GPU.

CUBLAS implements the entire BLAS interface [23| [24] 25| 33], yet very few LAPACK-level kernels are im-
plemented for GPUs. For instance, a GPU kernel for the recursive subproblem of the reduction from a symmetric
definite generalized eigenproblem to standard form does not exist at the time of this writing. Instead of painstakingly
trying to implement this kernel for GPUs, we simply notice the fact that the CPU can execute an optimized unblocked
implementation. As a result, we use a hybrid execution model where both CPU and GPUs perform computation.

When the CPU executes a task, one or more GPUs are left idle. The key to the scalabilty of this approach is that
the bulk of the computation lies with tasks that can be executed on GPUs. For the reduction from a symmetric definite
generalized eigenproblem to standard form, the only task that is not supported on GPUs is the recursive subproblem,
which only occurs on each diagonal block within the algorithm-by-blocks. In Figures|2|and |3} all tasks within an oval
as ones that can be executed on a GPU, and the ones within rectangles that must be executed on a CPU. Note that
particularly in the larger DAG, only a small fraction of tasks must be executed on a CPU for this operation.

5.3 Software Managed Cache Coherency

No hardware support exists for keeping the memory between multiple GPUs coherent, so we need a mechanism for
keeping track of where submatrix blocks are valid or dirty. The advantage of developing the cache affinity scheduling
algorithm is that we already have the software cache mechanism for managing the locations of blocks.

The key insight when incorporating multiple GPUs is that the state of the main memory does not need to be
consistent until all tasks from a DAG are executed. As a result, we allow dirty blocks to reside on the local memory of
a GPU without writing it back to main memory until it is necessary. In doing so, we attempt to minimize the number
of data transfers incurred, which are quite costly. This strategy is fundamentally different from our model on CPUs
where we assume that updates to blocks are instantly written back to main memory. We make this assumption on
CPUs since the hardware implements a cache coherency protocol to provide a consistent shared-memory abstraction.

Instead, we implement a write-back cache coherence protocol for utilizing multiple hardware accelerators, similar
to a MSI write-invalidate protocol. The main difference between the write-once and write-back protocols is that the
modified data is not written back to main memory on a write hit for the write-back protocol.

In Figure [/ we present the algorithm for dispatching tasks to threads with the protocol for data transfers incor-
porated. Here we assume that each thread is mapped to an accelerator and that the cache corresponds to the local



memory on that accelerator. The dispatcher is designed with the assumption that different threads cannot access the
blocks cached on another accelerator in any way until the data is written back to main memory.

There are several key details to point out within the dispatcher shown in Figure [/| Each thread checks its own
cache to see if any blocks have been requested by other threads and subsequently writes those blocks back to main
memory before selecting a task. Once a task is selected, all of the task’s matrix operands are checked to see whether
a block is dirty on another cache and requests that block if so. If all of the task’s blocks are valid, then each matrix
operand is brought into the cache, and the task is then executed on the accelerator. If any one of the blocks has to be
requested on another thread, the dispatcher enqueues the task instead of stalling in order to find another task that might
be ready to execute. Once all the tasks in the DAG have been executed, all threads write back every block that is dirty
in their respective cache to ensure a consistent state of memory by the end of dispatcher.

In order to support the hybrid execution model, we need to introduce a few modifications to the algorithm in
Figure[/] If a task must be executed on a CPU, then the task’s blocks that are dirty on the accelerator mapped to that
thread must be written back to main memory. Once the task completes execution, all of its output matrix operands
must then be write invalidated on the thread’s accelerator.

A software managed cache coherence protocol was implemented in [36] that was dependent upon the use of 2D
data affinity. Since the mapping of computation to a DAG prescribes the use of an p-reader 1-writer scheme, each
block would only be dirty on a single accelerator according to the static 2D distribution. In this paper, we decouple
the selection of a task from the data transfers where a block can be dirty in any cache. In doing so, any scheduling
algorithm can now be used, e.g. cache affinity, to utilize multiple hardware accelerators.

6 Performance

We compare the performance of the reduction from a symmetric definite generalized eigenproblem to standard form
within the SuperMatrix runtime system using different scheduling algorithms on a homogeneous multicore platform
and a heterogeneous platform with multiple hardware accelerators.

6.1 Target Architectures

The CPU experiments were performed on a four socket 2.66 GHz Intel Dunnington system running Red Hat 4.1.2-46.
This cache coherent non-uniform memory access (ccNUMA) architecture provides a total of 24 processing cores with
a theoretical peak performance of 255.36 GFLOPS and 96 GB of general-purpose physical memory. Each socket con-
tains a shared 16 MB L3 cache and three 3 MB L2 caches shared between pairs of cores. The OpenMP implementation
provided by the Intel compiler 11.1 served as the underlying threading mechanism used by SuperMatrix. Performance
was measured by linking to Intel Math Kernel Library (MKL) 10.2 as a high-performance implementation of the
BLAS and LAPACK.

The GPU experiments were performed on a two socket 2.83 GHz Intel Harpertown system running CentOS 5.4,
which is connected to an NVIDIA Tesla S1070. The S1070 has four 602 MHz Tesla C1060 GPUs each with 4 GB of
DDR3 memory. Each pair of GPUs share a common PCIExpress Gen2 16x slot. The theoretical peak performance
of each Tesla C1060 is 933.12 GFLOPS when operating in single precision and 77.76 GFLOPS in double precision.
Compute Unified Device Architecture (CUDA) and CUBLAS 2.3 were used in our GPU experiments while the rest of
the software is identical to that used on the aforementioned CPU target architecture.

6.2 Implementations

We report the performance in GFLOPS (one billion floating point operations per second) for several implementations
of the reduction from a symmetric definite generalized eigenproblem to standard form using single and double preci-
sion floating point real arithmetic. We used an operation count of n> of useful computation for each implementation
presented to calculate the rate of execution. We tuned the storage and algorithmic block size for each problem size
when possible. We mapped 24 threads to each of the 24 processing cores on the homogeneous platform and used
4 threads corresponding to each of the 4 GPUs on the heterogeneous platform. We compare three different parallel
implementations:

e SuperMatrix + serial MKL/CUBLAS
We use the SuperMatrix runtime system embedded within the open source dense linear algebra library 1ibflame [43],
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foreach task in queue do
foreach output block of task do
if block resides in software cache
then
L L Record first task with cache hit

if task has cache hit then
| Return task

else
| Return head task of queue

Figure 6: The routine for dequeuing a task when using cache affinity.

foreach task in DAG do

if task is ready then
| Enqueue task

while rasks are available do
foreach block in cache do

if block is requested then
Flush block

B Mark block as valid

Dequeue task
foreach block accessed by task do
foreach thread not itself do
if block is dirty in thread’s cache
then
| Request block

if any block was requested then
| Enqueue task

else
foreach block accessed by task do
if block is not in cache then
if cache is full then
[ Evict LRU block
L Transfer block to cache
if block is output operand then
Mark block as dirty
foreach thread not itself do
if block is in thread’s cache
L then
[ Write invalidate block

Execute task

foreach dependent task do

Update dependent task

if dependent task is ready then
| Engueue dependent task

foreach block in cache do

if block is dirty then
L Flush block

Figure 7: The algorithm that all threads execute in order to dispatch and schedule tasks from a directed acyclic graph
when using multiple hardware accelerators.
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which has integrated support for both CPUs and GPUs. We present performance results using the three presented
scheduling algorithms: 2D data affinity, a single FIFO queue, and cache affinity. SuperMatrix assumes the use of
hierarchical matrices where the submatrix blocks are stored contiguously. We call serial MKL for the execution
of tasks on a single processing core and CUBLAS for execution on a GPU.

e Sequential + Multithreaded MKL/CUBLAS
We link a sequential blocked algorithm found in the public domain LAPACK library to MKL multithreaded
BLAS routines and CUBLAS on a single GPU, which assumes the matrices are stored in the traditional column-
major order storage.

e Multithreaded MKL
On CPUs, we link to MKL multithreaded implementation of [s, d]sygst. This implementation exploits
parallelism internally and also assumes column-major order storage.

To the best of our knowledge, we provide the only implementation of the reduction from a symmetric definite gener-
alized eigenproblem to standard form using multiple GPUs.

6.3 Results
Performance results are reported in Figure[§] Several comments are in order:

e The performance signatures are nearly the same on CPUs and GPUs where cache affinity is the best performing
scheduling algorithm. These results empirically verify that addressing load balance and data locality simultane-
ously is advantageous versus addressing each separately.

e Linking a sequential algorithm to multithreaded BLAS routines does not provide a scalable solution because
inherent synchronization points exist between successive calls to these routines. Despite this limitation, this
sequential algorithm still outperforms the multithreaded implementation provided by MKL. This lack of an
optimized parallel implementation within a commercial library highlights the need for a systematic methodology
for exploiting parallelism such as SuperMatrix.

e Performance when using single and double precision floating point floating point real operations are nearly
identical on CPUs because the same floating point units are used on a CPU regardless of the data type being
float or double. On the other hand, GPUs provide a vastly different model where single precision provides
much higher performance because of their inherent design being for rendering graphics which only requires
single precision. This disparity in performance has narrowed on the next generation NVIDIA Fermi GPU
architecture, which provides further hardware support for double precision floating point operations.

e Even though we can achieve over two-thirds of the theoretical peak performance on CPUs, we only utilize a
mere fraction of the peak performance on GPUs. Despite this limitation, our use of four GPUs provides much
higher absolute performance than 24 processing cores when using single precision.

In Figure [0} we compare the speedup using cache affinity versus the sequential blocked algorithm on both CPUs
and GPUs. This scheduling algorithm scales when using more computational threads even when using a prime number
of threads for which 2D data affinity does not particularly handle well. Even though we only achieve a fraction of the
theoretical peak performance on GPUs, SuperMatrix attains strong scalability.

In Figure [I0] (left), we compare the load balance properties of the three different scheduling algorithms presented
in this paper. We calculate load balance by summating the total time each thread performs useful computation and
dividing that sum by the number of threads and the total parallel execution time of the dispatcher so that a higher ratio
equates to better load balance. On CPUs, cache affinity and a single FIFO queue exhibit nearly the same load balance
while 2D data affinity exhibits poor load balance in comparison on CPUs as predicted by queueing theory. On GPUs,
2D data affinity has rather high load balance since we only use a small number of computational threads while a single
FIFO queue has poor load balance for larger problem sizes because the cost of extra data transfers skews this ratio.

In Figure (right), we compare the data locality properties of the scheduling algorithms. We calculate the
simulated cache hit ratio on CPUs by summating all the tasks for which its output matrix operand records a cache hit
within the software cache of a thread and dividing that sum by the total number of tasks. We calculate the data transfer
rate on GPUs by summating all the occurrences when a data transfer is not needed before or after executing a task
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Figure 8: Performance of different implementations for the reduction from a symmetric definite generalized eigen-
problem to standard form on a homogeneous CPU platform (top) and a heterogeneous platform with multiple GPUs
(bottom) using single (left) and double (right) precision floating point real arithmetic.
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Figure 9: Speedup of SuperMatrix using cache affinity versus a sequential blocked algorithm linked to serial MK-
L/CUBLAS for the reduction from a symmetric definite generalized eigenproblem to standard form on a heterogeneous
platform with multiple GPUs using single precision (left) and a homogeneous CPU platform using double precision
(right).

and dividing that sum by twice the number of blocks accessed by every task since each block theoretically needs to
be moved to and from the GPU. A higher ratio for both of these measures equates to reducing data communication
and thus preserving data locality. Even though cache affinity and a single FIFO queue have the same load balance, the
varying data locality accounts for the difference in their performance curves shown in Figure 8| As the problem size
grows, the likelihood that a block resides in the cache diminishes when using 2D data affinity on CPUs. This situation
occurs because the cache size is fixed and rather small compared to GPUs while the number of blocks assigned to a
particular thread grows with the problem size.

7 Related Work

We only compare three pertinent scheduling algorithms in this paper. For a more thorough examination of scheduling
algorithms for this problem domain including work stealing, see [18]]. We have classical work stealing [[16] and the
mailbox optimization for work stealing that addresses data locality [1] implemented within the SuperMatrix runtime
system embedded within the 1ibf1lame library [43], both of which can be used on CPUs and GPUs.

The related projects Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) [3| [17]] and Matrix
Algebra on GPU and Multicore Architectures (MAGMA) [35} 41]] apply similar DAG scheduling principles for paral-
lelizing dense matrix computations for CPUs and GPUs, respectively. Neither of these projects supports the reduction
from a symmetric definite generalized eigenproblem to standard form for the moment. These projects have only started
investigating dynamic scheduling algorithms, partially for inversion of a symmetric positive definite matrix [2f], for
which we have studied using a single FIFO queue and 2D data affinity several years ago [20} 21].

Many runtime systems exist that mapping computation to a DAG using the input and output parameters of a task
such as Cell Superscalar (CellSs) [9, (10} [11], the Star Superscalar (StarSs) programming model [8]], and StarPU [6) [7]].
These runtime systems perform the dynamic scheduling of tasks for heterogeneous computing platforms but are not
domain-specific to dense matrix computations.

A hybrid execution model was also used to program dense matrix computations in [44], yet their methodology was
only designed for a single GPU whereby exploiting parallelism between the streaming processors within a GPU.

8 Future Work

We have three specific items that we want to address in future work:

14



0.9

0.8

0.7

0.6

0.5

Load balance

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

Load balance

0.4

0.3

Double precision - 4 x 2.66 GHz Intel Dunnington with MKL 10.2

SuperMatrix w/cache affinity + serial MKL
r — - — - SuperMatrix w/FIFO queue + serial MKL q

0 2000

—8— SuperMatrix w/2D data affinity + serial MKL

4000 6000 8000

Matrix size

Single precision - 4 x 602 MHz NVIDIA Tesla C1060 with CUBLAS 2.3

SuperMatrix w/cache affinity + CUBLAS
— - — - SuperMatrix w/FIFO queue + CUBLAS B
—&— SuperMatrix w/2D data affinity + CUBLAS
n n

n
0 0.5 1 15 2

Matrix size X 10"

10000

Simulated cache hit ratio

Data transfer rate

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.5 1 15 2
x 10

Double precision - 4 x 2.66 GHz Intel Dunnington with MKL 10.2

L B

\?
’ \

L SuperMatrix w/cache affinity + serial MKL
— - — - SuperMatrix w/FIFO queue + serial MKL
L —&— SuperMatrix w/2D data affinity + serial MKL

=

4000 6000 8000
Matrix size

Single precision — 4 x 602 MHz NVIDIA Tesla C1060 with CUBLAS 2.

10000

SuperMatrix w/cache affinity + CUBLAS
L — - — - SuperMatrix w/FIFO queue + CUBLAS

—&— SuperMatrix w/2D data affinity + CUBLAS
n n n

Matrix size

4

Figure 10: Load balance (left) and data locality (right) properties of different scheduling algorithms within Super-
Matrix for the reduction from a symmetric definite generalized eigenproblem to standard form on a homogeneous
CPU platform using double precision (top) and a heterogeneous platform with multiple GPUs using single precision

(bottom)

e The heterogeneous platform with multiple GPUs contains eight processing cores, yet we only spawn four threads
that correspond to each of the four GPUs. As a result, four CPUs are being left idle. We can extend the runtime
system to utilize these extra processing cores and prioritize tasks that can only be executed on CPUs to these
extra processing cores.

e Within our software managed cache coherency mechanism, we implement a fully associative software cache.
When checking if a block is dirty in another thread’s cache, all blocks within the cache must be evaluated.
Instead, we can implement a set associative cache to reduce the number of blocks that must be searched before
executing a task.

e Several kernels within CUBLAS are not well optimized compared to GEMM [32]] such as TRMM, SYMM, and
SYR2K. We can reimplement some of these kernels for GPUs to attain higher performance when executing
tasks that invoke these kernels.

By tackling these issues, we believe that we can further increase performance when using multiple hardware acceler-

ators.

15



9 Conclusion

In this paper, we describe a systematic methodology for parallelizing dense matrix computations that utilizes both
homogeneous multicore platforms and heterogeneous platforms with multiple hardware accelerators. We develop the
cache affinity scheduling algorithm that addresses load balance and data locality simultaneously, which is motivated
by queueing theory and subsequently provides superior performance on both computing platforms. It is the separation
of concerns implemented by the SuperMatrix runtime system that allows us to seamlessly use different scheduling
algorithms and support the data transfers necessary to utilize multiple hardware accelerators.

We conclude with an anecdote about the productivity afforded by using our methodology. We rederived a blocked
algorithm for the reduction from a symmetric definite generalized eigenproblem to standard form found in the public
domain LAPACK library and reformulated it as an algorithm-by-blocks in about half an hour using the FLAME
methodology [12}[13}[14)1311134]]. Afterwards, we implemented this operation within the 1ibf1lame library [43] with
full support for error checking, test routines, and all four floating point data types, including complex arithmetic, along
with linking to SuperMatrix for both CPUs and GPUs in just four hours!

Additional Information

For additional information on the Formal Linear Algebra Methods Environment (FLAME) visit
http://www.cs.utexas.edu/users/flame/.
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