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Abstract

Design by Transformation (DxT) is an approach to software develop-
ment that encodes domain-specific programs as graphs and expert design
knowledge as graph transformations. The goal of DxT is to mechanize
the generation of highly optimized code. This paper demonstrates how
DxT can be used to transform sequential specifications of an important
set of Dense Linear Algebra (DLA) kernels, the level-3 Basic Linear Alge-
bra Subprograms (BLAS3), into high-performing library routines targeting
distributed-memory architectures. Getting good BLAS3 performance for
such platforms requires deep domain knowledge, so their implementations
are left to experts. The problem is that there are few experts and devel-
oping the full variety of BLAS3 implementations takes a lot of repetitive
effort. A prototype tool, DxTer, automates this tedious task. Perfor-
mance results on a BlueGene/P massively parallel supercomputer show
that the generated code meets or beats implementations that are hand-
coded by a human expert and outperforms the widely used ScaLAPACK
library. Since the BLAS3 are representative of a much broader class of
DLA operations, our study becomes a powerful example of the potential
of DxT for this and other domains.

1 Introduction

Computers perform tasks that are systematic, that can be encoded, and are
time consuming for a human to perform. For this reason, optimizing compil-
ers are employed for the laborious task of customizing software for a specific
architecture. Still, human experts often hand-optimize large software packages
including widely-used libraries, often at a higher level of abstraction than is
targeted by traditional optimizing compilers.
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BLAS3
# of # Optimizations Compared to

Variants generated hand optimization
per variant

Gemm 12 378 Added transpose
Hemm 8 16,884 Same
Her2k 4 552,415 Same
Herk 4 1,252 Same
Symm 8 16,880 Same
Syr2k 4 295,894 Same
Syrk 4 1,290 Same
Trmm 16 3,352 Better algorithms
Trsm 16 1,012 Added transpose;

new implementations

Figure 1: DxTer code generation statistics for the BLAS3s.

Design by Transformation (DxT) is an approach to software development
that encodes domain-specific programs as graphs and expert design knowledge
as graph transformations. Doing so enables experts to focus on discovering and
encoding algorithms and domain knowledge, and deferring to a tool, DxTer, the
laborious task of applying this knowledge to synthesize efficient code. This paper
presents the application of DxT and DxTer to an important set of functionality
for Dense Linear Algebra (DLA), the level-3 Basic Linear Algebra Subprograms
(BLAS3).

Many scientific computing libraries and applications cast computation in
terms of high-performing DLA interfaces such as the BLAS [5], LAPACK [1],
and libflame [19]. By providing efficient implementations for their interfaces,
portable high performance can be achieved as an application is moved to new
hardware architectures. DLA libraries implementing these interfaces must pro-
vide users many operations and many variants of each operation that leads to
a large code base to develop and maintain.

To provide high-performance implementations of all variants, an engineer
must be or become a domain expert. (S)he must consider many algorithms
for each operation variant and many implementations of each algorithm (e.g.
different parallelization schemes), so (s)he must have the knowledge to explore
the options. There are very few experts that have such knowledge. Without it,
correct high-performance code cannot be written. Further, the application of
this knowledge is both difficult and tedious.

Applications invoke BLAS3 functions. By linking to a library that im-
plements the BLAS3 in sequential or shared-memory parallel code, the ap-
plication yields efficient performance on those hardware architectures. When
applications compute with very large dense matrices, distributed memory ar-
chitectures (clusters) are employed, requiring DLA libraries to be ported to
distributed memory architectures. Ideally, such porting should be automatic.
Unfortunately, such parallel libraries have been painstakingly hand-crafted by
experts.

A large portion of the knowledge needed to implement DLA libraries resides
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in the BLAS3 operations, listed in Figure 1. We explore how DxT [8, 15]
encodes expert knowledge of the BLAS3 as program transformations. These
transformations are used to generate automatically highly-efficient distributed-
memory BLAS3 implementations. We target code for Elemental [13, 12], a DLA
library for clusters, and use Elemental specifications as our Domain-Specific
Language (DSL).

We explain how DxTer automatically generates a large number of BLAS3
variants (shown in the second column of Figure 1) for distributed memory us-
ing a small knowledge base. While BLAS3 algorithms, by themselves, do not
offer many opportunities for optimization, we show that automatic generation
is useful to alleviate the tedious work of an expert and even to find better im-
plementations than those created by an expert. Further, knowledge of BLAS3
operations is essential to build more complex DLA algorithms. While the ap-
proach described in this paper is a starting point, the true power of DxT is
apparent when the BLAS3 transformations of this paper are applied to more
complicated algorithms built from combinations of BLAS3 operations. Some
examples were explored in [8, 10], and more will be explored in the future.
With complex combinations of BLAS3 operations, expert knowledge becomes
even more important as there are more opportunities for optimization. This is
when automated code generation shines. We show how DxT shows promise to
achieve such automation. We begin with a brief overview of DxT.

2 Design by Transformation

Abstractions, Refinements, and Optimizations We use directed acyclic
graphs (DAGs) to encode DLA algorithms [17]. Each node – also called a box
or operation – represents a function call. Box inputs are indicated by incoming
edges and box outputs by outgoing edges.

We start with a simple DAG that encodes a sequence of one or more BLAS3
operations.1 For our application, these are the statements in the body of a loop.
There are no implementation details for these operations other than precondi-
tions and postconditions.2 Nodes without implementation details are called
abstractions.

A refinement is a transformation that replaces an abstraction with a sub-
graph. This subgraph exposes details of a specific algorithm that implements the
abstraction (e.g. for distributed memory), maintaining the abstraction’s precon-
ditions and postconditions. These subgraphs contain nodes that are lower-level
abstractions or calls to primitive functions whose implementations are given to
us. The process of refinement continues with the newly revealed abstractions
until no abstractions remain (i.e. all boxes are primitives).

At this point, experts transition to another mode of programming with the

1Generally, our starting DAG encodes a sequence of one or more DLA operations, but here
we focus only on BLAS3 operations.

2We do not present formal preconditions and postconditions in this paper as informal
descriptions are sufficient for our purposes.
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goal of program optimization. In effect, experts optimize a DAG by repeatly
replacing subgraphs with other subgraphs that implement the same functional-
ity in a different, usually more efficient, way. Such transformations are called
optimizations. Preconditions and postconditions of the replaced subgraph are
preserved, as required for correctness. Each rewrite does not guarantee improved
performance, but the result of multiple optimizations is a better-performing al-
gorithm.

Performance Estimation After applying a sequence of refinements and op-
timizations, we produce a graph that references only primitives. This graph
expresses a concrete algorithm. Since many such algorithms result from differ-
ent choices of transformations, the question of which performs best needs to be
answered.

Here again we exploit knowledge of the target domain and again mimic the
activities of domain experts. A domain expert uses a rough idea of cost to esti-
mate the benefit of using a refinement or optimization during algorithm design.
In DLA, a cost function is used to estimate performance (or time-to-completion).
Algorithms for DLA on distributed memory are often bulk-synchronous, making
cost estimation a matter of adding the costs of the primitives, which implement
collective communication or computation. Cost functions for these primitive
that are accurate enough to rank-order implementations are well-understood [4].

How DxT Works It was observed in [7] that all BLAS3 can be implemented
as a loop around calls to Gemm and other BLAS3 operations with smaller subma-
trices. For each BLAS3 operations, there are many such loop-based algorithms.
We start with one such algorithm, and focus on optimizing the sequence of op-
erations that appear in the loop body. This sequence can be encoded as a DAG
that is architecture-independent, as all operations are abstractions. We then use
refinements and optimizations to map this DAG to calls of primitive sequential
BLAS3 operations and primitive data redistributions that are used to express
parallel DLA algorithms in code.

There are a combinatorial number of ways refinements and optimizations can
be applied to an initial DAG. Currently, all possibilities are exhaustively exam-
ined to generate a space of semantically equivalent algorithms. Cost functions
are then used to rank the implementations of this space. The implementation
that is top-ranked (meaning most efficient) is the output of our process. It is
possible that several implementations rise to the top, each “best” for a different
range of problem sizes. The selected algorithm is then synthesized by translat-
ing its graph into Elemental code, which is relatively straightforward. The tool
that accomplishes this all is called DxTer [9] (pronounced “dexter”).

Why Does DxT Work? Readers will see that DLA transformations are
simple, suggesting there might be additional, hidden magic to get the results
that we present. (There isn’t.) Readers may also ask why does DxT work and
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why have similar approaches failed (if they indeed have failed)? We have four
answers:
Experience. We are leveraging highly-polished layers of abstraction in the
Elemental library. This library, the refinements and abstractions that it encodes,
reflects decades of work in DLA software development. Even so, the job of an
Elemental expert is not simple. There is a combinatorial number of refinements
and optimizations from which to choose, and knowing which to use, as we have
said, requires considerable experience.
Prior Success. Spiral [14] is a mature tool that automatically generates algo-
rithms for digital signal processing (DSP) operations. It takes a slightly differ-
ent approach, using empirical timing to differentiate between the performance
of implementation choices. Similar to DxT with DLA, Spiral has shown success
because the software in the domain of DSP is cleanly layered. There are a finite
number of primitives and a finite number of implementations that need to be
encoded for each. Further, Spiral’s rules are roughly as complex as ours.3

Bounded Scope. DxT does not try to do everything. Our scope is limited to
well-understood software layers within DLA. This stops the generation/search
at the given primitives, which are natural to DLA experts; algorithms that
implement primitives require different expertise, which – for now – we do not
intend to generate. Effectively, our work stops where Spiral begins. This scop-
ing makes automated generation of high-performance DLA code practical, with
approximately 15 transformations being a rough upper bound on the number of
steps it takes to generate an efficient implementation. Merging layers together
would open-up astronomical search spaces that would likely be unconquerable.

Methodology DxT transformations are acquired from a variety of sources.
Most refinements can be found in technical papers, but low-level optimizations
are found only by reverse engineering source code written by experts. From
our experience, 45% of the encoded rules for DLA are refinements. The re-
maining 55% are optimizations, which are templatized to represent many more
transformations.

3 Parallelizing for Elemental

We now review basics about the Elemental library and explain how an Elemen-
tal expert manually developed an algorithm for a BLAS3 operation optimized
for distributed-memory. We document the steps that an expert took in terms
of transformations. While the expert did not necessarily view his/her task with
transformations in mind, the resulting code can be forward-engineered by trans-
formations. Further, these transformations are reusable, understandable, and
independent pieces of DLA knowledge.

3DxT is compared to other automatic code generation approaches, including telescoping
compilers, ATLAS, Broadway, and TCE in [8].

5



Algorithm: [B] := Trmm rln blk(L, B)

Partition L→
(

LTL LTR

LBL LBR

)
, B→

(
BL BR

) where
LTL is 0× 0,
BL is n× 0

while m(LTL) < m(L) do
Repartition(

LTL LTR

LBL LBR

)
→

 L00 L01 L02

L10 L11 L12
L20 L21 L22

,
(

BL BR
)
→
(

B0 B1 B2
)

where L11 is b× b , B1 has b columns

B0 := B0 + B1L10 (Gemm)
B1 := B1L11 (Trmm)

B1

B0

B1'

B0'
DGemm
NN

L10

L11
DTrmm
Right

Continue with(
LTL LTR

LBL LBR

)
←

 L00 L01 L02
L10 L11 L12

L20 L21 L22

,
(

BL BR
)
←
(

B0 B1 B2
)

endwhile

Figure 2: Variant of Trmm: right, lower, non-transposed. The graph representa-
tion of the loop body (the DxT encoding) is shown.

A prototypical BLAS3 algorithm Figure 2 shows a prototypical BLAS3
algorithm in FLAME notation [18], which, given a lower triangular matrix L

and general matrix B, overwrites B with BL. This is known as a triangular
matrix-matrix multiply (Trmm). What it shows is that this operation can be
implemented as a loop around operations with submatrices, which we call update
statements. This is a blocked algorithm because the loop body operates on
blocks (submatrices) as opposed to vectors or scalars. If L is n× n, then L11 is
b× b with blocksize b � n so that most computation is in the Gemm operation,
B0 := B0 + B1L10 (defined in Figure 2).

This is a prototypical example of how all BLAS3 can be implemented by
casting most computation in terms of Gemm [7]. The primary concern then is to
get maximal parallelism from B0 := B0 + B1L10, while a secondary concern is to
parallelize B1 := B1L11 (see Figure 2) and to minimize necessary communication.

It is well-known that hiding all parallelism within the separate update state-
ments can introduce redundant communication and/or synchronization. Our
goal is for DxT to encode this algorithm, the knowledge to parallelize its abstract
update statements, and the knowledge to optimize the resulting algorithm. Fur-
ther, we want this knowledge to be reusable for other DLA algorithms.

Elemental Basics Elemental is a framework for parallelizing DLA algorithms
as well as a library for DLA operations. In Elemental code, the p MPI processes
on a distributed-memory system are viewed as a two-dimensional grid, p = r×c.
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Distribution Location of data in matrix

[∗, ∗] All processes store all elements
[MC, MR] Process (i%r, j%c) stores element (i, j)
[MC, ∗] Row i of data stored redundantly on process row

i%r
[MR, ∗] Row i of data stored redundantly on process col.

i%c
[∗, MC] Column i of data stored redundantly on process

row i%r
[∗, MR] Column i of data stored redundantly on process

col. i%c
[VC, ∗] Rows wrapped around proc. grid in col.-major

order
[VR, ∗] Rows wrapped around proc. grid in row-major

order
[∗, VC] Columns wrapped around proc. grid in col.-

major order
[∗, VR] Columns wrapped around proc. grid in row-

major order

Figure 3: Distributions on a p = r× c process grid.

For the default distribution, Elemental uses a 2D element-wise cyclic distribu-
tion, labeled [MC, MR] where MC and MR represent partitionings of the index space
that provide a filter to determine which row and column indices are assigned to
a given process.4 There are a handful of other one and two-dimensional distri-
butions of matrices, examples listed in Figure 3, that are used to redistribute
data so that efficient local computation can be utilized. Elemental is written in
C++ and encodes matrices and attributes (including distribution) in objects.
In order to parallelize a computation, matrices are redistributed from the de-
fault distribution to enable parallel local computation, after which the result is
placed back into the original distribution. In Elemental, this is accomplished
using the overloaded “=” operation in C++, which hides the (MPI) collective
communication required to perform data redistribution efficiently.

Parallelizing Trmm We now examine the actions of an Elemental expert to
develop an optimized parallel algorithm for Trmm. We do so in terms of trans-
formations, first explaining the refinements that parallelize suboperations and
then optimizations that are subsequently applied.

Trmm could be any of the following set of operations:
B = LB, B = LTB, B = UB,= UTB, B = BL, B = BLT, B = BU, B = BUT,

where L and U are lower and upper triangular matrices, respectively. Each of
these eight possibilities is implemented separately with different algorithms. We
focus on B = BL for which Figure 2 gives one of several algorithms that an expert
considers.

The input matrices, L and B, have the default [MC, MR] distribution. To par-

4We do not further explain the reason for different distribution names because they are
out of the scope of this paper. Details are in [13, 16].
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allelize the algorithm, the updates Trmm and Gemm in Figure 2 are parallelized by
redistributing submatrices, performing local computation (via calls to sequen-
tial BLAS3 routines) on each (MPI) process, and (if necessary) reducing and/or
communicating the result.

An expert would need to consider the various ways to parallelize the sub-
operations. The three classes of parallelization schemes for the Gemm update
statement keep the A, B or C matrix stationary , avoiding costly redistribution
from [MC, MR]. The best choice generally keeps the largest matrix stationary. In
this case, the B0 matrix (defined in Figure 2) is the largest. To parallelize Gemm

with a stationary B0, we must redistribute L10 (to [∗, MR]) and B1 (to [MC, ∗]), af-
ter which a local Gemm can be performed in parallel on all processes, calculating
disjoint portions of B0.

To parallelize B1 := B1L11, an expert understands that if L11 is duplicated to
all processes (distribution [∗, ∗]) and B1 is redistributed so that any one process
owns complete rows of this matrix (e.g., distribution [VC, ∗]), then B1L11 can be
computed in parallel by locally calling a sequential Trmm with local data. But the
expert would also consider many other distributions, given in Figure 3, for L11
and B1 before arriving at this particular refinement of the abstract operation.
There are many refinements to consider, each of which distributes computation
differently, requiring different communication and different local computation,
offering a balance between communication (overhead) and parallelism in com-
putation (useful computation). For large problems, one refinement may be best
because the cost of communication is amortized over more computation. We
focus on large problem sizes here, but an expert would serve the user best by
providing a set of optimized implementation variants for a range of problem
sizes. We use the refinement with a [VC, ∗] distribution of B1 in subsequent
discussions.

Encoding the algorithm with Elemental Elemental variable declarations
and loop code are straight-forward and uninteresting, so we do not show it here.
The code of the Elemental update statements, once parallelized with the above
choices of refinements, are given by: 5

B1 MC STAR = B1;
L10 STAR MC = L10;
LocalGemm( NORMAL, NORMAL, 1.0, B1 MC STAR,

L10 STAR MC, 1.0, B0 );

 B0 := B0 + B1L10

L11 STAR STAR = L11;
B1 VC STAR = B1;
LocalTrmm( RIGHT, LOWER, NORMAL, NON UNIT, 1.0,

L11 STAR STAR, B1 VC STAR );
B1 = B1 VC STAR;

 B1 := B1L11

This is close to the code found in the Elemental library. The “=” operation
in Elemental hides MPI collective communication calls. An expert would con-
sider alternate ways to perform the same communication and would notice an
opportunity for optimization in the above code. Data (B1) is redistributed from

5By Elemental convention, variables are named by the submatrix stored, appended with
the distribution name for readability.
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[MC, MR] to [MC, ∗] (denoted [MC, MR] → [MC, ∗]) and then [MC, MR] → [VC, ∗]. The
[MC, MR] → [VC, ∗] redistribution can be implemented with an AllToAll or it can
be implemented in terms of the two redistributions, [MC, MR] → [MC, ∗] → [VC, ∗],
which is an AllGather followed by a memory copy. Although this redistribution
is not as efficient, it allows an expert to remove the extra redistribution to [MC, ∗],
which results in the best performance.

An expert explores this option in code by replacing (refining) the line:
B1_VC_STAR = B1;with B1_VC_STAR = B1_MC_STAR = B1; and optimizing the inefficient code
by removing one of the redundant redistributions in the two lines B1_MC_STAR = B1;

B1_MC_STAR = B1; The resulting optimized code, which is in the Elemental library,
is:

B1_MC_STAR = B1;
L10_STAR_MR = L10;
LocalGemm( NORMAL, NORMAL, 1.0, B1_MC_STAR, L10_STAR_MR,

1.0, B0 );

L11_STAR_STAR = L11;
B1_VC_STAR = B1_MC_STAR;
LocalTrmm( RIGHT, LOWER, NORMAL, NON_UNIT, 1.0,

L11_STAR_STAR, B1_VC_STAR );
B1 = B1_VC_STAR;

The above code is the result of two parallelizing refinements, one refinement to
explore an alternate implementation of [MC, MR] → [VC, ∗], and one optimization
to remove a redundant redistribution. Each transformation is easy to under-
stand individually, but learning and then manually exploring all of the options
and choosing the correct combination is not easy and/or is tedious. It takes
considerable knowledge and experience with Elemental to do this well.

4 Encoding Knowledge of the BLAS3

With a basic understanding of DxT and Elemental, we can show prototypical
transformations that enable DxTer to generate implementations automatically
for all BLAS3 variants in Figure 1. We now describe the primitive operations
and transformations used.

Graph and Code Operations High-performance parallel DLA software is
coded in terms of loops, sequential DLA function calls, and communication
operations. There are other operations, but these are the main operations to
be considered in well-layered code thanks to decades of software engineering in
this field [1, 19, 13, 3].

General rules attaining high performance are that communication should
be minimized and the portion of time spent in high-performing computation
kernels should be maximized. On a single (many-core) CPU, communication is
data movement between cache layers. With GPUs communication is data move-
ment between devices and the host computer. With clusters, communication is
movement between processes.

The important design decisions for Elemental deal with a small number of
computation operations. For the parallel BLAS3, high-performance implemen-
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tations call sequential BLAS3 kernels for suboperations. Further, Elemental
code requires redistribution operations (collective communication) between a
finite number of supported distributions. Only knowledge regarding these re-
distributions needs to be encoded, and much of that, as shown below, is repeti-
tive. These are the primitives in terms of which DxT graphs will ultimately be
defined.

The best implementations come down to the right combination of a small
number of operations. The transformations to generate those implementations
can be very simple. The rest of this section demonstrates this point.

Algorithms to Explore The FLAME project has developed a repeatable
process by which loop-based families of algorithms for DLA operations can be
systematically derived [6]. Using formal derivation, a person or a mechanical
system [2] can derive multiple correct algorithmic variants, expressed similarly
to Figure 2, for a target operation. This is useful because there is generally
no single algorithm that works best for all architectures, so with a family of
algorithms for an operation, the best variant can be chosen.

BLAS3 operations and their FLAME-derived algorithms are mathematical in
nature (e.g., Figure 2) and are architecture invariant, so different optimizations
and transformations are needed to yield efficient implementations for a specific
architecture.

We represent BLAS3 in a graph with nodes named after the operations they
represent (e.g., if we are interested in optimizing the Trmm operation, we start
with a single node labeled Trmm). These are purely mathematical abstractions
— they have no implementation details. Abstract operations can be combined
in a graph with other nodes to compose higher-level functionality, but in this
paper we focus just on implementations of the BLAS3 functions in isolation,
and hence start with a graph with one node.

For each BLAS3 operation (e.g. Trmm), a refinement for each known algo-
rithmic variant is encoded in DxTer. These refinements replace the abstract
node with a graph representing the algorithmic loop and loop body operations.
For blocked algorithms like in Figure 2, the update statements in the loop are
BLAS3 operations themselves, operating on smaller submatrices.

The refinement of node Trmm for the algorithm of Figure 2 is a loop with
abstract update statements Trmm and Gemm. The part of the loop that does not
include the update statements we call the loop skeleton, which can be specified
at a very high level of abstraction and is often identical for all variants.

To differentiate between top-level BLAS3 operations that need to be imple-
mented by a loop algorithm and the update statement BLAS3 operations that
are implemented differently (described below), the update statements are not
abstract BLAS3 nodes (e.g. with the label Trmm). Instead, they are architecture-
specific, which we call DTrmm and DGemm (where the D stands for distributed, not
to be confused with the subroutine DGemm where the D stands for double preci-
sion [5]). Boxes that start with D (D* boxes) are BLAS3 operations implemented
in distributed-memory parallel code via redistribution, local computation, and
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redistribution of the result. When targeting other architectures, the loop body
operations are the same, but D may be replaced with, say, GPU flavors of the
same operations. In this way, algorithm transformations are reusable across
architectures; only the implementation of the suboperations changes, with dif-
ferent architecture-specific refinements. To transform the loop body operations
to architecture-specific implementations, there are distributed-memory refine-
ments, described below.

BLAS3 Distributed-Memory Refinements With knowledge of algorith-
mic variants encoded, we now need transformations to refine and parallelize D*

boxes. When an expert implements abstract suboperations, (s)he chooses from
the ways to redistribute the operands in to enable computations to be performed
in parallel across a machine by calling locally sequential computation on each
core (e.g. via a call to a sequential (local) BLAS3 function). The result then
needs be re-redistributed to the default [MC,MR] distribution if it is not already
distributed as such. To encode parallelization options for each of the D* boxes,
we add refinements that have the building blocks of the local BLAS3 calls and
the Elemental redistribution operation (“=” ). L* boxes represent local com-
putation that does not require communication with other MPI processes. For
Elemental these boxes map to a call to a sequential BLAS3 kernel (with pa-
rameter checking), so L* boxes are graph primitives (e.g. calling LocalGemm in
Elemental code).

LTrmm
RightB [MC,MR]→[π,*]

[MC,MR]→ [*,*]
[π,*]→[MC,MR]

DTrmm
Right

B' B'

DTrmm Right

L

B

L

LTrmm
LeftB [MC,MR]→[*, π]

[MC,MR]→ [*,*]
[*, π]→[MC,MR]

DTrmm
Left B' B'

DTrmm Left

L

B

L

Figure 4: Templatized refinements for DTrmm: triangular matrix on the left or
right and π ∈ {∗, MC, MR, VC, VR}.

Consider DTrmm. In Figure 4, we show a templatized form of the refine-
ments for DTrmm with the triangular matrix on the left or the right and π ∈
{∗, MC, MR, VC, VR}. These options parallelize the computation over the process
grid’s rows or columns or over the entire grid. An expert considers these op-
tions based the other operations in the loop body, the problem size, etc. Each
possible refinement is included in the DxT knowledge base. The top refinement
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of Figure 4 with π = VC was used for the code of Section 3.

DGemm NN

B

A

C

C'

[MC,MR]→[MR, *]
LGemm
NN

DGemm NN

B

A

C

C'

[MC,MR]→[MC,*]

[MC,MR]→[*, MR]
LGemm
NN

Temp
[MC, *] Sum

Scatter

DGemm
NNB

A

C
C'

DGemm NN

B

A

C

C'

LGemm
NN

Temp
[*, MR] Sum

Scatter

[MC,MR]→[*, MC]

Figure 5: Three refinements for DGemm NN (DGemm without transposition), station-
ary A, B, and C from the top to bottom.

For DGemm, an expert again has a handful of choices to consider based on,
for example, the surrounding operations and the size of operands. In Figure 5,
we show three refinements for stationary A, B, and C for a non-transposed DGemm

NN, which is the form of DGemm without transposition (i.e. A and B are both
Normal instead of Transposed). TEMP boxes create a temporary storage matrix
with the specified distribution. The input matrix provides TEMP with problem
size information, but its data is not changed.

The SumScatter box is a form of Elemental redistribution that performs a
ReduceScatter collective operation on the first operand and stores the result in
the second operand [11]. There are small variations on these refinements for
the three transposed versions of DGemm. An interested reader can discover them
by looking at the Elemental library’s Gemm implementations [11], which DxTer
reproduces.

The other D* BLAS3 functions have refinements that are comparably simple,
but the particular parallelization schemes are not important here. The fixed set
of Elemental distributions enable the most useful (and some less useful) ways to
parallelize BLAS3 operations. These schemes are encoded in our DxT knowledge
base.

Redistribution Refinements Redistribution boxes map one-to-one to a sin-
gle “=” operation in Elemental. This operation is implemented with MPI col-
lective communication, but there are also alternate implementations. Exposing
the implementation behind “=” and exploring alternatives enables the expert
or DxTer to optimize the overall communication pattern of an implementation,
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possibly combining communications exposed by refinements of different update
statements.

In some cases, Elemental implements “=” as a series of redistributions. One
example is [MC, MR] → [VR, ∗], which utilizes an intermediate distribution [VC, ∗]
(i.e., with [MC, MR]→ [VC, ∗]→ [VR, ∗]). Refinements like Figure 6 break through a
layer of code to expose this detail. Then, optimizations can remove redundant or
inverse redistributions that were hiding behind the “=” interface. In Section 3,
we demonstrated why this is necessary.

Other refinements find an abstract node that cannot be directly implemented
in Elemental and replace it with a specific implementation. Refinements like
Figure 6, though, replace a node that represents valid Elemental code to expose
internal implementation details (and hidden inefficiencies). This does not change
the implementation; it just allows for subsequent optimizations.

A B A B[MC,MR]→[VR,*] [MC,MR]→[VC,*] [VC,*]→[VR,*]

Figure 6: A redistribution refinement.

Refinements like Figure 6 can explore alternate implementations of redistri-
butions, too. For example the [MC, MR]→ [MC, ∗] redistribution found in one DTrmm

and DGemm refinement is implemented behind “=” with an AllGather collective
among process rows. This redistribution can also be implemented as the two
redistributions [MC, MR] → [VC, ∗] → [MC, ∗], which requires an AllToAll followed
by an AllGather, both among process rows. If code around the [MC, MR]→ [MC, ∗]
operation already redistributes the data to [VC, ∗], then exposing the alternate
redistributions enables a better overall implementation because an unnecessary
redistribution to [VC, ∗] can be removed. There are four cases similar to this that
are implemented with one templatized transformation. These transformations
replace a node representing valid Elemental code with a subgraph that chooses
a different implementation, which will allow DxTer to explore subsequent opti-
mizations.

Redistribution Optimizations Refinements are sufficient to attain parallel,
executable code. Combinations of costly redistribution operations need to be
optimized to remove inefficient communication. For that, we use optimizing
transformations for Elemental redistribution boxes.

The first optimization removes an inverse redistribution operation. The
template is shown in Figure 7 (top), in which Σ and φ are any Elemental dis-
tributions. There is no need to perform an inverse redistribution when we can
just use the original distribution. This optimization is applied often by experts
and DxTer.

The second optimization removes a redundant redistribution operation. The
template is shown in Figure 7 (bottom), where Σ and φ are any Elemental
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A
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ø→∑

B

C
A ø→∑

B

C

Figure 7: Templatized optimizations to remove inverse (top) and redundant
(bottom) redistribution operation. Σ and φ can be any Elemental distribution

distributions.
As shown in Section 3, [MC, MR]→ [VC, ∗] can be implemented (suboptimally)

as [MC, MR] → [MC, ∗] → [VC, ∗] This is a refinement of the [MC, MR] → [VC, ∗] redis-
tribution. This enables a subsequent optimization. We encode the optimization
of Figure 8, to represent both steps. This reuses an intermediate distribution
[MC, ∗]. There are 8 versions of this transformation that are implemented using
a templatized version of Figure 8. Template parameters are limited to distribu-
tions that make sense for this optimization.

A
[MC,MR]→[MC,*] B

C
A

B

C[MC,MR]→[VC,*]
[MC,MR]→[MC,*]

[MC,*]→[VC,*]

Figure 8: Reusing an intermediate redistribution.

For redistribution operations, data is copied into and out of buffers that are
passed to collective communication (MPI) functions. It can be very costly to
access memory with non-unit stride. With Elemental, data can be transposed
in some redistribution operations. This moves the cost of non-unit stride be-
tween packing and unpacking to push the performance hit on the piece with less
data to copy. Many inputs to BLAS3 functions can be transposed, so DxTer
has optimizing transformations that transpose data during redistribution and
untranspose it in BLAS3 function calls.

Simplicity of Transformations The graph transformations we have illus-
trated are no more complicated than those we have not shown here. Abstractly,
they are all simple graph rewrites that capture deep domain knowledge of DLA
and its encoding in Elemental. Had we chosen another distributed-memory
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DLA library that did not have a cleanly-layered design, we suspect we would
have been less successful or not successful at all. We can not stress enough that
the key to the simplicity of our rewrite rules is that they capture relationships
between fundamental levels of abstraction in DLA library design. If these ab-
stractions are encoded in an ugly way, transformations are substantially more
complex.

5 Cost Estimates

DxTer applies transformations to an input graph to generate a space of seman-
tically equivalent graphs (implementations). It then computes a cost estimate
for each implementation to choose the best (most efficient) from the space. In
this section, we explain how cost estimates are made.

Node Costs The cost of a node is a function of the node’s type and the size
of its input matrices. DxTer calculates cost as the number of floating point
operations performed multiplied by γ, an estimate of the time to complete a
floating point operation on the target machine.

Redistribution boxes (Elemental “=” operations) are implemented with a
packing operation, a call to an MPI collective communication routine, and an
unpacking operation. Cost estimates of collectives are known for idealized mod-
els in terms of α and β, the cost of network startup and the cost to communicate
a piece of data, respectively [4]. An expert balances the cost of data communi-
cation relative to the cost of computation. For this (s)he uses a rough estimate
of the relative costs. α and β are set to be reasonable multiples of γ to mimic
the expert’s attempt to balance the factors.

Packing and unpacking operations are not directly modeled in DxT graphs
(at this point), but their costs are included in communication cost models. An
exact cost that reflects complex memory access is not needed. A cost function
needs to mimic the decisions of an expert, who does not seem to use a very ac-
curate estimate when manually coding. The goal is to have a cost estimate that
penalizes bad (large) memory strides but does not grossly overestimate. DxTer
currently uses a cost of ω, which we set equal to γ, to copy each number with
unit stride and 10× ω to copy each number with non-unit stride. The motiva-
tion is that reading and writing a number takes on the order of the time it takes
to perform a floating-point operation when the stride is one and substantially
more time when the stride is not one. This is indeed a rough estimate, but it is
sufficient in all of our tests to choose transposed communication when it does
not substantially increase the cost of communication.

The cost of an entire graph is calculated by summing the cost of all nodes
for an input problem size.

Sample cost functions are shown in Figure 9. Consider when the computa-
tion of Trmm is parallelized such that each processor’s LTrmm operation works on
1
p
, 1
c
, or 1

r
of the overall computation, which happens with the parallelization
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refinements above (with process grid configuration p = r × c). The LTrmm cost
model reflects these differences in runtimes.

The two redistribution costs reflect the collective communication and pack-
ing and unpacking costs. Studying these, one can see why DxTer finds transpose
optimizations to be beneficial. The same amount of data is communicated via
an AllGather collective, reflected in the first line of each cost. The first and
second term in the second line of each is the packing cost and unpacking cost,
respectively. By transposing during redistribution, the additional cost of copy-
ing data with a non-unit stride is shifted to the packing operation. The amount
of data copied while packing is c-times less than is copied while unpacking, so
this reduces the overall penalty of non-unit stride.

Loops In DxTer loops are represented with a graph for the loop body. Loop
inputs are split into submatrices (views of the input matrix), which are inputs
to the loop body. The outputs of the body are submatrices “combined” to form
the output of the loop (there is no actual combination since the submatrices
are just views of the same matrix). This reflects the beginning and end of the
while loop in Figure 2, where submatrices are exposed and combined. The split
and combine operations are represented in the loop body by LoopSplit and
LoopCombine nodes, which mark the beginning and end of a loop body in the
graph.

For the results in [8], DxTer only calculated the cost of the loop body for the
middle iteration. Even though submatrices are a different size at each iteration,
it was sufficient to optimize for the middle iteration to reach the same design
decisions as an expert (perhaps he reasoned about the middle iteration as well).
For BLAS3 functions, though, the total cost of all iterations must be considered,
so DxTer cost calculation was improved to do just that.

To calculate the cost of a loop, execution is simulated. Input matrix sizes
are known, so the number of iterations is known in terms of blocksize. At each
iteration, the size of the inputs’ submatrices can be calculated, so the cost of a
loop body graph can be calculated by summing the cost of all nodes. Then, the
cost of the whole loop is the sum of the loop body’s cost at each iteration.

Operation Cost
LGemm NN (m× k, k× n, m× n) γ2mkn
LTrmm Right (n× n, m× n) γmnn

[VC, ∗]→ [MC, ∗] (m× n)
αdlog2 ce+ β c−1

c
m
r
n

+ω m
p
n + 10ωc m

p
n

[VC, ∗]→ [∗, MC]T (m× n)
αdlog2 ce+ β c−1

c
m
r
n

+10ω m
p
n + ωc m

p
n

Figure 9: First-order approximations for the cost of operations. γ is time for
a floating-point operation. α and β are network startup and transfer costs,
respectively. ω is the cost of copying a piece of data at unit stride.
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How Does This Work? The cost functions we use may seem too simple
to be useful. They are sufficient in our tests, though, and this makes sense
when we consider their role in mimicking manual design decisions. These cost
estimates were not meant to predict the performance of an implementation on
the target architecture accurately. Instead, they are meant to rank-order the
generated implementations in terms of performance in the same way that an
expert might, though (s)he usually cannot evaluate every implementation. The
cost estimates we use are enough to point out bad parallelization choices, missed
optimizations, etc.

6 Results

DxTer took as input Elemental primitives and transformations like those above.
From this, DxTer automatically generated code for all BLAS3 variants that is
the same or better than that of an expert. This is an important accomplish-
ment because developing all of the code by hand is rote, tedious, and error
prone (much of the development time goes into testing). Having a system to
automatically generate code is a significant step and to our knowledge the first
time it has been done.

The performance improvement offered over a human developer is notewor-
thy but limited in our tests cases because BLAS3 operations are simple and
do not offer many opportunities for optimization (thus the human missed few
of them). Keep in mind, though, that the transformations that enable these
results can be used to generate code for more complicated algorithms built from
BLAS3 operations. They would require complex combinations of the existing
optimizations and would show much greater benefit from their application.

In this section, we describe the size of the knowledge base in DxTer, the size
of the space encountered when using that knowledge, and the quality of DxTer-
generated code. Performance results were taken from Argonne’s BlueGene/P
system Intrepid. We tested on 8192 cores (2 racks), which have a combined the-
oretical peak of over 27 TFLOPS. Two-thirds of peak performance is shown at
the top of the graphs. Double precision arithmetic was used in all computations.
For all runs, we tune the blocksize and choose the best-performing run. The
algorithm and implementation selections of DxTer account for the vast majority
of performance; tuning the blocksize provides a small performance boost.

Number of Transformations The BLAS3 are reused repeatedly when im-
plementing code for a variety of targets. Further, refinements that implement
suboperations are used repeatedly across libraries.

Redistribution optimizations are templatized to work for many communica-
tion patterns (recall Figure 7). Similarly, the transformations (algorithm and
parallelization refinements) for Hermitian and symmetric BLAS3 operations are
largely identical so the same knowledge can apply to both sets of operations.

To generate code for all BLAS3 operations, DxTer has a set of transforma-
tions that are reused repeatedly (i.e. its knowledge base). Figure 10 shows the
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Type Unique Total
Algorithm refinement 19 30
Parallelization refinement 14 31
Redistribution refinement 30 30
Redistribution optimization 3 728
Redistribution transposition 6 22

Figure 10: Rule count in DxTer’s BLAS3 knowledge base.

unique transformations encoded in DxTer for BLAS3 operations. It also shows
the total number of transformations that are generated from those unique pieces
of knowledge using templates (different distributions, symmetric and Hermitian,
etc.).

Search Space and DxTer Results BLAS3 implementations for distributed
memory must be tailored to the problem size and parameter combination. Con-
sider, for example, Gemm: C := AB + C. Gemm is best provided in a library with
different implementations for when each of the 3 input matrices is the largest
(to minimize communication of it) and for each of the 4 combinations of “A”
and “B” being transposed. As a result, Elemental offers 12 = 3 × 4 Gemm im-
plementations. Implementations of Trmm could minimize communication of each
of its 2 input matrices (whichever is biggest) and there are 3 parameters that
lead to 8 different algorithms and parallelization schemes, yielding a total of 16
implementations. The second column of Figure 1 shows the number of imple-
mentation variants for each BLAS3 operation.

For each variant of each operation, we tested DxTer’s ability to generate
code. The third column of Figure 1 shows the total number of implementations
generated by DxTer. Different parameters lead to different implementations
(because different starting algorithms are used). For variants with the same
parameter combination (but different matrix sizes), the same implementations
are generated, but the cost estimates rank-order them differently. This count
includes the repeated implementations that are re-generated for each of the
variants. All implementations are generated within 30 minutes; the majority
take less than a minute.

Many of the differences between implementations are due to the variety of
ways in which data can be redistributed and transposed. Consider the number
of transformations dealing with redistributions, shown in Figure 10. There are
5 algorithmic variants for Her2k, but only one parallelizing refinement for DHer2k

in their loop bodies. This does not lead to many implementations options. The
large space is the result of the many ways to redistribute and transpose operands
to the local computation.

When the Elemental expert (Jack Poulson) first implemented the BLAS3,
he explored a portion of these search spaces. At that point, he did not apply
transposition optimizations. Later, he revisited the BLAS3 implementations
and transposed redistributions to improve performance. The expert explored
large implementation spaces using his intuition and experience. Because of
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Figure 11: Performance of BLAS3 functions. Problem size is 50,000 along all
dimensions.

the number of possibilities and the difficulty with reoptimizing existing code,
though, he did choose sub-optimal implementations in some cases. The last
column of Figure 1 compares DxTer’s implementations to the code in Elemental.
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Figure 12: Performance of a collection of real BLAS3 functions.

Figure 11 (top) compares representative variants of each of the double-
precision, real BLAS3 functions with problem sizes along each dimension of
50,000. We show performance from ScaLAPACK, Elemental, DxTer without op-
timization (only parallelization), and DxTer with optimization. In many cases,
the expert and DxTer produced the same implementations, but there were some
notable improvements. In all cases, DxTer generated implementations
that were the same or better than the expert.

For Gemm, the expert missed a number of transposition opportunities that im-
proved performance. DxTer determined when those transpositions were worth-
while (the cost functions predicted that runtime decreased) and generated code
that incorporated the optimization.

For Trsm, DxTer again found a missed transposition opportunity in one vari-
ant. Figure 11 (top) shows this is a modest improvement, but it is worthwhile
and it came without human effort. The improvement is greater for smaller
problem sizes. Additionally, the expert had not implemented some of the Trsm

variants. DxTer had sufficient knowledge to generate code for all variants.
The greatest DxTer successes came when studying Trmm. DxTer has 3 algo-
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rithms encoded for the left-side and right-side versions of Trmm. DxTer explored
all implementations of these algorithms and chose as best a different algorithm
than that chosen by the Elemental expert. He did not explore the algorithm
in Figure 2. Figure 11 (top) shows the performance of DxTer’s implementation
over the expert-optimized version for one problem size, but DxTer’s version is
better across problem sizes.

Figure 11 (bottom) shows many parameter combinations for the real BLAS3
functions. We compare DxTer’s predicted-best implementations against ScaLA-
PACK’s implementations. The majority of these are the same as Elemental, so
we omit its performance. Figure 12 shows a sample of these functions across
a range of problem sizes, demonstrating DxTer-generated Elemental code per-
forms better than or roughly equal to that of ScaLAPACK.

7 Conclusion

We demonstrated how the knowledge an expert uses to develop BLAS3 code
for distributed memory can be encoded as reusable transformations in the De-
sign by Transformation (DxT) style. Using this knowledge, our tool DxTer
automatically generates code for the many BLAS3 variants. This shows how
the burden of coding sequential algorithms in distributed-memory code can be
taken from a human and given to a machine. Instead of requiring an expert to
apply knowledge repeatedly — a tedious and error-prone process — a system
like DxTer can be trusted to do it automatically. BLAS3 operations do not al-
low many opportunities for optimization, but even an expert developer missed
some. DxTer missed none. DxTer even explored a different algorithmic variant
than that chosen by the expert and generated substantially better-performing
code. This is the power of automatic code generation.

In [8, 10], some of the knowledge used in this paper was applied to much
more complicated algorithms (with many BLAS3 operations in their loop bod-
ies). This paper extends that knowledge base to support all BLAS3 operations.
We expect to apply it to more algorithms and demonstrate more utility from
automatically generating distributed-memory DLA code. Further, we intend to
use DxT to generate sequential and shared-memory parallel code.

DxT is applicable far beyond the DLA domain [15], but DLA is a prime
candidate for initial evaluation. DLA code can be cast in terms of a relatively
small number of operations whose refinements and optimizations well-known.
The results in this paper are major step to automating code development for
DLA and many other domains.
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