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Abstract

The road towards Exascale Computing requires a holistic effort to address three different challenges
simultaneously: high performance, energy efficiency, and programmability. The use of runtime task
schedulers to orchestrate parallel executions with minimal developer intervention has been introduced
in recent years to tackle the programmability issue while maintaining, or even improving, performance.
In this paper, we enhance the SuperMatrix runtime task scheduler integrated in the libflame library
in two different directions that address high performance and energy efficiency. First, we extend the
runtime by accommodating hybrid parallel executions and managing task priorities for dense linear
algebra operations, with remarkable performance improvements. Second, we introduce techniques to
reduce energy consumption during idle times inherent to parallel executions, attaining important energy
savings. In addition, we propose a power consumption model that can be leveraged by runtime task
schedulers to make decisions based not only on performance, but also on energy considerations.

1 Introduction

With the introduction of the CUDA [I] and OpenCL [2] programming standards, graphics processing units
(GPUs) are being increasingly adopted for their affordable price, favorable energy-performance balance
and, due to their vast amount of hardware concurrency, the excellent acceleration factors demonstrated for
many compute-intensive applications with ample data-parallelism [3, [4]. Nevertheless, this type of hardware
accelerators has to be attached to a conventional (multicore) processor (or CPU), and efficiently programming
a heterogeneous platform consisting of one to several multicore processors and multiple GPUs is still a
considerable challenge. The reason is that, when dealing with these parallel (hybrid) systems, in addition to
facing the programming difficulties intrinsic to concurrency, the developer has to cope with the existence of
multiple memory address spaces, and the different programming models.
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In recent years, a number of runtimes have been proposed to alleviate the burden that programming these
new platforms with increased levels of thread parallelism pose. Thus, OmpSs [5], StarPU [6], Mentat [7]
and Harmony [8], among others, have followed the approach pioneered by Cilk [9], offering implicit parallel
programming models with dependence analysis, especially well adapted to exploit task-level parallelism
while partially palliating the programmability problem. When applied to Dense Linear Algebra (DLA)
operations in particular, SMPSs (a precursor of OmpSs) [10], StarPU, Quark [I1] and SuperMatrix [12] have
demonstrated the advantage of extracting task-level parallelism using this same approach for this specific
domain.

On the other hand, heterogeneous architectures that combine general-purpose multicore technology with
hardware accelerators like GPUs or the Intel Xeon Phi, DSPs (digital signal processors), and FPGAs (field
programmable gate arrays), also seem to provide the answer to the continued pressure to further reduce
power consumption [I3] [14] historically exerted by the mobile and embedded appliances, but now also in
place for HPC facilities and datacenters [15].

The SuperMatrix runtime was designed from its inception for the execution of DLA operations. This
runtime follows to the methodology advocated in the FLAME project [12], which patronizes a separation of
concerns between the derivation of new algorithms for DLA operations and their practical coding (implemen-
tation) and high-performance execution on a platform. SuperMatrix orchestrates a seamless, task-parallel
execution of the full functionality of the libflame DLA library [16] on a range of platforms, including
multicore desktop servers [17], heterogeneous CPU-GPU systems [I§], and small-scale clusters [19].

In this paper, we present a few major changes to SuperMatrix, that yield significant improvements on
both performance and energy consumption. In particular, we make the following contributions:

e The original SuperMatrix runtime commits one CPU thread per GPU that schedules tasks for their
execution in the accelerator attached to it. This control thread monopolizes one CPU core, and no
attempt is made to exploit additional CPU cores in case these outnumber the GPUs. In the new
version of the runtime we instead accommodate one thread per CPU core in the system. Among
these, there is one control thread per GPU, but now also one additional worker thread for each one
of the remaining CPU cores, which allows the new runtime to leverage any combination of hardware
CPU-GPU concurrency in the platform.

e During the experimental evaluation of certain dense matrix decompositions on heterogeneous CPU-
GPU platforms, it was observed that the panel factorization that lies in the critical path of the algorithm
is a major obstacle to attain high performance. To deal with this problem, we introduce task priorities
in the new runtime, to advance the computation of these operations. The experimental results show a
significant reduction of idle time in this type of platforms.

e Furthermore, we integrate two energy-aware techniques into the new SuperMatrix runtime and we for-
mulate a model of the energy consumption for DLA operations that allows us to relate the experimental
energy savings with the theoretical expectations.

e Finally, we analyze the actual impact of the performance and energy-saving enhancements using two key
DLA operations, namely the LU factorization with partial pivoting and the Cholesky decomposition,
that are representative of many other dense Level-3 BLAS-based matrix operations.

While some of these results were already presented in [20], the detailed description of how to introduce prior-
ities into the runtime, the experimental evaluation of the Cholesky factorization, both from the perspective
of performance and energy consumption, and the power consumption model are new contributions specific
to this paper.

The rest of the paper is structured as follows. In Section 2l we briefly review the foundations of data-flow
runtimes and the operation of SuperMatrix. In Section [3] we describe the target platform, the computational
libraries that are employed, and the power measurement setup. Sections M and [l contain the major contri-
butions of our paper, the performance enhancements and the energy-aware mechanisms incorporated into
the runtime, respectively. A few remarks and a discussion of future work close the paper in Section



2 SuperMatrix Data-Flow Parallel Runtime for Dense Linear Al-
gebra

In this section, we describe the internals of the SuperMatrix runtime task scheduler by using two well-known
basic DLA operations: the LU with partial pivoting and the Cholesky factorizations. These two operations
will drive the explanation throughout the rest of the document. Although we focus on the LU factorization
to guide the description of our runtime, similar ideas underlie the Cholesky factorization in particular, and
other DLA operations in general.

2.1 A brief introduction to SuperMatrix’s data-flow execution

Consider the LU factorization of a (nonsingular) matrix A € R™*"™  which computes the decomposition
A = LU, where L € R™™" is unit lower triangular and U € R"*" is upper triangular. For simplicity, we
do not consider pivoting during the presentation, though all the implementations evaluated in this paper
include this technique. Figure[I] (left) presents a right-looking blocked algorithm for this factorization using
the FLAME notation [21].

Supermatrix (like many other high performance runtimes for DLA) starts from a (sequential) blocked
algorithm of the target matrix operation (see Figure [I), to obtain a task parallel data-flow execution. For
this purpose, SuperMatrix first decomposes the algorithm/operation into a number of suboperations (tasks)
of a certain granularity, while simultaneously identifying all dependencies among these. In the case of
SuperMatrix and DLA operations, this can be done, e.g., based only on the order in which tasks appear
in the algorithm as well as the operands that each task reads (inputs), writes (outputs), or reads/writes
(inputs/outputs).

For example, consider an n X n matrix A composed of s x s = 4 x 4 blocks of dimension b x b each (i.e.,
n = s-b). The symbolic result from the above process is the task dependency graph (TDG) in Figure 2]
where LU(k) stands for the factorization of the k-th panel (column block), and T(k,j) and G(k,j) refer,
respectively, to the triangular system solve and the matrix-matrix update of the j-th panel with respect to
the factorization of panel k (see Figure[Il (right)). In this operation, the factorization of the first panel, LU(0),
yields a result that is necessary for tasks T(0,1), T(0,2), T(0,3); and this is captured in the TDG by arcs
(dependencies) between the corresponding nodes (tasks). Thus, these dependencies state that T(0,1)-T(0,3)
cannot be executed till LU(0) is completed, but also that these three triangular solves can be performed in
any order.

Following a similar approach, we consider a blocked algorithm for the Cholesky factorization, shown in
Figure[3] that decomposes a symmetric positive definite matrix A € R™*" into the product A = LL”, where
L € R™*" is lower triangular. The symbolic analysis of the algorithm for a matrix composed of s x s =4 x 4
blocks, of dimension b x b each, yields the TDG in Figure[dl where CHOL, T, S, and G stand for the Cholesky
factorization, triangular system solve, symmetric rank-b update, and matrix-matrix product, respectively.

In summary, the TDG associated with a given algorithm dictates different “orderings” in which the
tasks (suboperations) can be correctly computed, and SuperMatrix leverages this information to produce an
out-of-order, data-flow schedule of the TDG and a concurrent execution of the tasks.

2.2 Operation of SuperMatrix

After the identification of tasks and dependencies, SuperMatrix proceeds to execute the computations repre-
sented by the TDG. For that purpose, the runtime spawns a collection of worker threads that poll a queue of
tasks ready for execution. Upon dequeuing a task from this structure, a thread executes the corresponding
computation and, once completed, checks which dependencies have been fulfilled, moving those tasks with
all dependencies satisfied from the global work queue to the ready queue.

The original version of SuperMatrix for heterogeneous CPU-GPU platforms [18] commits one control
thread per GPU (device) of the target platform. These threads run each on a different (CPU) core of the
host, and i) update the dependence queues; ii) guide the associated accelerator by carrying out the necessary
data transfers and dispatching tasks for execution there; and ) execute computational work that is not
suited to the GPU. For example, for the LU factorization with partial pivoting, the panel factorizations are
performed by the CPU cores, as this type of operations requires a fine control that renders them inappropriate
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Figure 1: Blocked algorithm for the LU factorization (left) and procedures for the update of the trailing
submatrix (top and bottom right). In the algorithms, procedure LU _uns(-) computes the LU factorization of
a panel using an unblocked algorithm, and the operator n(-) returns the number of columns of its argument.

for the GPU. The triangular solves (T) and matrix-matrix updates (G) of the remaining blocks, on the other
hand, are performed by the GPUs. A major drawback of that initial version is that no attempt was made
to exploit the existence of more CPU cores than GPUs in the target platform.

For the particular case of parallel platforms with multiple memory address spaces, this version of the
runtime [I8] introduces two communication-reducing techniques: 4) the workload is partitioned statically
among the computational resources following a cyclic block data layout; and 4i) the memory of each GPU is
viewed as a local, fully-associative cache, and data coherence is preserved using write-invalidate and write-
back protocols [22]. The outcome is a significant reduction of the volume of communications between CPU
and GPU, diminishing the impact of the slow PCI-e bus.
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Figure 2: TDG for the LU factorization with partial pivoting of a matrix A consisting of s x s = 4 x 4 blocks.
Pink arrows identify the critical path of the algorithm.
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Figure 3: Blocked algorithm for the Cholesky factorization (left) and procedure for the update of the trailing
submatrix (right). Procedure CHOL_uns(-) computes the Cholesky factorization of a block using an unblocked
algorithm, and operator m(-) returns the number of rows of its argument. Blocked algorithms for the solution
of a triangular system and matrix-matrix product are similar to those shown in Figure [Il

3 Environment Setup

In order to compare the different versions of the runtime we used two servers. The first one (called TSL1
hereafter) is equipped with two Intel Xeon E5440 processors at 2.83 GHz featuring 4 cores per socket each,
16 Gbytes of RAM and is connected to 4 “Fermi” GPUs NVIDIA Tesla S2050. The second server (T'SL2) is
composed of two quadcore Intel Xeon 5405 processors at 2.00 GHz, with 24 Gbytes of RAM and is connected
to a NVIDIA Tesla S1070 (4 Nvidia Tesla C1060 GPUs). Both servers use the same software: Intel MKL
10.0.1 on the CPU side and NVIDIA CUBLAS 5.0 on the GPU side for BLAS/LAPACK operations (IEEE
double-precision real arithmetic), and the SuperMatrix runtime in libflame (release 5.0-r6719) for the
factorization routines. In the execution of the routines we use the optimal value for the block size, which
was selected via a complete experimental analysis.

The power supply units of the servers are connected to an APC 8653 Power Distribution Unit (PDU). A
separate tracing server runs a daemon application that samples power from the PDU at rate 1 Hz, using the
routines from our pmlib [23] library to interact with the power measurement device. These routines allow to
synchronize the target application and the daemon on the tracing server, sample the wattmeter, and dump
the power figures into a file upon termination of the application.

4 Improving SuperMatrix

In this section, we first propose an initial experiment to gain insights about the performance of the SuperMa-
trix scheduler using the two only configurations available in its original design: the multicore and multiGPU
setups. The results in Section E.] justify the introduction of improvements to the scheduler in order to
leverage the full potential of the hardware resources available in current hybrid CPU-GPU architectures,
by further exploiting the existing concurrency in DLA operations. Techniques and necessary modifications
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Figure 4: TDG for the Cholesky factorization of a matrix A consisting of s x s = 4 x 4 blocks. Pink arrows
identify the critical path of the algorithm.

applied to the scheduler are described in Sections to [44

4.1 Performance analysis of the original SuperMatrix

The original design of the SuperMatrix scheduler for heterogeneous CPU-GPU architectures supported two
basic execution modes, depending on the available hardware resources:

e Multicore mode. In this setup, one worker thread is bound to a unique CPU core, executing tasks on
it via invocations to optimized (sequential) BLAS/LAPACK kernels, and collaborating in the manage-
ment of shared lists of ready and pending tasks.

o MultiGPU mode. In this configuration, the runtime task scheduler executes tasks on platforms equipped
with one or more hardware accelerators attached —specifically GPUs— transparently to the user/li-
brary developer. One control thread running on a CPU core is associated to a different GPU during
the complete parallel execution. As the computation advances, ready tasks are executed in the GPUs
using a specific implementation of BLAS for these devices (in our case, CUBLAS for NVIDIA GPUs).
The control threads are in charge of performing the necessary data transfers between memory spaces
prior to any task execution in the GPU, if necessary. In case a task is not appropriate for the GPU,
the computation can be carried out in the associated CPU core, and no data transfers are performed
unless transfers are strictly required to maintain data consistency.

Let us next illustrate the performance of the original modes of the SuperMatrix scheduler using our
driving examples of the LU factorization with partial pivoting and the Cholesky factorization. Figure
shows the performance of the codes for these operations, in terms of GFLOPS (i.e., billions of floating-poing
arithmetic operations, or flops, per second), using 8 CPU cores (multicore mode) and 4 GPUs (multiGPU
mode) of TSL1.

From this initial experiment, it is possible to extract a few coarse conclusions, identifying three different
cases according to the matrix dimension:

e Small problems. For small matrices (up to n = 4,500 for the LU factorization and up to n = 5,500
for the Cholesky factorization), the multicore mode outperforms the performance of the GPU-based
alternative. This is a known result [24] [I8] as GPUs need large volumes of computation in order to
hide PCI-e data transfer overheads and to exploit the massive hardware concurrency featured by the
accelerator.

o Medium-size problems. For medium-size matrices (in the range n = 4,500 to 5,500 for the LU fac-
torization and n = 5,500 to 6,500 for the Cholesky factorization), both the multicore and multiGPU
modes deliver similar GFLOPS rates. This behavior, in which equivalent performance for different
configuration modes appears, is common to other DLA operations, and justifies the derivation of a
power model to determine the optimal mode from the point of view of energy consumption.

e Large problems. For large matrices (starting at n = 5,500 for the LU factorization and n = 6,500
for the Cholesky factorization), the multiGPU setup clearly outperforms its multicore counterpart,
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Figure 5: Performance of the LU factorization with partial pivoting (left-side plot) and Cholesky factorization
(right-side plot) on TSL1, using 8 CPU cores (multicore mode) and 4 GPUs (multiGPU mode).

basically due to the much higher hardware concurrency of the GPUs. The gap in performance between
both platforms becomes larger as the problem size increases.

4.2 Tuning the scheduler

In past work, a number of heuristics have been applied to tune the performance of runtime task schedulers
by reducing idle time and/or minimizing data movement among memory spaces. These techniques include
data affinity [I8], caching [25], work-stealing [26], or task renaming [27].

In our extension of the SuperMatrix runtime for hybrid CPU-GPU architectures, decisions taken at
runtime can address performance, but also energy efficiency:

e The GFLOPS analysis in terms of the problem size reported in the previous subsection determines an
optimal mode for each problem size. To leverage this, the runtime system could modify, at execution
time, the number of each type of computational resources (CPU or GPU) that are devoted to the actual
task computation. This type of decisions is even more important and complex for a hybrid runtime
implementation (alike that presented next), in which any combination of number of CPU/GPU worker
threads can be chosen at runtime.

e For the range of matrices labeled as medium-size problems in the previous subsection, the attained
performance is similar for two or more combinations of the number of CPUs/GPUs. The question thus
becomes which mode is more efficient from the point of view of energy consumption. To answer this,
in Section [fl we propose a power model for hybrid CPU/GPU architectures, which could be leveraged
by runtime schedulers to make decisions at execution time on the number of resources that should be
utilized in order to minimize energy consumption in situations in which performance is expected to be
similar, but power consumption may dramatically vary depending on the number of CPU/GPU worker
threads.

The next two subsections address the performance goal while the discussion related to energy is delayed
till Section

4.3 Leveraging full hardware concurrency

In the original SuperMatrix implementation, the execution of tasks was performed either by the CPU cores
(multicore mode) or by the GPUs (multiGPU mode). As an exception, in the multiGPU mode a few types
of tasks could be executed on the CPU cores, due to their special properties. While this occurred, though,
the corresponding GPUs remained stalled, waiting for the completion of the task. As a result, for example,
if four GPUs were used from a platform equipped with 12 CPU cores in the multiGPU mode, only the four



cores assigned to guide the execution on the GPUs were effectively utilized, while the remaining eight CPU
cores were wasted.

An improvement to this original execution model considers the GPUs and all the CPU cores as potential
workers. In this case, each task type is bound to two different kernel instances, one for the GPU and one for
the CPU. Depending on the type of thread a task is mapped to, the corresponding kernel instance is invoked.
Data transfers are handled by the runtime, depending on the type of worker thread and the location of the
necessary data when the task is dispatched for execution.

Figure [0l reports the performance of the LU factorization with partial pivoting and the Cholesky factor-
ization using the modified scheduler that accommodates hybrid executions. In the plots, red lines identify
hybrid configurations, while blue and green lines correspond to multicore and multiGPU configurations,
respectively. We illustrate the results by dividing the overall performance lines into three different cases,
depending on the problem size; each case is shown in a different pair of plots.

e Small problems (Figure . The addition of GPUs to the basic multicore setup does not improve
performance for these problem sizes. Hybrid configurations perform better than the multiGPU one,
offering increasing levels of performance as the number of GPUs decreases. From these results, it is
clear that the progressive activation of GPUs for small problems degrades performance, and only the
CPU cores should be used for these particular problem sizes.

o Medium-size problems (Figure . The insights for these particular problem sizes involve both per-
formance and energy-related considerations. Regarding performance, hybrid configurations perform
better than multicore and multiGPU configurations for most problems sizes in the range. This fact
offers the hybrid scheduler different options to select the most appropriate configuration mode at run-
time to tune performance for a given problem size. Regarding energy consumption, note that situations
in which performance lines for different configurations intersect each other appear frequently in the
plot. For these problem sizes, performance for different configurations is approximately equivalent.
For example, consider the LU factorization and compare the performance attained by the multicore
configuration and a hybrid setup using 7 CPU cores/1 GPU for n = 3,072. While the performance
attained is barely identical, the efficiency of the execution for both configurations is likely to vary
significantly when employing or not the GPU. In this type of situations, the hybrid scheduler can make
decisions based on energy-aware considerations, selecting the most suitable execution configuration at
runtime.

e Large problems (Figure . In this case, the situation is the opposite to that for small problems:
the addition of GPUs to the basic multicore setup clearly improves performance, with the multiGPU
setup being the most convenient for these particular problem sizes.

4.4 Advancing critical tasks

Let us analyze in detail the task scheduling of the LU factorization with partial pivoting for a matrix of
size n = 10,240 with block size b = 1,024 using the multiGPU mode on 4 GPUs. Given these dimensions,
the Algorithm in Figure [ partitions the matrix into s = 10,240/1,024 = 10 panels. At each iteration
k=0,1,...,s—1, the algorithm proceeds by firstly decomposing the k-th panel of the input matrix (LU(k));
and next updating the trailing submatrix panelwise with respect to the factorization of this panel, which is
performed as a sequence of triangular system solves and matrix-matrix updates (tasks T(k,j) and G(k, j),
respectively, with j =k + 1,k +2,...,s — 1). Hereafter we will refer to the combined application of T and
G to the j-th panel as UPDATE(E, j).

Figure[7 (top) shows a trace for the execution of this LU factorization governed by the original SuperMa-
trix scheduler, with tracing capabilities provided by Extrae and Paraver [28]. Note how, in the operation
of the original runtime, the factorization LU(k + 1) does not commence till the update of the full trailing
submatrix with respect to the factorization of the previous panel has been completed. An inspection of the
order in which tasks are executed there (see the instants marked with numbers 1 to 4 in the trace) reveals that
task LU(1) (execution point 4) does not proceed until the update of the trailing submatrix UPDATE(0, s — 1)
(execution point 3) is completed.
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Figure 6: Performance of LU with partial pivoting and Cholesky factorization on TSL1 using the hybrid
runtime scheduler for small problems (top), medium-size problems (middle), and large problems (bottom).
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n = 10,240, with b = 1,024 using 4 GPUs of TSL1, without (top) and with priority tasks (bottom).
Selected execution points: 1: End of LU(0); 2: End of UPDATE(0,1); 3: End of UPDATE(0, s — 1); 4: Start
of LU(1).

However, the factorization of the current panel and the update of the first panel of the trailing submatrix
both lie on the critical path of the TDG (see Figure[2) and, therefore, their execution should proceed as soon
as possible. Indeed, task LU(k + 1) could effectively start as soon as task UPDATE(k, k + 1) is completed,
since the dependencies determine that it is unnecessary to wait for the update of all remaining panels in
the trailing submatrix: UPDATE(k, k + 2),...,UPDATE(k, s — 1). Thus, the goal of our optimization is to
enforce a fast execution of those tasks in the critical path, that in practice yields an overlapped execution of
LU(k + 1) with UPDATE(k, k + 2),...,UPDATE(k, s — 1).

To accomplish these goals, tasks in the critical path receive a different treatment in the enhanced version
of the SuperMatrix scheduler. Specifically, i) critical (or priority) tasks are executed as soon as possible
to avoid unnecessary stalls; and i) they are mapped to the fastest computational resource (CPU or GPU)
available.

In practice, these restrictions introduce the necessity of i) marking certain tasks as critical, and i)
modifying the scheduler to prioritize the execution of these tasks, mapping them to the fastest suitable
execution unit (typically the GPU). In the following, we elaborate on these two requirements.

4.4.1 Identifying priority tasks.

We consider next the blocked algorithm to compute the LU factorization with partial pivoting to illustrate
the mechanism to identify priority tasks. An analogous approach can be easily applied for the Cholesky fac-
torization. Remember that the symbolic analysis is performed in SuperMatrix by (automatically) processing
the corresponding sequential codes from 1ibflame at run time, in order to identify tasks and data dependen-
cies between suboperations, without effectively executing the associated kernels. The actual FLAME/C code
used for the blocked LU factorization is given in Figure[8 The code mimics the algorithm in Figure [II (left),
and proceeds by traversing the input matrix A from the top-left corner to the bottom-right one. Similar ideas
apply to the blocked Cholesky factorization. While inspecting this procedure, at each iteration the runtime
exposes new sub-blocks, adds a new task of type LU to the TDG, and processes the trailing submatrix. The
update of this submatrix is performed by invoking routines to perform (a sequence of) triangular system
solves (T in routine FLA_Trsm) and general matrix-matrix updates (G in routine FLA_Gemm), which results in
new tasks being added to the TDG; see Figure [
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void FLA_LU( FLA_Obj A, int b ) {

FLA_Obj ATL,  ATR, A00, AO1, A02,
ABL,  ABR, A10, Al1, A12,
A20, A21, A22;
FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLATL );
while ( FLA_Obj_width( ATL ) < FLA_Obj_width( A )) {

FLA_Repart_2x2_to_3x3 (
ATL, /#%/ ATR, &A00, /%x/ &AO1, &AO2,
VES x/  [* */
&A10, /%x/ &A1l, &A12,
ABL, /#%/ ABR, &A20, /*x/ %A21, &A22,
b, b, FLA_BR );

/ /
/#——— Factorize current panel —————————s/
FLA_LU_unb( A11, A12 );

/e Update trailing submatrix ———————%/

FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
FLA_ONE, A11, A12, b );

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21, A12, FLA_ONE, A22, b );

/ /
FLA_Cont_with_3x3_to_2x2 (
&ATL, /#%/ &ATR, K00, AO1, /#x/ A02,
A10, A1, /#x/ A12,
/* ®/ /% */
&ABL, /%%/ %ABR, A20, A21, /%x/ A22,

FLA_TL );

Figure 8: FLAME code used in the symbolic analysis stage for the LU factorization.

Both FLA_Trsm and FLA_Gemm proceed by further subdividing the respective operations into smaller T and
G sub-operations that update their outputs by panels of columns. In a data-flow run, the specific algorithmic
variant chosen for a given operation does not have any effect on the actual execution order as this is only
dictated by task dependencies. However, the appropriate choice of variants for the two operations involved
in the update of the trailing submatrix makes it easy to identify those tasks that must be marked as critical.
In our case, both FLA_Trsm and FLA_Gemm proceed from left to right updating the trailing submatrix by
blocks of columns. Thus, only the tasks that update the first panel lie on the critical path and, therefore,
only they must be signaled as priority tasks. Consider the codes in Figure [ that correspond to the update
of the trailing submatrix performed in terms of G. Routine FLA_Gemm proceeds by exposing a new panel of
columns of C per iteration, and updating it with FLA_Gemm panel by row blocks; the latter performs the
actual enqueuing of tasks into the TDG using ad-hoc macros. There, only the first panel update invoked
from FLA_Gemm will enqueue critical tasks of type G (one per block row). An analogous approach is taken to
enqueue/mark critical tasks of type T and the application of permutations in the LU factorization.

4.4.2 Scheduling with priorities.

Once priority tasks are identified and introduced in the TDG, the runtime remains in charge of performing
the most adequate action when a ready critical task is encountered. The objective of the scheduler during
this stage is two-fold: first, execute priority tasks as soon as possible; second, execute them in the fastest
computational resource that is idle.

The original implementation of SuperMatrix controls a single ready queue containing all tasks with their
data dependencies satisfied. (Indeed, when data affinity was in place, there was one queue of ready tasks
per thread, containing ready tasks to be run by that thread). In the version enhanced with priorities, the
scheduler has been modified to introduce an additional priority queue (or one priority queue per thread in
case data affinity is used), which is handled as follows:

e After the execution of a task and the needed updates of data dependencies, tasks that become ready
are removed from the work queue. If the ready task is critical, it is inserted in the thread priority
queue; otherwise, it is moved to a non-priority queue shared by all threads.

e When a worker thread becomes idle, it polls the queues of ready tasks in order to obtain a new
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void FLA_Gemm( FLA_Obj alpha, FLA_Obj A,

FLA_Part_1x2( B, &BL, &BR, O, FLA_LEFT );
FLA_Part_1x2( C, &CL, &CR, O, FLA_LEFT );

while ( FLA_Obj_width( BL ) <
FLA_Obj_width( B ) )
{

FLA_Repart_1x2_to_1x3 (
BL, /#x/ BR, &BO, /%%/ &Bl, &B2,
b, FLA_RIGHT );
FLA_Repart_1x2_to_1x3 (
CL, /#x/ CR, &CO, /%%/ &Cl, &C2,
b, FLA_RIGHT );

void FLA_Gemm_panel( FLA_Obj alpha, FLA_Obj A,
FLA_Obj B,
FLA_Obj beta, FLA_Obj C,

int b,
FLA_Bool mark_priority
{

FLA_Obj B,
FLA_Obj beta, FLA_Obj C, FLA_Obj AT, A0, cT, co,
int b ) AB, A, CB, c1,
{ A2, c2;
FLA_Obj BL, BR, CL, CR, FLA_Part_2x1( A, ZAT,
BO, B1, B2, co, cC1, C2; &AB, 0, FLA_BOTTOM );
FLA_Part_2x1( C, &CT,
FLA_Bool mark_priority = TRUE; &CB, 0, FLA_BOTTOM );

while ( FLA_Obj_length( AB ) <
FLA_Obj_length( A ) )
{

FLA_Repart_2x1_to_3x1 (
AT, &ZAO,
&A1,
/* wk x/ /® wx x/
AB, &A2, b, FLA_TOP );
FLA_Repart_2x1_to_3x1 (
CT, &Co,
&C1,
/o wx x/ /o wx x/

CB, %c2, b, FLA_TOP );
/%~ Only the first panel (iteration) is —x/ / /
= marked as critical —x/ /% Cl := Cl1 + alpha = Al % B x/
/* Cl = alpha * A % Bl1+4 Cl; %/ if ( mark_priority )
FLA_Gemm_panel ( FLA_NO_TRANSPOSE, FLASH_ENQUEUE_PRIORITY_GEMM_TASK (
FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
alpha, A, Bl, beta, Cl1, b, FLA_NO_TRANSPOSE,
mark_priority ); alpha, Al, B, beta, Cl );
else
mark_priority = FALSE; FLASH_ENQUEUE_GEMM_TASK (
/ FLA_NO_TRANSPOSE,
FLA_NO_TRANSPOSE,
FLA_Cont_with_1x3_to_1x2 ( alpha, A1, B, beta, C1 );
&BL, /#*/ &BR, BO, B1l, /+x/ B2, / /
FLA_LEFT );
FLA_Cont_with_1x3_to_1x2( FLA_Cont_with_3x1_to_2x1(
&CL, /#x/ &CR, CO, Cl1, /%x/ C2, &AT, A0,
FLA_LEFT ); /s sk w/ /% wx %/
A1,
3} ZAB, A2, FLA_BOTTOM );
} FLA_Cont_with_3x1_to_2x1 (
&CT, co,
[ ok k) [k ok x)
c1,
%CB, c2, FLA_BOTTOM );

Figure 9: (Left) FLAME code used in the symbolic analysis stage for G. The analysis proceeds from left to
right, invoking the corresponding routine for the update of one panel per iteration. (Right) FLAME code
used in the symbolic analysis stage for G. At this level, G sub-operations operate on single blocks of the
original matrices, enqueuing priority and non-priority tasks to the TDG.

candidate for execution. Consider first the multiGPU mode. If the thread is in control of a GPU, it
first checks the corresponding priority queue; if no priority task is available, the shared non-priority
queue is polled for a new task. On the other hand, if the thread runs on a CPU core with no GPU
attached, only the non-priority queue is polled.

In the multicore mode, the priority queue is always checked first before the non-priority one. This
behavior forces the runtime to execute critical tasks as soon as they become ready, doing it on the
GPU in the multiGPU mode to ensure a fast execution.

The effect of the enhanced runtime is illustrated in the bottom trace of Figure[ for the LU factorization
with partial pivoting. For this particular operation, an inspection of the order in which tasks are executed
exposes that LU(1) (execution point 4) now commences as soon as the update of the first panel of the trailing
submatrix has been completed (UPDATE(O, 1), execution point 3), effectively overlapping the execution of
tasks from both iterations. This reduces the idle time, activating new ready tasks that depend on those
of the critical path, and accelerating the parallel execution. A similar effect was observed for the Cholesky
factorization.

The performance impact of the improvements introduced in the new runtime is reported in Figures 10
and[[dl There, we compare the efficiency of the original version of SuperMatrix with that of the new runtime
using the multicore mode and the multiGPU mode of the runtime scheduler. For the LU factorization
with partial pivoting, the results show that the performance improvement is especially remarkable for large
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Figure 10: Impact of the use of priority tasks on the performance of the LU factorization with partial pivoting
(left-side plot) and Cholesky factorization (right-side plot) on TSL1, using 8 CPU cores (multicore mode)
and 4 GPUs (multiGPU mode).
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Figure 11: Impact of the use of priority tasks on the performance of the LU factorization with partial pivoting
(left-side plot) and Cholesky factorization (right-side plot) on TSL2, using 8 CPU cores (multicore mode)
and 4 GPUs (multiGPU mode).

matrices. For the multicore mode, the acceleration varies between 10% and 12%, while for the multiGPU
mode, the speedups range from 20% to 25% for the largest tested matrices. For the Cholesky factorization, the
improvements attained by the introduction of priority tasks are less important. In the case of the multiGPU
mode, the acceleration for the largest tested matrices ranges from 5% to 10%; and no improvements are
revealed in this case for the multicore mode. The different impact due to the introduction of priorities is
explained by the relative cost of the tasks that lie on the critical path in both cases: for the LU decomposition,
the factorization of the current panel presents a much higher cost than the factorization of the diagonal blocks
in the Cholesky decomposition. Thus, advancing those critical tasks (that operate on panels) in the first
case can be expected to yield a higher benefit in terms of performance.

5 Energy-Aware Extensions to SuperMatrix

In this section we first present the energy-saving techniques introduced in the runtime, and their practical
outcome on the execution of the LU and the Cholesky factorization on TSL1. We then adapt a power model
from [29] to the execution of DLA operations on hybrid CPU-GPU platforms, and use the results to put the
attained energy savings into perspective.
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Table 1: Average power consTlthion (in Watts) of different actions performed by threads.
1 core 4 cores

Intel MKL dgemm 330 403
Polling 323 367
Blocking 290 293

5.1 Energy-aware runtime

Let us introduce our two energy-saving techniques for the task-parallel execution of FLA /1ibflame routines
on hybrid CPU-GPU platforms. In the following we will continue using the LU factorization with partial
pivoting to explain the benefits of these techniques, but the ideas and techniques used in the following are
also relevant to any other DLA operation.

In order to illustrate these techniques, consider again the bottom trace in Figure [l The trace was
obtained using four control threads (running each on a CPU core) and four GPUs. Furthermore, because of
its complexity, LU type tasks were always mapped to the CPU cores while the remaining two types of tasks,
T and G, were mapped to the GPUs. Idle time is marked using white color. This corresponds to periods
when both CPU cores and GPUs are performing no useful work but waiting for the completion of an event.
Inactive periods occur when there are no ready tasks to be executed due to pending dependencies. Moreover,
when a GPU is executing a task, the corresponding CPU core is engaged and inoperative, waiting for the
GPU to complete the job. The trace certainly shows that these periods occupy a significant fraction of the
execution time.

The question that naturally arises is how to leverage these inactive periods to reduce energy consumption.
Although Dynamic Voltage and Frequency Scaling (DVFS) [30] can in principle be applied to reduce the
power rate during idle periods, our experiments in [31] demonstrated that the savings obtained by reducing
the CPU frequency during the execution of compute-intensive DLA operations are small. In particular,
Table [I] shows the average power dissipation rates incurred by one and four cores of TSL1 repeatedly
executing a matrix-matrix product (“Intel MKL dgemm”), performing a busy-wait (“Polling”), and blocked
(“Blocking”). Interestingly, depending on the number of active cores, 33-74 Watts can be approximately
saved by avoiding polling.

The results of this experiment justify the following two techniques that we introduce in SuperMatrix in
order to replace busy-waits by a blocking power-friendly state during the execution of the DLA codes when
possible.

5.1.1 Avoid polling when there are no ready tasks.

(Energy-Aware technique 1—EA1) In SuperMatrix, when a CPU thread finishes the execution of a task (and
updates the corresponding dependencies), it continuously checks the ready queue in order to request more
work, performing an active polling and, therefore, wasting energy in case are no ready tasks. The goal of
our first energy-aware technique is to avoid this situation, by using instead a power-friendly blocking-wait
(idle-wait). For this purpose, we introduced POSIX semaphores into the runtime to control the activity of
“idle” threads. Specifically, when a thread that is polling the ready queue for a new task finds it empty
(i.e., there are no ready tasks to be executed at that moment), it blocks itself by calling to the sem_wait ()
routine. This method requires a complementary mechanism to wake up blocked threads. In particular, when
an active CPU thread finishes the execution of a task and updates the dependencies within them, in case
this requires moving c tasks from the work queue to the ready queue, this thread will also wake up ¢ threads
by calling to the system call sem_post (). This mechanisms ensures that there will be one active thread per
task in the ready queue, minimizing the impact of delays while simultaneously avoiding potential deadlocks.

5.1.2 Avoid polling when waiting for the GPU.

(Energy-Aware technique 2—EA2) When a CPU thread finds a task of type T or G, to be executed on the
attached GPU, it automatically invokes the corresponding CUBLAS kernel. Notwithstanding, because of
the asynchronous nature of the GPU kernels in NVIDIA CUBLAS, the calling CPU thread does not block,
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Figure 12: Impact on time and energy of the energy-aware techniques of the LU factorization with partial
pivoting without (top plots) and with priority tasks (bottom plots) on TSLI.

and so it queries the ready queue to retrieve a new task. At this point, if the CPU thread dequeues a second
task to be run in GPU, it tries to execute it, invoking the appropriate CUBLAS kernel. Consequently, since
a GPU is not able to execute more than one kernel simultaneously in the SuperMatrix runtime, the thread
commences a busy-wait (polling) until the first kernel finishes its execution on the GPU.

To avoid this behaviour we adapted the runtime so that routine cudaSetDeviceFlags is invoked with
cudadeviceBlockingSync parameter set. This parameter blocks the CPU thread on a synchronization
point to wait for the device to finish its work. We also added the correspondent synchronization primitive
after CUBLAS calls performed by libflame. Routine cudaSetDeviceFlags allows to specify the behavior
of the active CPU thread when it executes device code. To achieve this, each thread calls this routine
before the CUDA runtime is initialized. Afterwards, synchronizations are carried out using the primitive
cudaThreadSynchronize in order to suspend the execution of the calling thread until the device finishes its
work, hence blocking the core and avoiding the potential energy-wasting state.

Figures and [I3] report the impact on the execution time and on the energy consumption when the
energy-aware version of SuperMatrix without and with priority tasks is employed to execute the LU factor-
ization with partial pivoting on TSL1 and TSL2, respectively. Figures[I4] and [[5lreport the analogous infor-
mation for the Cholesky decomposition. The combination of both techniques is referred to as “EA1+EA2”.
These results show a variety of energy gains, from close to 10% in some cases to even a waste of energy in a
couple of cases, depending on the DLA operation, matrix dimension, and technique. In the following section
we relate these results with the actual consumption of dynamic power and the length of idle periods.

The behavior of the power-aware runtime for the LU factorization without and with task priorities is
specially interesting. The reduction in execution time when task priorities are used yields an important
reduction in energy consumption (compare right plots in Figure and [[3)); however, this improvement in
execution time is mainly motivated by a reduction in the amount of idle periods in the parallel execution. As
our power-aware techniques exploit idle periods, the expected improvements from the application of these
mechanisms are less significant as idle time decreases. That explains why the percentage of reduction in
energy consumption is smaller when priorities are applied (less than 6%) than when priorities are not used
(up to 9%).
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Figure 15: Impact on time and energy of the energy-aware techniques of the Cholesky factorization without
(top plots) and with priority tasks (bottom plots) on TSL2.

5.2 A model of power consumption

We next review a power model initially proposed in [29], and customize it to assess the quality of the energy-
savings observed in the previous experiments. Given that the energy savings due to EA1 and EA2 techniques
are produced in the CPU cores, we only dissect the power consumption in the host. The proposed model can
eventually be incorporated into the runtime to dynamically determine the optimal number of computational
resources to employ for the execution of a DLA operation. Since there exists different configurations of
resources that result in equivalent or nearly equivalent performance, the hybrid SuperMatrix runtime can
make use of the model to automatically select the most energy-efficient configuration.
Consider the following simple model, borrowed from [32]:

P=pP¢4+pPY=pS4+ PPy pY

whereby we decompose the total power consumption P as a sum of PC, which is the power dissipated
by the CPU, and PY, which is the power consumption due to the remaining components (system power
corresponding, e.g, to RAM). We decompose P in turn into the static power (mainly due to leakage) and
the dynamic power, P and PP, respectively.

We assume that P and PY remain constant during the execution of the algorithm. In practice, starting
from an idle platform, PS grows with the system temperature and activity up to a maximum [32]. In order
to avoid this effect, all our tests were performed on a “hot” system representing a platform where always
exists a continuous compute-intensive workload to execute. The dynamic power is a function of activity and
therefore time, and so it is also the total power consumption:

P(t) = PS+ PP(t)+ PY. (1)

Finally, the energy consumption is obtained by integrating the power dissipation over the total execution
time T":

E = [L,P(t)dt=(PY+PS-T+ [l PPt dt. (2)

We next employ a practical approach to determine the parameters necessary to assemble, refine and cus-

tomize the models in () and () for the particular case of the execution of the task-parallel LU factorization

with partial pivoting on TSL1. The model for TSL2 and/or the Cholesky factorization is obtained following
an analogous procedure.
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Figure 16: Power dissipated as a function of number of active cores on T'SL1.

5.2.1 System and static power.

Let us first estimate the system and static parameters of the power model (IJ). Direct measurement using
our external PDU with the platform completely idle revealed a power dissipation of 290.47 Watts, which
can be taken as an approximation for PY. On the other hand, Figure reports the power consumption
executing a matrix-matrix product (routine dgemm from Intel MKL) with square operands of size 1,024. We
vary the number of CPU threads/cores of TSL1 from 1 to 4 when running on the same socket, and from
5 to 8 when running on the two sockets. Applying a linear regression to adjust the total power, two linear
models are obtained: Pagenn(c) = o+ - ¢ = 297.16 4 26.78 - ¢ Watts for the case of 1-4 threads, and
Pigemn(c) = o/ + 8"+ c = 329.02 + 19.69 - ¢ Watts for the case of 5-8 threads. Therefore, the static power
dissipated by the system can be approximated as P%! ~ o — PY = 6.68 Watts when there is only one socket
active, and P%% ~ o/ — PY = 38.55 Watts otherwise.

5.2.2 Dynamic power.

The characterization of the dynamic power dissipated by a task-parallel DLA operation is more challenging.
In the case of the LU factorization with partial pivoting, we have to estimate the power dissipated during
the execution of each one of the three kernels (task types) that appear —LU, T and G— as well as the
consumption due to data transfers.

The previous experiment revealed that the dynamic power increases linearly with the number of threads
mapped to a single socket that execute a certain task (the matrix-matrix product in that case). Besides,
there we could also observe that the use of cores from two sockets changes the arguments which define this
linear function. To account for this difference during the estimation of each one of the kernels, we performed
an experiment where one single thread continuously invokes one type of kernel, e.g. G, till the total power
stabilizes; we then sampled this value, say Pg, and set PGDZ = Pg — P%— PY = Pg —297.16 Watts. We next
repeated the experiment, with two concurrent CPU threads invoking the same kernel on different sockets of
the target platform and, when the power stabilized, we sampled the value, Pg, and set PP? = (P{—329.02)/2
Watts. The estimations of the dynamic power for each kernel type and number of active sockets are collected
in Table[2l These values were obtained employing operands of square dimension 1,024 in all cases.

5.2.3 Power dissipation and energy consumption of DLA operations.

Consider finally the task-parallel execution of a DLA operation, with the algorithm decomposed into r
different types of tasks, with r; instances of task type j. The total power dissipation of the algorithm, at an
instant of time ¢, is given by the composition of the system power, the static power, and the dynamic power
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Table 2: Dynamic power (in Watts) of the task types involved in the LU factorization with partial pivoting,

estimated when placing 1
Task LU T G CPU—GPU | GPU—CPU

pD1 || 27,92 | 36.32 | 26.03 50.33 49.63
pPD2 | 1453 | 16.03 | 19.43 - -

of all tasks being executed at that instant:

P(t) PY + P5(t) + PP(t)

= PY 4 PYM(t)+ P#M'(t) + Y7, Y202, (PPIM(t) + PP2M'(t)) Nij(t).

Here, M (t) is a function that, at time ¢, returns 1 in case there are active threads running in a single socket
only or equals 0 otherwise; similarly, M'(t) = 1 if at time ¢ there exist active threads distributed between
the two sockets or equals 0 otherwise; and N; ;(¢) = 1 if the task (4, j) is being executed at time ¢ or equals
0 otherwise.
The energy consumption of the algorithm is a function of the time spent in each type of task:
T
E = [_,P(t)adt
PY T+ PSS+ P58 + 37 302, PP Ty vy + PP T (1= i)

where S and S’ are the periods of time when there is a single socket and two sockets active, respectively; T
is the execution time of a task of type 7; PjD 1 P]-D 2 are the dynamic powers given in Table 2] with j referring
to the different types of tasks (columns of the table); and ~; ; is the ratio of time that there is one socket
active during the execution of task (¢,j). Note that, to accurately determine the energy consumption, we
need a detailed trace of the algorithm execution.

This energy model can then be used to evaluate the quality of the gains attained by the energy savings
techniques. Consider, e.g., the execution of the LU factorization with partial pivoting, for a matrix of
dimension n = 20, 480 with block size b = 1,024, using the multiGPU mode and 4 GPUs. The total execution
time employing the runtime enhanced with priorities is 39.0 seconds, of which CPU cores are inactive during
50.9%. On the other hand, the total energy consumption is 13,969.9 Joules, with about 82.9% corresponding
to the sum of system and static power dissipation. Thus, the highest savings that we could expect by
leveraging those periods during which CPU cores are idle is approximately 0.509 - (1 — 0.829) ~ 7.6%, which
is consistent with the savings reported in Figure [[2] for that particular problem size.

6 Concluding Remarks and Future Work

The HPC community is currently well aware that reducing the energy drawn from compute-intensive appli-
cations is a concern almost in equal terms with the conventional quest for high performance. While these two
factors seem in principle orthogonal, our insights shown throughout this paper reveal mutual implications
that addressed together yield relevant synergies.

In particular, we have introduced significant enhancements in the SuperMatrix runtime scheduler to
improve performance. The first one consists of a new hybrid execution mode that renders a better use of the
available hardware resources in modern CPU/GPU platforms. The second enhancement introduces priority
tasks that, adequately managed, yields a reduction of the idle time caused by dependencies in the critical path.
The experimental results show a speedup around 20-25% for the LU factorization with partial pivoting and
5-10% for the Cholesky factorization in the multiGPU configuration. The same techniques carry beyond
other DLA routines included in 1ibflame and they can also be incorporated into other general-purpose
runtime schedulers that exploit task-parallelism.

Furthermore, we also proposed two techniques which aim at reducing power dissipation at idle times
during the parallel executions on hybrid CPU/GPU platforms, with a minimal (or even null) impact on the
execution time. The techniques have also been integrated into the runtime scheduler and are transparent to
the programmer.
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Finally, we have elaborated a power model that can pass valuable information to the scheduler, so that
at run time it can make decisions on the best configuration from the energy perspective. The model also
gives the ability to extract theoretical bounds on the power savings for specific operations and it is general
enough to be applicable in other task-parallel environments or runtime schedulers.

As part of future work, we intend to explore new scheduling algorithms that combine data locality with
energy-saving techniques.
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