
Using Graphics Processors to Accelerate
the Solution of Out-of-Core Linear Systems∗
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Abstract

We investigate the use of graphics processors (GPUs) to
accelerate the solution of large-scale linear systems when
the problem data is larger than the main memory of the
system and storage on disk is employed. Our solution ad-
dresses the programmability problem with a combination
of the high-level approach inlibflame (the FLAME li-
brary for dense linear algebra) and a run-time system that
handles I/O transparently to the programmer. Results on
a desktop computer equipped with an NVIDIA GPU re-
veal this platform as a cost-effective tool that yields high-
performance for solving moderate to large-scale linear al-
gebra problems. The computation of the Cholesky factor-
ization is used to illustrate these techniques.

1 Introduction

In this paper we target the solution of large dense lin-
ear systems on a conventional desktop computer equipped
with a graphics processor (GPU). The solution of dense lin-
ear systems involving matrices with hundreds of thousands
of rows/columns is required, among others, in the estima-
tion of Earth’s gravitational field, electromagnetism and
acoustics, radar modeling, and molecular dynamics simu-
lations [1, 10, 9, 16, 20]. While the performance boost
provided by these hardware accelerators could, in princi-
ple, enable the solution of problems this large in reasonable
time [4, 3, 19, 13], the data dimension in general exceeds
the normal amount of (main) memory in current desktop
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computers. This can be addressed by changing the math-
ematical formulation of the underlying problem or the use
of secondary memory (e.g., disk). Here we focus on the
second alternative, investigating the programmability and
performance of high-level out-of-core (OOC) algorithms to
solve linear systems on a desktop platform.

The main contributions of this paper are the following:

• There are only a few Open Source libraries for OOC
dense linear algebra operations and most of these tar-
get distributed-memory platforms [2, 7, 8, 18, 15, 17].
Here we focus on a fundamentally different low-
cost architecture: a desktop computer consisting of a
multi-core processor (main memory plus disk) and a
GPU (device memory) featuring three separate mem-
ory spaces.

• We illustrate how the high-level techniques and tools
in FLAME accommodate the development of tiled al-
gorithms for dense linear algebra operations. In com-
bination with a run-time system similar to that in Su-
perMatrix [14], the codes inlibflame are effort-
lessly transformed into OOC solvers for dense linear
systems.

• We show that, once the problem size becomes large,
the performance attained by the OOC implementations
rivals that of high-performance algorithms for matri-
ces that fit in-core. Thus, current desktop computers
may become a highly cost-effective alternative, mak-
ing it possible for projects with limited budgets to
solve medium to large size problems.

We will illustrate the OOC application programming in-
terface (API), techniques, and tools using the Cholesky fac-
torization of ann × n symmetric positive definite (SPD)



matrix A, given byA = LLT , whereL is then × n lower
triangular Cholesky factor. This is the first step in the solu-
tion of the SPD linear systemAx = b, which is followed
by the triangular system solvesLy = b andLT x = y. The
solution of triangular systems as well as that of general sys-
tems (by means, e.g., of the LU or QR factorizations) can
be dealt with using ideas similar to those described in the
paper.

The paper is structured as follows. In Section 2 we
briefly describe a compact API to deal with matrices on
disk. A tiled algorithm for the Cholesky factorization and
the necessary tiled kernels are reviewed in Section 3. The
run-time system that provides both high-performance and
easy development of OOC algorithms is presented in Sec-
tion 4. Finally, Section 5 evaluate the performance on a
workstation equipped with a QuadCore AMD processor and
an NVIDIA 9800GX2 GPU, and Section 6 summarizes the
conclusions and future work.

2 Building an OOC matrix

OOC algorithms for dense linear algebra operations tra-
ditionally consider a (logical) partitioning of the matrix
on disk into regions, where it is widely recognized that
square regions (tiles) are preferable over rectangular regions
(blocks of columns or rows) [18, 11]. (The size of the
tile brought into memory can always be kept constant, and
therefore the ratio between the computation and I/O over-
head can be fixed.) In this section we describe the use of a
simple prototype OOC API [12] to handle matricesstored-
by-tileson disk. In this type of storage, elements from the
same tile occupy adjacent positions on disk (unless file frag-
mentation occurs). This layout speeds up reading/writing
tiles from/to disk in OOC tiled algorithms.

The fragment of C code in Figure 1 illustrates the use
of this API to allocate space on disk for a SPD matrixA
composed ofk × k square tiles of dimensiont × t each:

A =

















B B/t 0 . . . 0

B/t B B/t
. . .

...

0
. . .

. . .
. . . 0

...
. . . B/t B B/t

0 . . . 0 B/t B

















,

whereB = diag(1, 2, . . . , t) is at×t diagonal matrix (tile).
(This is a completely artificial problem, meant to illustrate
how an application might interface with the library.)

The call to routineFLAOOC Obj create in lines 7–9
creates a data structure on disk to hold the entries of the ma-
trix. The parameters of this routine are defined as follows:

FLAOOC_Obj_create(
FLA_Matrixtype matrixtype,
FLA_Datatype datatype,
dim_t m, dim_t n, dim_t mt, dim_t nt,
char *file_name, FLA_Obj *Aooc );

where datatype specifies the type of the entries
(FLA INT, FLA FLOAT, FLA DOUBLE, etc.), m/n de-
fine the row/column dimensions of the OOC matrix,
mt/nt are the row/column dimensions of the tiles,
file name is the name of the data file on disk, andAooc
is the object for the matrix. Parametermatrixtype
can be FLA DENSE, FLA LOWER TRIANGULAR or
FLA UPPER TRIANGULAR; in the former case, storage
is allocated for all tiles of the matrix while, in the other
two, space is allocated only for those tiles which contain
elements in the lower or upper triangular parts of the
matrix. This parameter can thus be employed to roughly
half the necessary amount of space on disk when dealing
with triangular or symmetric matrices.

The twofor loops in the code in Figure 1, in lines 20–
29, initialize the contents of the tiles in the lower triangular
part ofA using an in-core arrayB with leading dimension
ldb. In general, the routine

FLAOOC_Axpy_submatrix_to_global(
FLA_Trans trans, FLA_Obj alpha,
dim_t m, dim_t n,
void *X, dim_t ldim,
dim_t i, dim_t j, FLA_Obj Aooc );

adds to them×n submatrix of Aooc starting at en-
try (i,j) the contents of the productalpha·X (trans
equalsFLA NO TRANPOSE) oralpha·XT (trans equals
FLA TRANSPOSE), where X is a conventional column-
major array stored in-core with leading dimensionldim.

The call to routineFLASH Chol by blocks var3 is
then invoked to compute its Cholesky factorization in line
20 and, after ideally processing the results, storage is re-
leased in line 22.

The OOC API is complemented with two simple routines
to transfer the contents of objects between main memory
and disk:

FLAOOC_OOC_to_INC(
FLA_Obj Aooc, FLA_Obj Binc );

FLAOOC_INC_to_OOC(
FLA_Obj Binc, FLA_Obj Aooc );

Note that we distinguish between the
FLAOOC Axpy submatrix to global routine,
which is meant to allow applications that explicitly index
into arrays to submit (add to) a FLAOOC matrix, and the
FLAOOC X to Y routines, which hide details of indexing
within the library and are meant for library developers.
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1 int k = ...; /* k x k tiles */
2 int t = ...; /* tile size */
3 float *B; /* = diag(1,2,...,t) */
4 FLA_Obj A; /* OOC matrix */
5 FLA_Obj INV_t; /* Object contains 1/t */
6 /* ... */
7 FLAOOC_Obj_create( FLA_LOWER_TRIANGULAR, FLA_FLOAT, /* Allocate space for A */
8 k*t, k*t, t, t, /* with k x k tiles of size */
9 "File_for_A", &A ); /* t x t each, on disk */

10 /* Diagonal tiles */
11 for (j=0; j<k; j++)
12 FLAOOC_Axpy_submatrix_to_global( FLA_NO_TRANSPOSE, FLA_ONE,
13 t, t,
14 B, ldb, j*t, j*t, A );
15 /* Subdiagonal tiles */
16 for (j=0; j<k-1; j++)
17 FLAOOC_Axpy_submatrix_to_global( FLA_NO_TRANSPOSE, INV_t,
18 t, t,
19 B, ldb, (j+1)*t, j*t, A );
20 FLA_Chol_by_tiles_var3( A ); /* OOC Cholesky factorization */
21 /* ... Use the result */
22 FLAOOC_Obj_free( &A ); /* Release space for A */

Figure 1. Fragment of code that allocates a tiled OOC matrix ( lines 7-9), initializes its contents (lines
10–19), computes the Cholesky factorization (line 20), and finally releases the space (line 22).

3 Out-of-Core Cholesky Factorization

3.1 FLAME algorithms

Among other tools, FLAME encompasses a notation to
describe (dense) linear algebra algorithms at a high level
of abstraction and APIs to code these algorithms [5, 6].
Figure 2 (left) shows a tiled (left-looking) algorithm for
the Cholesky factorization expressed using the FLAME
notation. There,m(A)/n(A) stand for the number of
rows/columns of a matrixA, and A11 := {L\A}11 =
CHOL(A11) denotes that the lower triangular part ofA11

is overwritten by the Cholesky factor of the block while the
strictly upper triangular part of the matrix remains unmod-
ified. (We follow the traditional implementations for this
factorization and overwrite the lower triangular part ofA
with the Cholesky factorL.) We believe the rest of the no-
tation is intuitive [6].

To illustrate the factorization process performed by the
algorithm in Figure 2 (left), consider a matrix oft × t tiles

A =









Ā00 Ā01 Ā02 Ā03

Ā10 Ā11 Ā12 Ā13

Ā20 Ā21 Ā22 Ā23

Ā30 Ā31 Ā32 Ā33









,

constructed using the routines in the OOC API described
in Section 2. Then, the loop in the algorithm iterates four
times, and the repartitioning operation at the the beginning

of each iteration exposes the following macrotiles:

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A ≡

1st iteration
0

B

B

B

B

B

@

Ā00 Ā01 Ā02 Ā03

Ā10 Ā11 Ā12 Ā13

Ā20 Ā21 Ā22 Ā23

Ā30 Ā31 Ā32 Ā33

1

C

C

C

C

C

A

,

2nd iteration
0

B

B

B

B

B

@

Ā00 Ā01 Ā02 Ā03

Ā10 Ā11 Ā12 Ā13

Ā20 Ā21 Ā22 Ā23

Ā30 Ā31 Ā32 Ā33

1

C

C

C

C

C

A

,

3rd iteration
0

B

B

B

B

B

@

Ā00 Ā01 Ā02 Ā03

Ā10 Ā11 Ā12 Ā13

Ā20 Ā21 Ā22 Ā23

Ā30 Ā31 Ā32 Ā33

1

C

C

C

C

C

A

,

4th iteration
0

B

B

B

B

B

@

Ā00 Ā01 Ā02 Ā03

Ā10 Ā11 Ā12 Ā13

Ā20 Ā21 Ā22 Ā23

Ā30 Ā31 Ā32 Ā33

1

C

C

C

C

C

A

.

Thus, e.g., the following operations are computed during
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Algorithm: A := CHOL BY TILES VAR3(A)

Partition A→

„

ATL ATR

ABL ABR

«

where ATL is empty
while m(ATL) < m(A) do

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is a tile

A11 := A11 −A10AT

10

A11 := {L\A}11 = CHOL(A11)

A21 := A21 −A20AT

10

A21 := A21L−T

11

Continue with
„

ATL ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

endwhile

Algorithm: C := SYRK BY TILES VAR3(A, C)

Partition A→
`

AL AR

´

where AL is empty
while n(AL) < n(A) do

Repartition
`

AL AR

´

→
`

A0 A1 A2

´

where A1 is a tile

C := C −A1AT

1

Continue with
`

AL AR

´

←
`

A0 A1 A2

´

endwhile

Figure 2. Tiled algorithms for computing the Cholesky facto rization (left) and the corresponding
symmetric rank- t update (right).

the third iteration of the algorithm:

A11 := A11 − A10A
T

10
≡

Ā22 := Ā22 −
(

Ā20 Ā21

) (

Ā20 Ā21

)T
,

(1)

A11 := {L\A}11 = CHOL(A11) ≡
Ā22 := {L\Ā}22 = CHOL(Ā22),

(2)

A21 := A21 − A20A
T

10
≡

Ā32 := Ā32 −
(

Ā30 Ā31

) (

Ā20 Ā21

)T
,

(3)

A21 := A21L
−T

11
≡ Ā32L

−T

22
. (4)

Consider next a symmetric rank-t update of the formC :=
C − AAT whereC is a tile whileA consists of a row of
tiles. A tiled algorithm for this operation is given in Figure 2
(right). When used to compute the symmetric rank-t update
in (1), the loop body of the algorithm is executed twice, with
C = Ā11 and the following repartitionings being imposed
onA at the beginning of each iteration:

Repartition
`

AL AR

´

→

`

A0 A1 A2

´

≡

1st iteration
“

Ā20 Ā21

”

,

2nd iteration
“

Ā20 Ā21

”

.

Thus,Ā11 := Ā11 − Ā20Ā
T

20
is computed in the first itera-

tion andĀ11 := Ā11 − Ā21Ā
T

21
in the second one.

Similar tiled algorithms can be proposed using this nota-
tion for the matrix-matrix product in (3) and the triangular
system solve in (4).

3.2 FLASH codes

FLAME/C and FLASH are two APIs which allow easy
translation of tiled algorithms to C code. In particular, Fig-
ure 3 (left) shows the FLASH routine corresponding to the
algorithm in Figure 2 (left). We note the close resemblance
between algorithm and code; e.g., moving the boundaries
of the partitioning imposed on the matrix is performed with
routines FLA Part 2x2, FLA Repart 2x2 to 3x3,
andFLA Cont with 3x3 to 2x2 from the FLAME/C
API. The updates of the matrix are computed with routines
FLASH Syrk (symmetric rank-t updateA11 := A11 −
A10A

T

10
), FLA Chol blk var1 (Cholesky factorization

of A11), FLASH Gemm (matrix-matrix productA21 :=
A21−A20A

T

10
), andFLASH Trsm (triangular system solve

A21 := A21L
−T

11
).

Figure 3 (right) offers code for the symmetric rank-t up-
date that appears during the Cholesky factorization (see also
the algorithm in Figure 2 (right)). RoutineFLA Syrk in the
symmetric rank-t update is a wrapper to corresponding rou-
tine in BLAS. RoutinesFLASH Gemm andFLASH Trsm
present analogous implementations, with the operations be-
ing decomposed into calls toFLA Gemm andFLA Trsm,
which are simple wrappers to the BLAS kernels for the
matrix-matrix product and the triangular system solve, re-
spectively.
FLA Chol blk var1 on the other hand operates on a
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single tile and corresponds in our implementations to an (in-
core) right-looking blocked variant of the Cholesky factor-
ization.

3.3 OOC codes

A (traditional) OOC implementation can be easily ob-
tained from the tiled codes in Figure 3 by simply includ-
ing the appropriate calls to the routinesFLA OOC to INC
and FLA INC to OOC from the OOC API, to explicitly
indicate transfers between disk and main memory. For
example, an OOC code could be obtained for routine
FLASH Syrk ln by inserting a call to bring the contents
of objectC in-core before the execution of the loop com-
mences, a second call to retrieve the contents ofA1 in-core
at the beginning of each iteration, and a final call to set back
the result in the in-core copy ofC to disk once the loop is
completed.

We will not pursue this approach further since one of our
objectives is to obtain OOC tiled algorithms from a high-
level library like libflame without having to modify a
single line of the code.

4 Run-Time System for OOC Matrix Opera-
tions

Tiled OOC algorithms are frequently classified as one-
tile, two-tile, three-tile,. . . depending on the (largest)num-
ber of these which are kept in-core during the computation.
These algorithms try to maximize the size of the tiles in
RAM by reducing their number. Our approach is fundamen-
tally different: we will keep a large number of moderately-
sized tiles with a two-fold purpose. First, increase the reuse
of data in-core by implementing a software cache transpar-
ent to the programmer. Second, overlap computation with
I/O transfers from disk, also transparently to the program-
mer, and with no use of asynchronous I/O routines. There-
fore our approach aims atenhancing both performance and
programmabilityof the codes. As a result, we will show
that no substantial changes are required to the codes in li-
brarylibflame to accommodate for OOC computations.
The key to this is arun-time systemthat orchestrates com-
putations and I/O transfers.

4.1 Software cache

The first task of our run-time system is to implement a
software cache from which the library user can benefit, but
one that is transparent to the library programmer at the same
time. To achieve this goal, when the user invokes, e.g, a
routine from librarylibflame to compute the Cholesky
factorization of an OOC matrix, it is our run-time system
that takes control over the task. In its basic version (one

without overlapping of computation and I/O), the run-time
system executes the code symbolically. Each time a call to a
FLAME wrapper is encountered (FLA Syrk, FLA Gemm,
FLA Trsm or FLA Chol blk var1), the run-time iden-
tifies the tiles involved in the operation, checks whether the
data (tiles) are already in the cache (in-core), and initiates
the transfer from disk in case they are not. Once all tiles for
a given task are available in-core, the run-time invokes the
in-core routine that performs the actual computation. Tiles
remain in the cache till space is needed to bring new data.
A simple LRU policy defines which tile is moved back to
disk, a task which is also carried out by the run-time.

4.2 Overlapping computation and I/O

The software cache exploits temporal data locality to
reduce the number of data transfers and improve the per-
formance. We next describe an extension of the run-time
which allows overlapped computation and communication,
increasing further the performance, without the burden of
having to employ asynchronous I/O in the codes.

Let us illustrate how we can do so. Given the codes
in Figure 3, the run-time symbolically executes these to
generate a list of pending tasks (pending list). Each time
a call to routinesFLA Syrk, FLA Gemm, FLA Trsm or
FLA Chol blk var1 is encountered, the run-time sim-
ply creates an entry in the list with data to identify the cor-
responding operation (e.g., operation code and parameters).
The order in which the tasks appear in the list together with
the directionality of the operands (input or output) define the
order and direction in which blocks will be transferred be-
tween in-core and OOC spaces. Therefore, which tiles will
be needed “in the future”, and in which order, is known be-
fore the actual computations commence. Ensuring that tiles
are in-core before they are required is thus easily achieved.
(Symbolic execution has been also successfully employed
to exploit the parallelism of dense linear algebra codes in
multicore processors; see, e.g., [14].)

The real execution can now begin. A single thread,
known as thescoutor prefectthread, inspects thepending
list in (FIFO) order. For each entry of the list, provided
there are enough empty (tile) slots in the software cache, the
scout thread brings the necessary tiles into the RAM, mov-
ing the entry into a second list which contains the tasks that
are ready for execution (ready list). A second thread, the
worker, runs over the ready list “executing” tasks as they are
encountered in order. Now, as all data for the computations
that will performed by the worker thread are guaranteed to
be in-core, we can employ an in-core library for these op-
erations (more on this in the next subsection). When a task
is completed, the corresponding entry is removed from the
ready list, and any tile used within it, which is not used by
any other task in the ready list, is marked as candidate for
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FLA_Error FLA_Chol_by_tiles_var3( FLA_Obj A )
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL )<FLA_Obj_length( A ) ){

FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR );

/*----------------------------------------*/
FLASH_Syrk( FLA_LOWER_TRIANGULAR,

FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A10,
FLA_ONE, A11 );

FLA_Chol_blk_var1( FLASH_MATRIX_AT( A11 ) );
FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10,
FLA_ONE, A21 );

FLASH_Trsm( FLA_RIGHT,
FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE,
FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21 );
/*----------------------------------------*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}
return FLA_SUCCESS;

}

void FLASH_Syrk_ln( FLA_Obj alpha, FLA_Obj A,
FLA_Obj beta, FLA_Obj C )

/* Special case with mode parameters
FLASH_Syrk( FLA_LOWER_TRIANGULAR,

FLA_NO_TRANSPOSE,
... )

Assumption: A is a row of blocks (row panel) */
{

FLA_Obj AL, AR, A0, A1, A2;

FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );

while ( FLA_Obj_width( AL )<FLA_Obj_width( A ) ){

FLA_Repart_1x2_to_1x3(
AL, /**/ AR, &A0, /**/ &A1, &A2,
1, FLA_RIGHT );

/*----------------------------------------*/
FLA_Syrk( FLA_LOWER_TRIANGULAR,

FLA_NO_TRANSPOSE,
alpha, FLASH_MATRIX_AT( A1 ),
beta, FLASH_MATRIX_AT( C ) );

/*----------------------------------------*/

FLA_Cont_with_1x3_to_1x2(
&AL, /**/ &AR, A0, A1, /**/ A2,
FLA_LEFT );

}
}

Figure 3. FLASH routines for computing the Cholesky factori zation (left) and the corresponding
symmetric rank- t update (right).

removal from the cache. When new space needs to be allo-
cated in the software cache, the scout thread moves marked
tiles back to disk, if they correspond to data that was mod-
ified, or overwrites them with new data otherwise. When
there are no candidates for removal, the scout thread blocks
waiting till more tasks are completed.

Probably the most important feature of this approach is
the programmability. No change is needed to the user’s
codes. The run-time system is in charge of all data trans-
fers and overlapping I/O with computation. The extra cost
for this, creating and managing a couple of lists, is more
than paid back by the benefits of minimizing idle times due
to I/O.

4.3 Computation on the GPU

Once the tiles for a given operation are in-core, it is time
to decide where to compute it. Current workstations usually
include a general-purpose processor (possibly with multiple
cores) as well as a GPU with its own (device) memory. Pro-

vided the tile size is large enough and a tuned kernel exists
to compute the particular operation on the GPU, the time
to transfer data between RAM (or host memory) and device
memory can be more than paid back by the potential per-
formance of the GPU. This is our case: NVIDIA provides
CUBLAS [4], an efficient implementation of BLAS-level
operations like the symmetric rank-k update, the matrix-
matrix product, and the triangular system solve, among oth-
ers. The computation of the Cholesky factorization (of a
tile) is not provided in NVIDIA libraries but can be easily
implemented using the kernels in CUBLAS [3, 19].

In our OOC codes, symmetric rank-t updates, matrix-
matrix products, and triangular system solves on tiles are
performed completely by the GPU. Two different alter-
natives are explored for the computation of the Cholesky
factorization: a pure CPU computation and a hybrid one,
where computation is shared between CPU and GPU. In
particular, for the hybrid computation, assume the matrix
initially resides in the device memory. A blocked right-
looking algorithm with block sizeb is used to compute this
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factorization as follows: the Cholesky factorization of the
diagonalb × b blocks is computed by the CPU. To do so,
the block is initially transferred to host memory, factorized
there, and the result is put back into device memory. All
other updates of the tile are performed then on the GPU.
Once the tile is completely factorized, the result is brought
back from the device memory into the corresponding tile of
the software cache in host memory.

5 Experimental Results

All experiments in this section were performed on a
workstation with an AMD Phenom 9550 QuadCore at 2.2
GHz with with 4 GBytes of DDR2 RAM and 4×512 Kbytes
of L2 cache. The chipset provides a I/O interface with a
peak bandwidth of 3 Gbits/second. The system has two
SATA-II (Seagate ST3160815AS, 7200 r.p.m.) with a to-
tal capacity of 2×160 Gbytes. The graphics processor is
an NVIDIA Geforce 9800 GX2, equipped with 128 cores.
MKL 10.0.1.014, CUBLAS 2.0, and single precision were
employed in the experiments. Performance is measured in
terms of GFLOPS (that is, billions of arithmetic floating-
point operations –flops– per second), with the usual count
of n3/3 flops for the Cholesky factorization.

Figure 4 reports the performance of several (in-core and
OOC) routines for the Cholesky factorization using the
GPU of the system. The timings for the “in-core” results
include the cost of transferring data between host and de-
vice memories. All OOC implementations correspond to
the tiled OOC routineFLASH Chol by blocks var3
in Figure 3 (left). Unless otherwise stated, the enhance-
ments described for the OOC variants are incremental so
that a variant includes a new strategy plus those of all pre-
vious ones. Several executions were performed to tune the
tile size; only the results corresponding to the best case are
shown.

In-core hybrid: Blocked (in-core) implementation of the
Cholesky factorization, with diagonal blocks being
factorized in the processor and all remaining updates
in the GPU (see subsection 4.3).

OOC traditional: Explicit I/O routines to transfer tiles in-
serted in the code.

OOC cache: Simple run-time that implements a software
cache (see subsection 4.1).

OOC hybrid: Computation of the Cholesky factorization
of diagonal tiles being shared between CPU and GPU
(see end of subsection 4.3.

OOC I/O overlap: Elaborated run-time that handles the
software cache and overlaps computation and I/O (see
subsection 4.2).
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Figure 4. Performance of the Cholesky factor-
ization codes.

The results in the figure show a practical peak perfor-
mance for the in-core and the best OOC codes that are
around 126 and 117 GFLOPS, respectively. Using the new
run-time and an unexpensive GPU, the OOC code for the
left-looking variant of the Cholesky factorization allowsto
factorize a matrix of dimension100, 000 × 100, 000 matrix
in slightly over 45 minutes.

6 Concluding Remarks

We have described an efficient approach to solve linear
systems which are too large to fit into main memory exploit-
ing the capabilities of the GPU as a hardware accelerator. A
run-time system analyzes the code before the actual execu-
tion begins, to schedule data transfers from disk in due time,
thus completely hiding I/O latency. As an additional bene-
fit, the run-time system also unburdens the library developer
from having to adapt his codes to include routine calls to ex-
plicitly handle the I/O. Following this approach, all compu-
tational routines inlibflame become OOC codes without
having to change the contents of the library.

Results for a complex operation like the Cholesky factor-
ization show that the overhead introduced by the run-time is
completely compensated by the gains delivered by the over-
lap of computation and communication (I/O).

Future work will include applying the same approach
to slab and tiled algorithms for the LU and QR factor-
ization; solving real OOC applications using the resulting
codes; and extending the run-time to distributed-memory
OOC packages.
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