
Fast Development of Dense Linear Algebra Codes
on Graphics Processors

M. Jesús Zafont, Alberto Martı́n, Francisco Igual, and Enrique S. Quintana-Ortı́
Depto. de Ingenierı́a y Ciencia de los Computadores

Universidad Jaume I, Castellón (Spain)
E-mails: al051631@uji.es, {martina, figual, quintana}@icc.uji.es

Abstract—We present an application programming interface
(API) for the C programming language that facilitates the
development of dense linear algebra algorithms on graphics
processors applying the FLAME methodology. The interface, built
on top of the NVIDIA CUBLAS library, implements all the com-
putational functionality of the FLAME/C interface. In addition,
the API includes data transference routines to explicitly handle
communication between the CPU and GPU memory spaces.
The flexibility and simplicity-of-use of this tool are illustrated
using a complex operation of dense linear algebra: the Cholesky
factorization. For this operation, we implement and evaluate all
existing variants on an NVIDIA G80 processor.

Index Terms—Graphics processors, FLAME, linear algebra,
high performance.

I. INTRODUCTION

With the advent of remarkably faster graphics processing
units (GPUs), these platforms have emerged as a low cost
alternative for many scientific and industrial applications. The
introduction of simplified interfaces for the development of
general purpose algorithms, such as NVIDIA CUDA [1] or
AMD Brook+ [2], have consolidated the graphics architecture
as an interesting platform for the execution of algorithms with
high performance demands. However, it is still difficult to
develop reliable algorithms for the GPU combining both ease-
of-use, reliability, and high performance.

The present article pursues two major goals: first, the
introduction of a high-level API that extends the FLAME
project [11], enabling fast development of high-performance
reliable codes for computing dense linear algebra operations
on the GPU. Second, the evaluation of the performance of
the interface using an important operation in the solution of
linear systems: the Cholesky factorization. In this operation,
a symmetric positive definite (SPD) matrix A is decomposed
into the product A = LLT , where L is a lower triangular
matrix with the same dimensions as those of A [13]. The
choice of this routine can be seen as a vehicle to identify
techniques and extract conclusions that can be easily applied
to other dense linear algebra operations.

The rest of the article is structured as follows. Section II
reviews the key routines of the FLAG/C interface, illustrating
their use by means of a simple example. Section III describes
the implementation of several variants for the Cholesky factor-
ization using the proposed interface. The codes corresponding
to these variants are evaluated next in Section IV. Finally some
concluding remarks are summarized in Section V.

II. THE FLAG/C API

The primary goal of the FLAG/C interface is to allow library
developers to extract much of the performance of current
graphics processors in the solution of dense linear algebra
problems. In order to do so, FLAG/C abstracts the programmer
from the underlying (graphical) architecture. Furthermore, the
interface offers the tools to tune the programs while maintain-
ing simplicity of programming. The set of routines provided
by the interface is thus a trade-off between simplicity-of-use
and flexibility.
FLAG/C, as the rest of the APIs from the FLAME project,

follows an object-oriented programming style similar to that
of MPI [5], PETSc [6], and PLAPACK [10]. This paradigm
makes it possible to hide programming details which usually
entail most of the errors through the development process
(basically the intricate indexing present in most traditional
linear algebra codes and aspects related to the storage format
of the matrices).
FLAG/C employs objects to represent matrices and vectors.

An object in FLAG/C is defined with the FLAG_Obj datatype,
and is implemented internally as a structure with the following
attributes:
• data type of the elements of the object,
• object dimensions (number of rows and columns),
• address of element (1,1) of the object in the GPU mem-

ory, and
• data layout of the bi-dimensional array for the object

elements in the GPU memory.
To illustrate the functionality and usage of the FLAG/C

API, we first offer a simple code example which prepares
the environment for the Cholesky factorization of a SPD
matrix. Figure 1 shows a sequence of steps which perform
the following operations:
• line 10: before any FLAG/C invocation the environ-

ment is initialized with routine FLAG_Init.
• line 19: the object A that will hold the matrix is

created in the GPU memory.
• line 22: data stored in a local buffer in the CPU

memory is transferred to the GPU memory using routine
FLAG_set_from_buffer.

• line 28: calculation of the Cholesky factorization with
the corresponding routine. The code of this routine will
be shown later.



• line 34: (optionally) transfer result back to CPU mem-
ory with routine FLAG_get_from_Obj.

• line 37: memory space allocated for the object in GPU
memory is released with routine FLAG_Obj_free.

• line 40: Close the environment with routine
FLAG_Finalize.

1 int main(){
2
3 /* GPU object */
4 FLA_Obj A;
5
6 /* Host buffer */
7 float * h_A;
8
9 /* Initialize environment */

10 FLA_Init();
11
12 printf( "Enter matrix dimension:" );
13 scanf( "%d", &n );
14
15 /* Create and fill buffers on CPU */
16 /* ... */
17
18 /* Create and fill buffers on GPU */
19 FLAG_Obj_create( FLAG_FLOAT, n, n, &A );
20
21 /* Perform the GPU->GPU transfers */
22 FLAG_Obj_set_from_buffer( (void*)h_A, &A );
23
24 /* Show the contents of the matrix */
25 FLAG_Obj_show( "A = [", A, "%lf", "]" );
26
27 /* Invoke the Cholesky factorization */
28 FLAG_Chol_blk( A );
29
30 /* Do some other operations */
31 FLAG_Obj_show( "A = [", A, "%lf", "]" );
32
33 /* Transfer back to CPU */
34 FLAG_get_from_Obj( &A, (void*)h_A );
35
36 /* Free buffers */
37 FLAG_Obj_free( &A );
38
39 /* Finalize environment */
40 FLA_Finalize();
41
42 }

Fig. 1. Generic FLAG/C driver for the invocation of the Cholesky
factorization routine

Figure 2 implements a blocked variant of the Cholesky
factorization using the FLAG/C API. The equivalent algorithm
expressed using the FLAME notation is shown in Figure 3 (see
variant 3 on the right side of the Figure). The notation m(B)
in the algorithm refers to the row dimension of B. We believe
the rest of the notation is intuitive; for further details, see [14],
[15].
FLAG/C has a complete set of routines to par-

tition and repartition objects. A comparison of Fig-
ures 2 and 3 (right) illustrates how the routines in
FLAG/C for the partitioning (FLAG_Part_2x2), repartition-
ing (FLAG_Repart_2x2_to_3x3), and redistribution of
the partitions (FLAG_Cont_with_3x3_to_2x2) track the
movement of the thick lines in the algorithm.
FLAG/C also provides a full interface for the three levels

of the Basic Linear Algebra Subprograms (BLAS); see, e.g.,
lines 22–26 of Figure 2. These routines are implemented as

1 int FLAG_Chol_blk( FLA_Obj A, int nb_alg )
2 {
3 FLAG_Obj ATL, ATR, A00, A01, A02,
4 ABL, ABR, A10, A11, A12,
5 A20, A21, A22;
6
7 FLAG_Part_2x2( A, &ATL, &ATR,
8 &ABL, &ABR,
9 0, 0, FLA_TL );

10
11 while ( FLAG_Obj_width( ATL ) < FLAG_Obj_width( A ) ){
12 b = min( min( FLA_Obj_width( ABR ),
13 FLA_Obj_width( ABR ) ), nb_alg);
14
15 FLAG_Repart_2x2_to_3x3( ATL, ATR, &A00, &A01, &A02,
16 &A10, &A11, &A12,
17 ABL, ABR, &A20, &A21, &A22,
18 b, b, FLA_BR );
19 /* ************************************************ */
20 FLAG_Chol_unb( A11 );
21
22 FLAG_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
23 FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
24 FLA_ONE, A11, A21 );
25
26 FLAG_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
27 FLA_MINUS_ONE, A21, FLA_ONE, A22 );
28
29 /* ************************************************ */
30
31 FLAG_Cont_with_3x3_to_2x2( &ATL, &ATR, A00, A01, A02,
32 A10, A11, A12,
33 &ABL, &ABR, A20, A21, A22,
34 FLA_TL );
35 }
36 }

Fig. 2. FLAG/C implementation of the third algorithmic variant of the
Cholesky factorization algorithm shown in Figure 3.

wrappers that encapsulate the indexing and storage details
of the matrices, working with objects as defined above, and
using a tuned implementation of the BLAS for the target
graphics processor (CUBLAS [3]) as the underlying BLAS
implementation.

This simple example shows how, by increasing the abstrac-
tion level, complex index manipulation can be avoided in
the codes, reducing programming errors and increasing the
reliability of the implementations.

III. A PRACTICAL ANALYSIS OF PERFORMANCE

In this section we evaluate the flexibility, ease-of-use, and
efficiency of the interface using the Cholesky factorization.

A. FLAME methodology: algorithmic variants

Figure 3 shows all the unblocked and blocked algorithmic
variants for the Cholesky factorization, obtained by applying
the FLAME methodology. (The methodology details are out
of the scope of the article, but a complete description can be
found in [11].)

The (unblocked) variants on the left side of the figure are
expressed in terms of scalar operations; the (blocked) variants
on the right cast the bulk of the computation in terms of level-
3 BLAS operations. On current processors, with several levels
of cache memory, it is possible to carefully orchestrate the
memory accesses for these type of operations achieving high
performance. A few studies on modern GPUs [8], [7], [9] show
how, for this type of operations, these hardware accelerators



can deliver up to 10× speed-ups compared with highly tuned
implementations on a general-purpose processor, even taking
into account the overhead introduced by the data transfers
through the PCI-Express bus.

B. Codification of variants with the FLAG/C API

Some important decisions have been adopted in the devel-
opment of FLAG/C routines for the Cholesky factorization.
First, note how all variants of the unblocked implementations
of the Cholesky factorization shown in Figure 3 calculate the
square root of a scalar value. Given the dependencies of the
factorization process, it is not possible to group many square
roots in a single SIMD operation. However, performing just
one operation on the GPU can introduce an important overhead
associated with the thread creation and the execution of a
kernel without the necessary computational load per element.
Therefore, all the implementations discussed next compute
the square roots on the CPU. We propose two different
implementations for each algorithmic variant of the Cholesky
factorization algorithm shown in Figure 3.

1) First family of implementations: The first group of
implementations, imp1, retrieve each diagonal element to
CPU memory, compute the square root there, and then send
the result back to GPU memory. All remaining operations of
the factorization are computed in the GPU. The transfers of the
diagonal elements have to be explicitly inserted in the code in
Figure 2 by the programmer (using simple routines from the
FLAG/C API). The existence of transfer routines is justified
as a tradeoff between simplicity-of-use and efficiency.

The imp1 implementations have two main sources of inef-
ficiency. First, if the block size nb is small compared with the
matrix size n, the factorization of the diagonal block performs
many calls to level-1 and level-2 BLAS, with reduced compu-
tational load per call. For example, in Variant 3, n

nb
(nb − 1)

invocations of the scaling routine (FLAG_Inv_Scal in the
API) with at most nb − 1 floating-point operations (flops)
each are done, and the same number of symmetric rank-
1 updates (FLAG_Syr in the API) with at most nb(nb−1)

2
flops each are performed. For that example, we can avoid the
penalty associated with the reduced computational load per
call by increasing the block size; unfortunately, this decision
decreases the number operations performed in terms level-3
BLAS routines. Second, the imp1 implementations perform
2 transfers per matrix row/column, of size 4 bytes each (we
assume real single-precision entries for the matrix). The cost
of transferring a message of size t via the PCI-Express bus can
be modeled as α+βt where α and β denote, respectively, the
latency and bandwidth of the bus. Thus, as in general α À β,
it is important to design an alternative solution to group several
tiny transfers into a larger message.

2) Second family of implementations: Taking into account
the much higher cost of the latency, the second family of
implementations, imp2, can be viewed as a generalization of
those in imp1. In this case, the diagonal blocks of size nb are
transferred to the CPU memory, factored there, and the result

is then sent back to the GPU memory. All other operations
are performed on the GPU.

The total transfer cost for this family of implementations can
be modeled as T2(n, nb) = n

nb
(2α+8βn2

b), while this cost for
the first family of implementations as T1(n) = n(2α + 8β).
Thus, T2(n, nb) ≤ T1(n) for any block sizes in the range
1 ≤ nb ≤ max(1, α

4β ). As usually α À β, it is likely that
max(1, α

4β ) > 1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of the FLAG/C
API using several codes for the Cholesky factorization.

Performance results are reported in terms of MFLOPS,
defined as the millions of flops per second. The number
of flops is common to all the implementations, and can be
modeled as n3

3 , where n the dimension of the matrix.
All measured times include the time required to initially

transfer the whole matrix from CPU memory to GPU memory,
and retrieve the Cholesky factor once the factorization is
completed. For the blocked implementations, integer powers of
2 in the interval [1, 256] were evaluated for the block size, nb.
The hardware setup is shown in Table I. In our experiments,
we employ Intel MKL 10.0 implementation of BLAS on a
single core of the Intel processor, and CUBLAS 1.1 for the
GPU operations.

CPU GPU
Processor Intel Core 2 Duo NVIDIA 8800 Ultra
Codename Crusoe E6320 G80
Cores 2 128
Clock frequency 1.86 GHz 575 MHz
Memory frequency 2× 333 MHz 2× 900 MHz
Word width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory type 1024 MB DDR2 768 MB GDDR3
I/O bus PCI Express x16 (8 GB/s)

TABLE I
HARDWARE SETUP USED IN THE EXPERIMENTAL PART.

To evaluate the overhead introduced by FLAG/C, we have
implemented all variants using LAPACK-style codes [12]
replacing all BLAS calls from within the LAPACK codes with
CUBLAS invocations. Also, to compare the performances of
the GPU with the CPU when executing FLAME codes, we have
implemented all variants for the Cholesky factorization using
the FLAME/C interface for CPUs.

Figures 4, 5, and 6 show, respectively, the performance
attained on the GPU with the imp2 implementation of variants
1, 2, and 3 of the blocked Cholesky factorization. The left
and right-hand sides of the figure show the performance, re-
spectively, of the corresponding LAPACK-style and FLAG/C
codes.

The results of this first experiment report that the overhead
introduced by the FLAG/C interface is negligible. Indeed,
with the scale used in the representations, it is not possible
to distinguish any difference between the LAPACK-style and



Algorithm: A := CHOL UNB(A)

Partition A →
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition

„
ATL ATR

ABL ABR

«
→
0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A

where α11 is 1× 1

Variant 1:
aT
10 := aT

10TRIL (A00)
−T

α11 := α11 − aT
10a10

α11 :=
√

α11

Variant 2:
α11 := α11 − aT

10a10

α11 :=
√

α11

a21 := a21 −A20a10

a21 := a21/α11

Variant 3:
α11 :=

√
α11

a21 := a21/α11

A22 := A22 − a21aT
21

Continue with
„

ATL ATR

ABL ABR

«
←
0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A

endwhile

Algorithm: A := CHOL BLK(A)

Partition A →
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size nb

Repartition
„

ATL ATR

ABL ABR

«
→
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

where A11 is nb × nb

Variant 1:
A10 := A10TRIL (A00)

−T

A11 := A11 −A10AT
10

A11 := CHOL UNB(A11)
Variant 2:
A11 := A11 −A10AT

10
A11 := CHOL UNB(A11)
A21 := A21 −A20AT

10

A21 := A21TRIL (A11)
−T

Variant 3:
A11 := CHOL UNB(A11)

A21 := A21TRIL (A11)
−T

A22 := A22 −A21AT
21

Continue with
„

ATL ATR

ABL ABR

«
←
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

endwhile

Fig. 3. Algorithmic variants of the Cholesky factorization represented using the FLAME notation. Left: scalar implementations. Right: blocked
implementations.

the FLAG/C implementations. The results thus confirm that
the simplification in the development process does not lead to
a penalty in the performance attained by these routines.

The three variants show a similar behavior as a function of
the block size. For large n, the performance increases with nb

up to a certain block size; from this point, the performance
decreases. This threshold is reached when the gain introduced
by invoking BLAS-3 routines with a larger block size is
compensated by the penalty incurred by casting a larger part
of the computational load in the factorization of the diagonal
blocks. The range of block sizes evaluated for variant 1 are
not big enough to reach this crossover point.

The correct choice of the algorithmic variant is critical to
attain high performance. Variant 2 of the blocked implemen-
tation attains much higher performance than the other two.
The difference is due to the specific Level-3 CUBLAS kernels
involved in each variant. The analysis in [7] revealed that the
kernel GEMM in CUBLAS 1.1 is highly tuned while others like
TRSM or SYRK are not. The former kernel is precisely the
routine which concentrates most of the computational load of
variant 2. Note that the other two variants do not even invoke
the GEMM kernel.

It is also notable the irregular behavior in the performance of
all three versions (see, for example, the attained performance
when n = 4000.) This fact has already been observed in
previous work [7], [9], with a solution based on padding

proposed there. Memory access patterns on the GPU have a
dramatic impact on the final performance of the algorithms.
Thus, it is usual that, for matrix sizes that are an integer
multiple of 16, the performance can be boosted by the data
access pattern [9].

Figure 7 reports the performance attained by the GPU
executing both implementations of variant 3 of the blocked
Cholesky factorization routine; we obtained similar results
for the other two variants of the routine. Comparing the
performance of both alternatives, it is possible to conclude that
imp2 clearly outperforms imp1, specially for small matrices.
The difference in performance between both implementations
progressively decreases with n. For a fixed block size (as is
the case of the experiments of the Figure 7), the “weight” of
factorizing the diagonal blocks compared with that of the full
matrix factorization decreases as n is increased. In terms of
the number of flops, this weight can be modeled as

n3
b

3 × n
nb

n3

3

=
n2

b

n2
, (1)

which tends to zero when n is increased and nb is fixed.
In order to justify with more detail the differences observed

in Figure 7, we have measured the time required by the
factorization of all diagonal blocks, and the time necessary
to transfer these diagonal blocks from the GPU to the CPU
and back. The first magnitude will be denoted by F1(n, nb)



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- CUBLAS_Chol_l_blk_var1_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLAG_Chol_l_blk_var1_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

Fig. 4. Performance attained by the imp2 implementations of Variant 1 for the Cholesky factorization on the GPU. Left: LAPACK-style code. Right:
FLAG/C code

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- CUBLAS_Chol_l_blk_var2_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLAG_Chol_l_blk_var2_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

Fig. 5. Performance attained by the imp2 implementations of Variant 2 for the Cholesky factorization on the GPU. Left: LAPACK-style code. Right:
FLAG/C code

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- CUBLAS_Chol_l_blk_var3_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLAG_Chol_l_blk_var3_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

Fig. 6. Performance attained by the imp2 implementations of Variant 3 for the Cholesky factorization on the GPU. Left: LAPACK-style code. Right:
FLAG/C code



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLAG_Chol_l_blk_var3_imp_1

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLAG_Chol_l_blk_var3_imp_2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

Fig. 7. Performance attained by imp1 and imp2 implementations of Variant 3 for the Cholesky factorization on the GPU. Left: imp1 implementation.
Right: imp2 implementation

and F2(n, nb) for the first and second implementations, re-
spectively, while the second magnitude will be denoted by
T1(n) and T2(n, nb), respectively.

Figure 8 illustrates that F1(n, nb) À F2(n, nb), in an ex-
perimental demonstration that it is not possible to amortize the
overhead introduced by the initialization and start up of a large
number of threads in the GPU for a low-cost linear algebra
operation. This is precisely the case for the implementation
imp1 and the GPU operations involved in the factorization
of the diagonal blocks. As in the implementation imp1 there
are progressively more CUBLAS invocations, the difference
between both implementations progressively increases.

Another important observation that can be extracted from
Figure 8 is that T2(n, nb) < T1(n), with block sizes nb > 1. In
addition, by increasing the block size, the difference between
both values also gets larger until nb = 32, when the balance
between the overhead of transferring the diagonal blocks is
compensated by the smaller latency.

We can estimate the parameters of the model by a least
squares fitting of the curve 1000α 1

nb
+ 4000βnb to the

measurements of T2(500, nb); see Figure 9. The results there
show the accuracy of this fitting; in addition, it confirms that
the transfer cost of a message through the PCI-Express bus
matches the model α + βn, with α = 1.5968e−5 sec., and
β = 2.9715e−9 sec./byte. Thus, max(1, α

4β ≈ 1343) À 1,
value for which the model estimates that T1(n) ≈ T2(n, nb).
The asymptotic bandwidth, that is, the observed bandwidth for
those transfers with message size large enough to ignore the
latency is 8

β×109 = 2.69 Gbit/sec. For both implementations
of the CHOL_BLK algorithm, the number of messages and the
amount of transferred data is the same in both ways (from and
to GPU); in addition, given the limitations of CUBLAS 1.1, it
is not possible to overlap data transfers and calculation on the
GPU. Thus, the upper bound for the real peak bandwith will
be a 50% (4 GByte/sec.) of the maximum theoretical bandwith
(8 GByte/sec.). However, our experimental study offers a real
bandwidth which is only 8% of the former upper bound.

Finally, Figure 10 shows the performance of all three

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 50  100  150  200  250

T
im

e 
(s

ec
s.

)

Block size (nb)

Diagonal blocks transfer time vs. Diagonal blocks factorization time

F1(2000,nb)
F2(2000,nb)

T1(2000)
T2(2000,nb)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 50  100  150  200  250

T
im

e 
(s

ec
s.

)

Block size (nb)

Diagonal blocks transfer time vs. Diagonal blocks factorization time

F1(4000,nb)
F2(4000,nb)

T1(4000)
T2(4000,nb)

Fig. 8. Time for the factorization of all diagonal blocks
(F1(n, nb), F2(n, nb)) and time required to transfer all these blocks
(T1(n), T2(n, nb)) between the CPU and GPU memory spaces for the
implementations of the blocked Cholesky factorization. Top: n = 2000.
Bottom: n = 4000.



0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Diagonal blocks transfer time curve fitting

Block size (n
b
)

T
im

e 
(s

ec
s.

)

 

 
T

2
(500,n

b
)y(x) = 1000 α (1 / x) + 4000 β x

α = 1.5968e−005
β = 2.9715e−009
R = 0.92369  (lin)

Fig. 9. Least squares fitting of the theoretical curve 1000α 1
nb

+ 4000βnb

and the experimental results for T2(500, nb)

variants of the blocked Cholesky factorization routine on the
CPU implemented using the FLAME/C interface. Comparing
the results in this figure with those in Figures 4, 5, and 6 it is
possible to conclude that the GPU can accelerate up to 7 times
the Cholesky factorization for this hardware configuration.

V. CONCLUSIONS

We have described a new API which facilitates the devel-
opment of dense linear algebra codes on graphics processors,
while extracting much of the high-performance of these ar-
chitectures. Using the FLAME notation, the proposed library
provides a wide-appeal tool to develop optimized codes for
dense linear algebra with little effort.

The use of this library has been illustrated using the
Cholesky factorization of a dense matrix, an operation of
interest in the solution of certain dense linear systems. The
analysis of several variants and implementations revealed
some useful insights and optimization techniques for the G80
architecture. Much of these results also apply to other major
routines key to the solution of linear systems and linear-least
squares problems such as the LU and QR factorizations.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Office of
Education and Science through the project CICYT TIN2005-
09037-C02-02 and FEDER, and the project P1-1B2007-32 of
the Fundación Caixa Castelló/Bancaixa and the Universidad
Jaume I.

REFERENCES

[1] NVIDIA Corp.: CUDA Programming Guide, version 2.0, NVIDIA Corp.,
USA, 2008.

[2] AMD: Brook+, SC07 BOF Session, November 13, 2007
[3] NVIDIA Corp.: CUBLAS Library, NVIDIA Corp., USA, 2008.
[4] ACML-GPU, http://ati.amd.com/technology/streamcomputing/sdkdwnld.html.

ltima visita, 2 de octubre de 2008.
[5] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The

Complete Reference, MIT Press, Cambridge, MA, USA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLA_Chol_l_blk_var1

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLA_Chol_l_blk_var2

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 500  1000  1500  2000  2500  3000  3500  4000

M
F

LO
P

S

Matrix dimension (n)

Cholesky Factorization -- FLA_Chol_l_blk_var3

nb=1
nb=2
nb=4
nb=8

nb=16
nb=32
nb=64

nb=128
nb=256

Fig. 10. Performance attained by imp2 implementations for the Cholesky
factorization on the CPU.

[6] S. Balay, W.D. Gropp, L.C. McInnes, B.B. Smith, PETSc 2.0 users
manual. Technical Report ANL-95/11, Argonne National Laboratory, Apr.
1999

[7] S. Barrachina, M. Castillo, Francisco D. Igual, R. Mayo, E. S. Quintana-
Ort, Evaluation and tuning of the level 3 CUBLAS for graphics proces-
sors, in: Workshop on Parallel and Distributed Scientific and Engineering
Computing, PDSEC 2008(CD-ROM). Miami (EE.UU.). 2008.

[8] O. Schenk, M. Christen, H. Burkhart, Algorithmic Performance Studies
on Graphics Processing Units, J. Parallel Distrib. Comput. 68 (2008)
1360-1369.

[9] S. Barrachina, M. Castillo, F. Igual, R. Mayo, E. S. Quintana, Solving
dense linear systems on graphics processors, Lecture Notes in Computer
Science 5168, Euro-Par 2008,(Eds. E. Luque, T. Margalef, D. Bentez,)
pp. 739-748. Las Palmas de Gran Canaria (Espaa). 2008

[10] R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Package,



The MIT Press, 1997
[11] R. A. van de Geijn, E. S. Quintana-Ortı́, The Science of Programming

Matrix Computations, www.lulu.com, 2008
[12] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, Society for Industrial and Applied Mathematics,
1999

[13] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd edition, The
Johns Hopkins University Press, Baltimore, 1996

[14] P. Bientinesi, E. S. Quintana-Ortı́, R. A. van de Geijn, Representing Lin-
ear Algebra Algorithms in Code: The FLAME Application Programming
Interfaces, ACM Trans. Math. Soft., volume 31, pages 27–59, 2005

[15] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortı́, R. A.
van de Geijn, The Science of Deriving Dense Linear Algebra Algorithms,
ACM Transactions on Mathematical Software, volume 31, pages 1–26,
2005


