
Designing Linear Algebra Algorithms by
Transformation:

Mechanizing the Expert Developer
Regular Paper

Bryan Marker1, Jack Poulson2, Don Batory1, and Robert van de Geijn1

1 Dept. of Computer Science
The Univ. of Texas at Austin

{bamarker,batory,rvdg}@cs.utexas.edu
2 Institute for Computational Engineering and Sciences

The Univ. of Texas at Austin
poulson@cs.utexas.edu

Abstract. To implement dense linear algebra algorithms for distributed-memory
computers, an expert applies knowledge of the domain, the target architecture,
and how to parallelize common operations. This is often a rote process that be-
comes tedious for a large collection of algorithms. We have developed a way to
encode this expert knowledge such that it can be applied by a system to gener-
ate mechanically the same (and sometimes better) highly-optimized code that an
expert creates by hand. This paper illustrates how we have encoded a subset of
this knowledge and how our system applies it and searches a space of generated
implementations automatically.

1 Introduction

Parallelizing and optimizing dense linear algebra (DLA) algorithms for distributed-
memory machines is typically accomplished by domain experts very familiar with both
linear algebra and the oddities of the target machine. When a DLA expert has no expe-
rience with distributed-memory code and wants to implement an algorithm, (s)he must
live with an existing library, learn a lot about that architecture, or find an experienced
developer. This is inefficient and, as we argue, unnecessary because the work of an
expert is very mechanical and systematic, and therefore automatable.

We use pipe-and-filter graphs and graph transformations to codify the fundamental
algorithms and distributed-memory expertise used in Elemental [20], a domain-specific
language with functionality similar to ScaLAPACK [8] and PLAPACK [26]. Doing so
enables us to automate the activities of experts: selecting algorithms, composing algo-
rithms, and applying optimizations. In this paper, we show how expert-tuned, high-per-
formance parallel code for a handful of prototypical examples for distributed-memory
architectures can be mechanically produced by a tool.

We call this approach Design by Transformation (DxT) [23,19], pronounced “dext”.
We explain the basic ideas behind DxT that were developed while studying distributed-
memory examples. Further, we describe how we automatically generate code using DxT
and show performance results. Lastly, we explain our future ambitions for DxT.

Partition A→
(
ATL ?

ABL ABR

)
whereATL is 0× 0

while m(ATL) < m(A) do

Repartition
(
ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?

A20 A21 A22

whereA11 is b× b

Variant 1 Variant 2 Variant 3
A10 := A10tril(A00)

−T

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)
A21 := A21 −A20A

T
10

A21 := A21 tril(A11)
−T

A11 := chol(A11)
A21 := A21 tril(A11)

−T

A22 := A22 − tril(A21A
T
21)

Continue with
(
ATL ATR

ABL ABR

)
←

A00 ? ?

A10 A11 ?

A20 A21 A22


endwhile

Fig. 1: Blocked algorithms for computing the Cholesky factorization. m(A) stands for
the number of rows of A and tril(A) indicates the lower triangular part of A. The ‘?’
symbol denotes entries that are not referenced.

2 What an Expert Does

To appreciate our work, let us examine what steps an expert follows in order to produce
by hand a highly-optimized, parallel implementation of a dense matrix operation in El-
emental. We choose Cholesky factorization, an operation that is simple yet prototypical
of this class of operations, targeting a cluster architecture as a vehicle to illustrate expert
activities. Section 3 explains how we automate this process.

From specification to algorithm to sequential code. Over the last decade, the FLAME
project has developed a repeatable process by which loop-based families of algorithms
for dense matrix operations, such as those in Basic Linear Algebra Subprograms (the
BLAS [10,9,16]) and LAPACK [1], can be systematically derived [14]. FLAME uses
formal derivation [5] and yields a number of algorithmic variants for each operation
so the best for a given situation can be chosen3. In Figure 1, we show the three known
blocked algorithmic variants that result when applied to Cholesky factorization. Blocked
algorithms cast most computation in terms of matrix-matrix operations (level-3
BLAS [10]), which can attain high performance on cache-based architectures. Un-
blocked algorithms can be obtained by setting the block size b = 1. Henceforth, we
use Variant 3 of Cholesky factorization as our running example.

The FLAME project has produced a library, libflame [27], with functionality
comparable to that of the widely-used LAPACK library [1]. The algorithms encoded
in FLAME were systematically derived and then represented in code using an API,
FLAME/C [4], that allows the code to closely resemble the algorithm of Figure 1. Code

3 This expert task of deriving algorithms has been mechanized [3].

Chol(Lower, A11);

Trsm(Right, Lower, Transpose, NonUnit,
(T)1, A11, A21);

TriangularRankK(Lower, Transpose,
(T)-1, A21, A21,
(T)1, A22);

A11_Star_Star = A11;
LocalChol(Lower, A11_Star_Star);
A11 = A11_Star_Star;

A21_VC_Star = A21;
A11_Star_Star = A11;
LocalTrsm

(Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

A21 = A21_VC_Star;

A21_MC_Star = A21;
A21_MR_Star = A21;
LocalTriangularRankK

(Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22);

(a) Original code. (b) Inline routines.
A11_Star_Star = A11;
LocalChol(Lower, A11_Star_Star);
A11 = A11_Star_Star;

A21_VC_Star = A21;
A11_Star_Star = A11;
LocalTrsm

(Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

\\ A21 = A21_VC_Star;
A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

\\ A21_MC_Star = A21;
A21_VC_Star = A21;
A21_MC_Star = A21_VC_Star;
\\ A21_MR_Star = A21;
A21_VC_Star = A21;
A21_MR_Star = A21_VC_Star;
LocalTriangularRankK

(Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22);

A11_Star_Star = A11;
LocalChol(Lower, A11_Star_Star);
A11 = A11_Star_Star;

A21_VC_Star = A21;

LocalTrsm
(Right, Lower, Transpose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

A21_MR_Star = A21_VC_Star;
LocalTriangularRankK

(Lower, Transpose,
(T)-1, A21_MC_Star, A21_MR_Star,
(T)1, A22);

(c) Inline communication. (d) Remove redundant communication.

Fig. 2: Sequence of optimizations of the loop-body in Variant 3 of Cholesky.

in the style of the Elemental library [20] follows this approach; the code closely resem-
bles the algorithm.

Elemental. If one were to code the algorithm in Figure 1 directly in Elemental code,
the loop body would look like Figure 2(a). To see the hidden parallelism for these oper-
ations, we must review Elemental [20]. Elemental is a new dense linear algebra library
for distributed-memory architectures that uses a 2-dimensional, cyclic distribution of
data with blocksize of 1 over a 2-dimensional grid of processors. Specifically, it views
the p processes as an r × c = p grid, and the data is stored, by default, in a distri-
bution that cyclically wraps the rows and columns of the matrix around the process

grid (denoted [MC ,MR]) 4. As a result, element (i, j) of a matrix is stored on process
(i%r, j%c).

Besides this 2-dimensional distribution, Elemental supports other data distributions
and ways to switch between them. This allows a programmer to parallelize an algorithm
and its sub-operations in many ways. Elemental is implemented in C++, and matrices
are stored in classes that know about distributions. Switching between distributions in
the code is accomplished by overloading the ‘=’ operator in the matrix classes, mean-
ing that the ‘=’ operator hides specifics about the communication required to switch
between distributions. Behind ‘=’ is code to re-format the data into buffers and call
MPI collective communication routines for combinations of distributions.

We use Elemental because it provides a domain-specific language in which we can
start with a sequential algorithm and apply expertise about distributed-memory systems
to parallelize and optimize an implementation. Two key insights an expert uses that must
be codified are the management of redistributions (an operation that represents pure
overhead due to the communication involved) and the parallelization of sub-operations.
An expert trades more communication (which increases overhead) for more parallelism
(which allows useful computation to complete sooner). We explain these considerations
below using the Cholesky example, but we remind readers they are representative of a
large class of operations in this domain.

Elemental’s code lends itself well to identifying and codifying insights about these
components because all common operations are abstracted and layered to be modular.
The Elemental library uses these common operations across codes. For example there
are a finite number of data redistribution functions that are used repeatedly, hidden be-
hind the ‘=’ operator. That code includes the MPI layer, data storage information, etc.
The local (sequential BLAS and LAPACK-like) functions are called using the familiar
APIs and are wrapped to work with Elemental’s matrix class. Elemental’s distributed
BLAS and LAPACK functionality is built on top of these layers. On top of that layer
is Elemental’s solver functionality. Lastly, user applications are built on top of the Ele-
mental library. All of this layering and modularity makes mechanizing expert selections
of algorithms and optimizations easier because the inherent structure of the domain is
exposed. Further, this results in common patterns of function calls. An expert knows the
optimizations to apply to these repeated patterns across codes for different applications.
From the expert’s perspective, this layering and separation of concerns improves pro-
ductivity and makes the code easier to port [18]. See [20] for more details on Elemental.

How an expert optimizes for distributed-memory architectures. With this back-
ground on Elemental, we now give a high-level explanation of how an expert takes
a sequential algorithm and optimizes it for a distributed-memory architecture. Doing
so motivates the codification of domain expertise. Consider the sequential, Variant 3,
lower-triangular Cholesky algorithm of Figure 1. It can achieve very good performance
on sequential machines, but it is only implicitly parallel if routines Chol, Trsm, and
TriangularRankK are parallelized.

4 We provide the Elemental notation for distributions so the graphs below can be understood,
but we will not fully explain what the notation means. Please see [20] for more information.

To optimize this code, an expert focuses on the loop body, which we show again in
Figure 2(a), and inlines the choices of parallelized implementations of its three opera-
tions to yield Figure 2(b):

– A11 is distributed among processes ([MC ,MR]) and Chol(Lower, A11) rep-
resents a small part of all computation. Thus, a convenient way to perform this
operation is to bring all data to all processes ([?, ?]), and to then perform the opera-
tion redundantly. A11 Star Star = A11 performs the allgather that duplicates
data to all processes. LocalChol(...) then locally performs the factorization
on the processes, and A11 = A11 Star Star places the updated data back in
A11 (with no communication).

– Next, consider the update A21 := A21tril(A11)
−T . If one partitions A21 into rows

as A21 =

aT21,0
aT21,1

...

 and redistributes A21 so that rows are assigned to processes in

a cyclic order ([VC , ?]), then the processes can compute aT21,k
aT21,k+p

...

 :=

 aT21,k
aT21,k+p

...

 tril(A−T
11)

locally in parallel if A11 is duplicated on all nodes ([?, ?]). A21 VC Star = A21
redistributesA21. A11 Star Star = A11 duplicates, again,A11. The local com-
putation is performed by LocalTrsm(...). The data is placed back in A21 by
A21 = A21 VC Star.

– Similarly, the call to TriangularRankK(...) is parallelized by redistributions
of data A21 MC Star = A21 and A21 MR Star = A21 ([MC , ?] and [MR, ?],
respectively) followed by a local computation.

Details of what the distributions are and how exactly they are accomplished are not cru-
cial to our discussion [20]. The resultant code provides a hint as to why optimizations
are needed: the statements A11 = A11 Star Star and A11 Star Star = A11
can be replaced by the more efficient single A11 = A11 Star Star, which elimi-
nates unnecessary communication.

Further, an Elemental expert knows that redistributions like A21 MC Star = A21
can be composed from two or more redistributions via intermediate distributions. Some
choices of possible substitutions are exposed in Figure 2(c). In most instances, this
simply inlines intermediate distributions that were previously hidden. For example re-
placing A21 = A21 VC Star by

A21 MC Star = A21 VC Star; A21 = A21 MC Star.
An expert knows this is inefficient as data is distributed from one distribution to another
and back to the original distribution instead of redistributing only as necessary. How-
ever, the astute reader may notice redundant redistributions which, when removed, yield
the code in Figure 2(d). For example the redundant A21 MC Star = A21 VC Star
is removed.

Summary. An expert performs (consciously or subconsciously) the previously described
steps to optimize the code of Figure 2(a). Machine-specific details influence how up-
dates in the loop body are parallelized and which operations are expensive and can/need
to be optimized. We show in the next section how to mechanize these steps by codifying
knowledge about distributed-memory computing and related optimizations using graph
transformations. The keys are (1) layer algorithms, and (2) explicitly codify implemen-
tation knowledge about (i.e. options for) algorithms, layers, communication, and target
architectures – details that were inlined in this section.

3 Toward a Mechanical Expert

The previous section showed, step-by-step, the process a domain expert uses to paral-
lelize and optimize a sequential algorithm. The process is not only systematic but also
applies to a broad class of operations in the domain of dense matrix computations. In
this section, we discuss how DxT mechanizes this process.

Using graphs to model algorithms and code. The classic (and arguably greatest to
date) example of automated software development is relational query optimization
(RQO) [24,25]. A query evaluation program (QEP) is represented by a relational al-
gebra expression. A query optimizer rewrites this expression, using relational algebra
identities, to an equivalent expression (program) that has better performance. The op-
timized expression is then translated to code, thereby synthesizing an efficient QEP
implementation. The keys to RQO are (a) representing the design of QEPs as relational
algebra expressions and (b) optimizing these expressions to produce efficient programs.

Chol

Trsm
TriRK

A11

A22

A21

A11'

A22'

A21'

Fig. 3: Cholesky variant 3 algorithm loop
body in data-flow graph. This uses abstrac-
tions (solid boxes) for component opera-
tions; implementations must be chosen.

We follow the same paradigm but in
a data-flow graph setting using graph
transformations. The starting point for
our optimization is the loop-body in Fig-
ure 2(a) or, equivalently, Figure 1, which
is represented as the data-flow graph of
Figure 3. The inputs to this graph are
the submatrices of A and the results of
the loop body (outputs of the graph) are
the updated submatrices of A. The boxes
represent the update operations of the loop body (e.g. Chol, TriangularRankK,
Trsm). These operations, also called abstractions, have no implementation details. Just
as in the starting algorithm, abstraction boxes only have precondition and postcondi-
tions to specify their functionality (we omit these details here).

Abstractions are implemented by algorithms; the pairing of operations with their
algorithms form algebraic identities (a.k.a. refinements) of the domain. Algorithms can
reference lower-level operations, which have their own implementing algorithms, and
this recurses. This codifies the layering of software libraries. There could potentially
be many refinements for an operation, each depending on, for example, architecture-
specific details, the method of parallelization, or numerical stability characteristics.
An expert explores such options or instinctively chooses one out of experience. In

LCholA11 A11'[MC,MR]→[*,*] [*,*]→[MC,MR]

Chol

CholA11 A11'

LTrsm
A21 [MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]Trsm A21' A21'

Trsm

A22

TriRK [MC,MR]→[MC,*]

[MC,MR] →[MR,*]

LTriRK

TriRK

A11'

A21

A11'

A21'
A22'

A22

A21'

A22'

(a)

(b)

(c)A21' A21'

Fig. 4: Sample refinements to implement some operations for distributed-memory. The
boxes with→ are redistribution operations in Elemental (i.e. ”=” operators) from one
distribution, represented on the left of the arrow, to another, represent on the right of the
arrow. The other solid boxes represent local computation.

[*,*]→[MC,MR]
[MC,MR]→ [*,*]

[*,*]→[MC,MR]

opt1a opt1b

OPT1 OPT1

J
J
K

J

J

K

[VC,*]→[MC,*]J

Opt2b

[VC,*]→[MC,*]

J

[VC,*]→[MC,*]

Opt2a

Opt2

Opt2K

L

K

L

Fig. 5: Sample optimizing graph transformations to remove unnecessary redistribution.

the Cholesky algorithm, an expert replaces abstractions with implementation details
as shown in Figure 2(b), which are represented as graph transformations in Figure 4.
That figure only shows the best refinement for each abstraction in this algorithm; keep
in mind there are others. The boxes represent either redistribution operations (i.e. the
“=” operator in the code) or a sequential LAPACK or BLAS function call. Some of
the redistribution boxes are abstractions that can be further refined with implementation
options like an expert changing code from Figure 2(b) to Figure 2(c). These refinements
are also represented as graph transformations.

Optimizations are identities of the form exp1 = exp2, which allows us to re-
place one expression (DLA subprogram) exp1 with another, often more efficient, ex-
pression exp2. An expert developer recognizes the inefficient redistribution code pat-
terns in Figure 2(c) and optimizes the code to end with Figure 2(d). We can represent
these optimizations as graph transformations such as those shown in Figure 5. The
top is equivalent to the optimization needed to replace A11 = A11 Star Star and
A11 Star Star = A11 with just A11 = A11 Star Star and the bottom re-
moves the redundant A21 MC Star = A21 VC Star in the Cholesky example.

Using a graph representation. By refining the operations of the Cholesky algorithm
in Figure 2(a), the top layer of code is flattened to expose redistribution in Figure 2(b).
These redistributions are another layer of operations that can be refined in various ways.
By refining some of them as in Figure 2(c), we can break through this layer to expose
inefficient redistributions that can be removed to create the optimized implementation
in Figure 2(d). All of these steps can be encoded as graph transformations that can be
applied to more algorithms than just this Cholesky example.

By exploring the space of equivalent graphs (implementations) for a given DLA ap-
plication and selecting the graph with the best performance characteristics, an efficient
DLA program is synthesized. Source is produced by translating the optimized graph
to code. These refinements and optimizations are the same as those experts know well
and currently apply repeatedly by hand; they can be thought of as transformations that
incrementally elaborate DLA programs. One goal of our work is to enable experts to
identify and encode these transformations so they can be mechanically applied. Just
as functions are modularized for re-use, these transformations can be modularized for
re-use, hence the name ‘Design by Transformation’.

Given a portfolio of basic, local (sequential) operations and redistribution primi-
tives, cost functions for each primitive, and a target sequence of DLA operations (e.g.
as given in Figure 2(a)), a mechanical system employs transformations that an expert
would apply by hand. Doing so produces all implementations that have merit (meaning
they are best by some measure for some subset of operands) and a mechanism by which
to choose from these implementations (e.g. cost functions for implementations).

Searching the space of implementations. To an observer, an expert implementing an
algorithm appears to follow instincts to select refinements and optimizations. In fact,
though, (s)he explores possibilities and assesses cost (implicitly or explicitly). How do
we enable a mechanical system to choose the best implementation using “instincts”? We
do not (yet). Instead of encoding the heuristics and instincts of an expert, we currently
use a breadth-first (or brute-force) search that works well for all of the algorithms we
have studied thus far. By iteratively applying all possible transformations to an input
algorithm’s graph, our method generates a search space of all implementations, both
good and bad. For all examples we describe in this paper, DxTer takes at most four
hours to generate the search space; Cholesky takes less than 5 seconds. By associating
a cost with every implementation, the best in the search space can, in principle, be
picked out analytically. Thus, our prototype system employs run-time cost estimates
for redistribution and computation operations in Elemental to find the best-performing
codes. We want the system to see that the code of Figure 2(d) is better than the code

Operation Cost
LocalChol (n× n) γn3/3
LocalTrsm (Right, Lower, n× n, m× n) γmnn
A11 Star Star = A11 (m× n) αdlog2 pe+ β p−1

p
mn

A21 MC Star = A21 VC Star (m× n) αdlog2 ce+ β c−1
c

m
r
n

Table 1: Representative first-order approximations for the cost of operations .

of Figure 2(a) by summing operation costs and determining which takes less time to
execute. It should then choose Figure 2(d) out of all implementations in the search
space, just as an expert would.

Finding the optimal implementations by cost estimates requires information about
the machine such as communication costs, computation speed, and the number of pro-
cessors. Further, the problem size affects which algorithm is optimal; different paral-
lelization schemes yield varying performance based on the matrix size. We consider
a range of problem sizes and find implementations that are optimal for some subset of
that range, and use cost functions to then choose which implementation to employ when
at run time the problem size is known. Cross-over points between the best implemen-
tations occur often. To identify these in our system, we need more accurate models of
computation and communication. Fortunately, a mechanical system does not care how
complicated the expressions become, which we hope to investigate in future research.
An expert rarely attempts this degree of optimization and accuracy since it requires
careful analysis that is too error-prone and time consuming to perform by hand. Au-
tomation overcomes this hurdle. 5

For DLA we have reasonable cost estimates. First-order approximations for sequen-
tial operations can be given in terms of the number of floating point operations that are
performed as a function of the size of operands. For example the matrix multiplication
C = AB where C, A, and B are m × n, m × k and k × n, respectively, takes time
(costs) γ2mkn where γ is the time for a floating point operation. The cost of every
computation kernel can be approximated by the operation count multiplied by γ. 6

The data redistributions found in Elemental are implemented using MPI collective
communication routines. Lower-bound costs of the common algorithms under idealized
models of communication are known [7] in terms of coefficients α and β, which cap-
ture the latency and cost per item transferred, respectively. For example redistributing an
n×n block of A11 as in line A11 Star Star = A11 on p processes requires an all-
gather operation, which has a lower bound cost of approximately α log2(p) + β p−1

p n2.
Sample cost functions from our Cholesky example are in Table 1. They are a subset

of those necessary to enable the prototype we describe in the next section. They only

5 Readers may note that this is exactly the RQO paradigm (described above) applied to DLA
implementations.

6 A second-order approximation would take algorithm performance variation into account, but
for now we stick to first-order approximations since this is generally good enough for an expert
implementing algorithms by hand.

include higher-order terms and are first-order approximations meant to distinguish good
(lower-cost) implementations of an algorithm from others that the system generates. It
turns out these estimates are good enough for the examples we have studied so far, but
we expect to improve them to find the best code for more complicated algorithms. For
example, we have encountered situations where collective communications are subop-
timally implemented on a specific architecture while some other architectures provide
hardware support for such redistributions.

4 Experimental Results

We developed a prototype system to test the power of DxT and the cost functions de-
scribed in the previous section. We call this prototype DxTer [17], pronounced “dexter”.
We now describe our initial findings.

The results shown in this section were taken from the Lonestar cluster at the Texas
Advanced Computing Center. We used 20 nodes, each with 2 Intel Xeon hexa-core
processors running at 3.33 GHz.7 The combined theoretical peak performance of all
240 cores is 3200 GFLOPS. For each problem, we tested a range of algorithmic block
sizes and a set of process grid configurations and show the best results. Two-thirds of
peak performance is shown at the top of the graphs.

Cholesky Variant 3. We encoded the most useful refinements for a handful of common
operations (e.g. BLAS functions) as well as Elemental redistributions to enable DxTer
to implement the Cholesky example. From Figure 3, DxTer is able to mechanically pro-
duce, without human intervention, hundreds of loop body implementations including
all versions in Figure 2. Each of these is Elemental code for Cholesky Variant 3. This
allows DxTer to explore the space of implementations. Additionally, we encoded more
complicated and subtle expert optimizations that are out of the scope of this paper. With
these DxTer generates an even better implementation than that of Figure 2(d). This su-
perior implementation is identical to that coded by the expert developer of Elemental.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

Problem Size

E
s
ti
m

a
te

d
 R

u
n

ti
m

e
 (

c
y
c
le

s
)

Estimated Operation Runtime

Inlined

Optimized 1

Optimized 2 (Best Predicted)

Other Generated Implementations

Fig. 6: Cholesky Variant 3 estimated run-
time in processor cycles on 240 cores.

In its current incarnation, DxTer ap-
plies all possible graph re-writes to enu-
merate the entire search space of imple-
mentations. It then uses symbolic cost
functions like those those described in
Section 3 to choose the best of all
the mechanically generated implementa-
tions (this is a breadth-first search). Fig-
ure 6 shows the cost estimates for the
most interesting generated implementa-
tions across a range of problem sizes
(we omit clearly sub-optimal choices).
To make the choice of which is best,
we fixed the machine-specific parameters

7 We used versions 11.1 of the Intel compiler, 1.6 of MVAPICH2, 1.8.0 of ScaLAPACK, and
1.30 of the GotoBLAS.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Problem size

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

Cholesky Performance on Lonestar

Optimized 2

Optimized 1

Inlined

ScaLAPACK

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Problem size

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

SPD Inversion Performance on Lonestar

Optimized

Non−fused

ScaLAPACK

Fig. 7: Cholesky Variant 3 (left) and SPD Inversion (right) implementation perfor-
mance. Two-thirds of peak performance is at the top of the graphs.

that appear in the cost functions. We take the process grid to be 16 × 15. γ, a measure
of machine speed, is set to be 1, and the other machine parameters are set as reason-
able multiples of γ. We then determined the Cholesky implementation in Elemental
has a lower cost, i.e. run-time, than any of the hundreds of automatically generated im-
plementations. In Figure 6, this implementation’s cost estimate is at the bottom of the
graph, labeled “Optimized 2.”

In Figure 7 (left), we show the performance results of the code of Figure 2(c) (la-
beled “Inlined”), the code of Figure 2(d) (labeled “Optimized 1”), and the further op-
timized code (labeled “Optimized 2”). DxTer automatically generated all of these im-
plementations. We leave out the performance of the original code as it is similar to
that of the inlined code. Notice that if a domain expert only implemented the algorithm
directly and did not optimize considering the machine, the inlined code performance
would be what (s)he would see. It shows what happens when (s)he calls the high-level
operations, which have hidden inefficiencies. The difference between “Optimized 1”
and “Optimized 2” shows the performance gained when complex operations are un-
derstood and applied. It is clear that expert optimizations are necessary to obtain good
performance.

Additional operations. DxTer was designed to be applied to most, if not all, of the op-
erations supported by libflame, the initial development used Cholesky as the driving
example. Once this worked, DxTer was applied to other operations to examine how eas-
ily the methodology can be applied to new algorithms and extended with new knowl-
edge and reusing knowledge that is already encoded.

Our first experiment was to apply DxTer to a specific algorithm for triangular solve
with multiple right-hand sides (Trsm) that casts the computation in the loop-body in
terms of operations that are very similar to those in the loop-body of Cholesky factor-
ization Variant 3. As expected getting hundreds of implementations from DxTer took

very little work on our part because existing transformations were re-used. DxTer’s
costs models point to the same implementation as the hand-tuned as the best out of the
hundreds that were automatically generated.

Next, we tested DxTer’s implementation of Cholesky Variant 2. It requires a dif-
ferent flavor of parallelization since the bulk of computation is in the Gemm operation,
which requires local computations to be summed (reduced) across processes. With this
refinement encoded, DxTer was again able to produce the same optimized implemen-
tation code that an expert created. Adding such a transformation to DxTer was an easy
change, and it will henceforth be explored for any algorithm with a Gemm operation.

DxTer was also applied to triangular matrix multiplication and triangular matrix in-
version. For the former, the expert made an implementation error that produced wrong
results; DxTer generated correct code. For the inversion operation, DxTer generated a
version that had slightly better theoretical numerical properties (with equivalent per-
formance). DxTer had a transformation encoded to use Trsm with a triangular matrix
before inversion instead of Trmm after inversion. The expert developer applied this
transformation to other algorithms, so it was encoded into DxTer for them, but he for-
got to apply it here. Elemental has been updated with both of the differences DxTer
discovered.

Complex operations. Our greatest triumphs to date came when we applied DxTer to
two much more complex operations, A := L−1AL−H , which is important in reducing
a generalized Hermitian symmetric positive-definite eigenvalue problem to a standard
problem, and a fused symmetric, positive-definite (SPD) matrix inversion algorithm.

A10 := L−1
11 A10

A20 := A20 − L21A10

A11 := L−1
11 A11L

−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 :=W21 = A21 − 1
2Y21

A22 := A22−
(L21A

H
21 +A21L

H
21)

A21 := A21 − 1
2Y21

Fig. 8: Loop body of
A := L−1AL−H .

The parallelization of A := L−1AL−H , or two-sided
triangular solve, is discussed extensively in [21]. The loop
body of one of five algorithmic variants is shown in Fig-
ure 8. This algorithm is significantly more complex than
those we described previously, but it is similar in style
to them and many other DLA algorithms. In addition to
the BLAS refinements already encoded, refinements for
Axpy had to be added as well as some additional paral-
lelization schemes for TriangularRankK. DxTer will now
explore them with any algorithm that uses them. Lastly,
the unblocked operation L−1AL−H , specific to this algo-
rithm, was added. After these additions, DxTer was able to
generate tens of thousands of implementations. The exist-
ing optimizations described above enabled much of this variety; no new optimizations
were needed. DxTer’s cost models were used to automatically choose a “best” imple-
mentation from those generated. The chosen version was slightly better than the opti-
mized version implemented by the expert developer of Elemental. He had forgotten to
apply an optimization that was used in other algorithms. Our tool had no such excuses
and found the superior implementation.

A11 := Chol(A11)
A01 := A01A

−1
11

A00 := A00 +A01A
T
01

A12 := A−T
11 A12

A02 := A02 −A01A12

A22 := A22 −AT
12A12

A01 := A01A
−T
11

A12 := −A−1
11 A12

A11 := A−1
11

A11 := A11A
T
11

Fig. 9: Loop body of SPD
matrix inversion.

Next, we applied DxTer to a fused-loop algorithm for
SPD matrix inversion. We encoded variant 2 of the algo-
rithm described in [6], the loop body of which is shown in
Figure 9. With no additional transformations, DxTer gener-
ated hundreds of thousands of implementations and chose
the same implementation as the expert developed. Figure 7
(right) shows the resulting performance. The “Optimized”
version is the implementation generated by DxTer. The
“Non-fused” version is the implementation that uses the
optimized Cholesky factorization, triangular matrix inver-
sion, and triangular matrix-matrix multiply operations, de-
scribed above, in succession (also generated by DxTer).
This prohibits some optimizations to reduce communica-
tion allowed by the fused-loop algorithm. ScaLAPACK
uses a non-fused version of the algorithm.

To recap, these examples demonstrate that it is possible to generate complex, high-
performance DLA code mechanically. Indeed, the original motivation for a tool like
DxTer was to simplify the burden of experts. We believe DxT is a practical basis to do
this.

5 Related Work

Our paper takes a giant step forward for a vision that has been part of the FLAME
project since its inception. In the first dissertation that resulted from the project [13],
“The Big Picture” was expressed that already captured the idea of encoding algorithms
and expert knowledge and mechanically transforming it into code. There, too, opti-
mized parallel implementations were the goal. At the time, the PLAPACK library [26]
played the role of a domain specific language much like the Elemental library does in
this paper. Many implementations were generated by a system coded in Mathematica,
and performance estimates were generated from annotations with cost functions of the
algorithms. The present work benefits from an extra ten years of insights during which
dozens of papers were published that slowly filled in the blanks of knowledge that now
enable the current, more sophisticated, approach based graph transformations.

DxT is similar in goal to the SPIRAL project [22], which primarily focuses on
the domain of Digital Signal Processing (DSP). SPIRAL automatically generates high-
performance kernels for target architectures. It starts with a mathematical description
of the operation in a DSL and applies rewrite transformations to recursively replace
operations with implementation code. It uses learning techniques and performance test-
ing to explore the space of implementations. DxT is aimed at higher-level operations,
built on lower-level, architecture-specific functions like the BLAS, which allows us to
use relatively accurate cost models instead of online-search. We can envision building
on SPIRAL-generated kernels, though, instead of the hand-tuned components we use
today. We would need the kernels as well as cost estimates for this to work.

Autotuning is often viewed as a way to automatically improve performance [28].
DxT is different in that it generates the search space from a high-level understanding

of how algorithms can be transformed. Also, we generate parameterized cost estimates
which then guide us to the best implementation(s). We can envision adding autotun-
ing to this approach in order to then choose the best parameters like, for example, the
algorithmic block size.

The Broadway compiler [15] had a similar goal as ours to encode expert knowledge
to enable optimized code generation. Library function annotations enable Broadway
to choose the best implementation at a call site. Broadway is not able to optimize by
replacing inlined code with a better implementation, though. Further, Broadway does
not search the space of implementations, which is necessary to avoid local minima.

Finally, The Tensor Contraction Engine (TCE) [2] aims to generate high-performance
code for a tensor contraction expressed at a high-level using a DSL. It does so by ap-
plying transformations to reduce computational complexity, space complexity, commu-
nication cost, and then data access. The transformations and cost models of TCE are
very similar in spirit and goal to DxT. TCE is geared specifically to tensor contractions
while DxT is more general (i.e. not just DLA algorithms [23]). We aim to make trans-
formations easy to understand and encode, so DxT can be applied to other domains.

6 Future Work

Our larger goal is to automatically generate libraries of algorithms for this domain by
encoding knowledge about operations and many target architectures. A system would
then transform this knowledge into optimized algorithms based on cost estimates, auto-
matically generating families of implementations for more than just distributed-memory
machines. Our prototype shows promising results on distributed-memory targets for op-
erations that are indicative of most operations found in the domain of DLA. Obviously,
there remain many additional problems before we can reach this goal, such as the topics
below.

Adding knowledge. We have not yet included all possible transformations in our pro-
totype system. Instead, we have incrementally added those needed by algorithms as we
target them for experiments. For example similar to the more advanced optimizations
an expert applies for a particular target architecture, there are likely other target-specific
optimizations that should be added to the system. Also, the cost functions that were used
were first-order approximations for the true cost of the various operations. Better pa-
rameterized costs estimates can eventually be incorporated to predict machine-specific
performance oddities.

Other target architectures. We chose first to test with distributed-memory algorithms
for three reasons: (1) We knew a large number of possible algorithms would result; (2)
We suspected first-order approximations for the cost of operations would suffice for
large matrix sizes; and (3) A considerable penalty would observed if a clearly wrong
optimization was chosen, so the benefits of optimization would be clearly visible in
experiments. Another important application of DxT would target optimization of se-
quential and multithreaded dense linear algebra libraries . There, communication would
show up in the form of copying of data into contiguous buffers for performance reasons
and computation would be performed by so-called inner kernels [11,12,28]. While in

principle this is similar to what we have described in this paper, we suspect that in
practice the cost functions need to be more accurate and sophisticated. With knowledge
encoded to optimize for different architectures, DLA software could be optimized at all
layers of code. We will pursue this in future research.

Pruning the search space. For now our breadth-first approach to search is sufficient. It
only takes hours for even the most complex operations. When optimizing at all archi-
tectural levels, though, the search space will become substantially larger, and this cost
will become prohibitive. We must study how to prune the space to limit an explosion of
choices and we must study more advanced searching techniques. This is an active area
of research and will be covered in more detail in a follow-up paper.

7 Conclusion

Using Design by Transformation, we have demonstrated that it is possible to mecha-
nize the actions of an expert dense linear algebra developer to parallelize an algorithm
for a distributed-memory target. We presented multiple non-trivial case studies that
showed we could reproduce automatically what experts today produce manually. One
of the more complicated examples clearly indicates as DLA design problems become
more complex, a mechanized expert can produce even better code than manual designs.
DLA codes targeting distributed-memory architectures and the related optimizations
have similar structure to the examples we have explored. Therefore, we believe our
prototype’s successes thus far indicate potential for success for a large body of DLA
algorithms for distributed-memory computers and even other targets.

The key to DxT is exposing the inherent structure of the DLA domain – this is
accomplished by capturing the fundamental operations of the domain using layered de-
signs. Further, we codify fundamental algorithms that implement the operations and
optimizations that naturally arise in this domain. Given this structure, we explained that
the manual process that a DLA expert uses to design efficient algorithms is so system-
atic that we could mechanize these tasks. We presented a tool that accomplished this
goal. Further, we explained why we believe DxT is not limited to distributed-memory
and how it can be used to optimize code beyond what is currently possible by hand. As
such we expect this paper to be the first of many to explore the topics described above.

Acknowledgements
Marker was sponsored by a fellowship from Sandia National Laboratories and an

NSF Graduate Research Fellowship under grant DGE-1110007. Poulson was sponsored
by a fellowship from the Institute of Computational Engineering and Sciences. Batory
is supported by the NSF’s Science of Design Project CCF 0724979. This research was
also partially sponsored by NSF grants OCI-0850750 and CCF-0917167 as well as
by a grant from Microsoft. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357,
and resources at the Texas Advanced Computing Center. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation (NSF).

References

1. E. Anderson et al. LAPACK Users’ Guide. SIAM, Philadelphia, 1992.
2. A. Auer et al. Automatic code generation for many-body electronic structure methods: The

tensor contraction engine. Molecular Physics, 2005.
3. Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra

Algorithms. PhD thesis, Department of Computer Sciences, The University of Texas, 2006.
Technical Report TR-06-46. September 2006.

4. Paolo Bientinesi et al. Representing linear algebra algorithms in code: The FLAME applica-
tion programming interfaces. ACM Trans. Math. Soft., 31(1):27–59, March 2005.

5. Paolo Bientinesi et al. Families of algorithms related to the inversion of a symmetric positive
definite matrix. ACM Trans. Math. Soft., 35(1), 2008.

6. Paolo Bientinesi et al. Families of algorithms related to the inversion of a symmetric positive
definite matrix. ACM Trans. Math. Softw., 35(1):1–22, 2008.

7. Ernie Chan et al. Collective communication: theory, practice, and experience. Concurrency
and Computation: Practice and Experience, 19(13):1749–1783, 2007.

8. J. Choi et al. Scalapack: A scalable linear algebra library for distributed memory concurrent
computers. In Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel
Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

9. Jack J. Dongarra et al. An extended set of FORTRAN basic linear algebra subprograms.
ACM Trans. Math. Soft., 14(1):1–17, March 1988.

10. Jack J. Dongarra et al. A set of level 3 basic linear algebra subprograms. ACM Trans. Math.
Soft., 16(1):1–17, March 1990.

11. Kazushige Goto and Robert van de Geijn. High-performance implementation of the level-3
BLAS. ACM Trans. Math. Softw., 35(1):1–14, 2008.

12. Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multi-
plication. ACM Trans. Math. Softw., 34(3):1–25, 2008.

13. John A. Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense
Linear Algebra Algorithms. PhD thesis, Department of Computer Sciences, The University
of Texas, December 2001.

14. John A. Gunnels et al. Flame: Formal linear algebra methods environment. ACM Trans.
Math. Soft., 27(4):422–455, December 2001.

15. Samuel Guyer and Calvin Lin. Broadway: A compiler for exploiting the domain-specific
semantics of software libraries. In Proceedings of the IEEE, volume 93, pages 342–357.
2005. Special issues on program generation, optimization, and adaptation.

16. C. L. Lawson et al. Basic linear algebra subprograms for Fortran usage. ACM Trans. Math.
Soft., 5(3):308–323, Sept. 1979.

17. Bryan Marker et al. Dxter: An automated software generation prototype for dense linear
algebra. In preparation.

18. Bryan Marker et al. Programming many-core architectures - a case study: Dense matrix
computations on the intel scc processor. Concurrency and Computation: Practice and Expe-
rience. To appear.

19. Bryan Marker et al. Designing linear algebra algorithms by transformation: Mechanizing the
expert developer. In PPoPP ’12: Proceedings of the seventeenth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, 2012. 2 pages. To Appear.

20. Jack Poulson et al. Elemental: A new framework for distributed memory dense matrix com-
putations. ACM Transactions on Mathematical Software. Accepted.

21. Jack Poulson et al. Parallel algorithms for reducing the generalized hermitian-definite eigen-
value problem. ACM Transactions on Mathematical Software. submitted.

22. Markus Püschel et al. SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE, special issue on “Program Generation, Optimization, and Adaptation”, 93(2):232–
275, 2005.

23. T.L. Riche et al. Software architecture design by transformation. Computer Science report
TR-11-19, Univ. of Texas at Austin, 2011.

24. P G Selinger et al. Access Path Selection in a Relational Database Management Syst em. In
ACM SIGMOD, 1979.

25. Jeffrey D. Ullman et al. Database Systems: The Complete Book. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

26. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

27. Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.
28. R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In

Proceedings of SC’98, 1998.

	Designing Linear Algebra Algorithms by Transformation: Mechanizing the Expert Developer
	Bryan Marker, Jack Poulson, Don Batory, and Robert van de Geijn

