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Loop invariants have traditionally been used in proofs of correctness

(e.g. program verification) and program derivation. Given that a loop in-

variant is all that is required to derive a provably correct program, the loop

invariant can be thought of as being the essence of a loop. Being the essence

of a loop, we ask the question “What other information is embedded within

a loop invariant?” This dissertation provides evidence that in the domain of

dense linear algebra, loop invariants can be used to determine the behavior

of the loops. This dissertation demonstrates that by understanding how the

loop invariant describes the behavior of the loop, a goal-oriented approach can

be used to derive loops that are not only provably correct, but also have the

desired performance behavior.
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Chapter 1

Introduction

The fundamental thesis of this dissertation is that the loop invariant

(in the sense of Dijkstra and Hoare [29, 13]) can be used to formally derive

loops, optimized for performance, in a goal-oriented fashion. We show that

characteristics of the loop that impact performance can be identified a priori

(i.e., before the loop is even implemented) from the loop invariant. This allows

one to constructively identify loops that have desired characteristics (e.g., that

yield good performance) when implemented.

1.1 Motivation

A loop is usually first derived, implemented, and then optimized either

manually, or by an optimizing compiler. In order to optimize an implemented

loop, it is typical for a traditional compiler to analyze the loop in order to

recreate the information inherently lost or obscured in the input code. Often,

how the loop is implemented can hinder the analysis process, thereby making

it di�cult to optimize the loop.

As an example, consider the following loop:
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for (i = 0; i != n; ++i)

foo(i+1, &x, 1, &L[i], n, &y[i], 1);

}

In order to analyze the loop, a traditional compiler will perform dependence

analysis to create a partial ordering of the instances of the statement in the

loop, which would subsequently be used to ensure that correctness is preserved.

Since the loop is implemented using a subroutine (foo), it is di�cult

for the traditional compiler to determine if the arrays x, y or L are used and/or

updated in the subroutine. In such a situation, where the traditional compiler

is unable to accurately determine if the elements in the arrays are being read

or written, the traditional compiler is not able to determine if the instances of

the statement can be reordered, and thus the traditional compiler is not able

to optimize this loop. To overcome this loss of information, annotations-aware

compilers [28, 10], which allow the programmer to specify which of the input

arrays will be updated by the subroutine, have been developed by the compiler

community.

One example of such an annotation is a description of the values in

the arrays after the subroutine has been executed. Using such an annota-

tion, elements in arrays that are read-only will retain their original values,

and arrays that are updated will have values that di↵er from their original

values. In formal methods, this description is simply the post-condition of the

subroutine.

Because the subroutine is the only statement in the example loop, the

post-condition must imply that the loop invariant (in the sense of Dijkstra and

2



Hoare) is true. In addition, the loop invariant must describe the inputs to the

subroutine. Therefore, the loop invariant of the loop is a natural description for

the updates in the body of the loop. We will see that we can reason about the

reason about the body of the loop, even if it is written in terms of subroutine

calls, by analyzing the loop invariant. This insight will be formalized in this

dissertation.

We illustrate an analysis of a loop invariant with the loop given previ-

ously. In order to describe a loop invariant for the example loop, we first make

the following observations:

� The value of any element of an array must either be the final

value, the original value or a partially updated value. This im-

plies that if there exists an element from an array whose value is either

partially updated or final, then that array must have been updated by

the subroutine foo. Similarly, if all elements in an array remain pristine

after the subroutine foo has been executed, then that array is read-only,

or not used.

� After k iterations through the loop, the values in an updated

array must be the result of k calls to the foo subroutine. Recall

that the loop body consist of exactly one call to the foo subroutine. This

means that after k iterations, any changes to the values in the updated

array must be from k calls to the foo subroutine.

� The loop accesses the arrays in a systematic manner, allowing

3



arrays to be described in terms of di↵erent regions. Consider the

following sequence of subroutine calls to foo as the loop progresses:

foo(1, &x, 1, &L[0], n, &y[0], 1);

foo(2, &x, 1, &L[1], n, &y[1], 1);

.

.

.

foo(n, &x, 1, &L[n-1], n, &y[n-1], 1);

Notice that as the loop progresses, some of the inputs to the foo sub-

routine are changing in a systematic manner. At the end of k iterations,

array y can be divided into two regions, y
T

and y
B

, where y
T

describes

addresses in array y that had already been passed into the foo subrou-

tine, and y
B

describes addresses in array y that have yet to be passed

to the subroutine. Thus, array y can be envisioned to be partitioned as

follows:

y :

0

BBBBBBBBBBBB@

 
0

 
1

...
 
k�1

9
>>>=

>>>;
y
T

 
k

 
k+1

...
 
n�1

9
>>>=

>>>;
y
B

1

CCCCCCCCCCCCA

Here, the thick line represents how far into the array y, the loop has progressed.

The above observations allow us to describe the loop invariant for the

example loop following way:

✓
y
T

⌘ f
T

(L
T

, x)

y
B

⌘ by
B

◆
, (1.1)
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where the expression:

y
B

⌘ by
B

,

is used to denote that the region of the array y described by y
B

contains

original values.

As y
T

6⌘ by
T

, it can be deduced from (1.1) that the array y has been

updated by the subroutine foo. Recall that the thick line describe how far into

the array y the loop has progressed. After k � 1 and k iterations, y
T

contains

k � 1 and k elements, respectively. This implies that exactly one element in

array y is updated between the two iterations. In addition, we can deduce that

the particular element updated in the kth iteration must be the kth element of

the array y.

The fundamental observation is that, since the body of any loop (re-

gardless of whether it is implemented in terms of subroutine calls or with

primitive operations) can be replaced by a subroutine call, the loop invariant

can be used as an annotation for the body of the loop. Therefore, an analysis

of the loop invariant can be used in place of traditional dependence analysis.

In this dissertation, we show that the loop invariant can be used for

more than an annotation for subroutines. Specifically, this dissertation will

provide evidence, from the dense linear algebra (DLA) domain, that shows

that information about the characteristics of the loops relating to performance

are embedded within loop invariants. By analyzing loop invariants, these

characteristics canbe used to select favorable loops for a particular architecture.
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By raising the level at which the analysis of loops is performed, optimization

techniques embedded in traditional compilers, and knowledge used by the

DLA expert in optimizing DLA loops, is unified into a common framework.

This facilitates the use of both sets of knowledge within the framework. More

importantly, by working with loop invariants, loops that compute the correct

result and execute in a desired manner can be formally derived in a goal-

oriented fashion.

1.2 Loop Invariant

The term “loop invariant” is found in many fields of computer science.

Across the di↵erent fields, the definitions of loop invariant often di↵er. For

example, loop invariant variables in the compiler literature often refer to vari-

ables within a loop whose values across iterations do not change. This allows

for the application of an optimization called loop invariant code motion (also

known as code hoisting) which moves the computation of these loop invariant

variables out of the loop [1]. This is not the notion of loop invariant we intend.

Even within the formal methods community, there are slight di↵erences

as to what constitute a loop invariant. In Hoare’s work [29], a loop invariant

is simply a condition that is true at the start of the loop and remains true

after the execution of each iteration of the loop. Notice that Hoare’s definition

of a loop invariant allows for conditions that are not related to the execution

of the loop (e.g., 0=0). By contrast, Dijkstra’s notion of a loop invariant [13]

is that of an assertion that is true at the end of every iteration of the loop.

6



In addition, the weakest precondition that ensures that the loop invariant is

true at the end of each iteration must be implied by the loop invariant itself.

Notice that in Dijkstra’s definition, the loop invariant has to be related to

the execution of the loop because it implies that the weakest precondition is

satisfied.

In the context of this work, the definition of loop invariant that we

adopt is closest to Dijkstra’s in that our loop invariant is an assertion about

the state of the values in all variables, and it describes how those values have

been computed at the start and end of every iteration of a given loop. Since the

assertion describes how all values at the start and end of every iteration have

been computed, the updates that must happen within the loop is prescribed

by the loop invariant. Therefore, our notion of a loop invariant can be used

to derive the loop body in a goal-oriented fashion.

1.3 Background

Due to the importance of high performance dense linear algebra li-

braries to the scientific community, two communities in computer science have

made optimizing dense linear algebra operations an area of focus in their re-

spective fields. The linear algebra community has adopted a mathematical

approach to optimization where a less e�cient operation or sequence of oper-

ations and/or implementations are replaced by mathematically equivalent but

more e�cient operations and/or implementations. The compiler community

has developed a transformational approach to optimization in which the com-

7



piler transforms the loops in the implementation of a linear algebra operation

via a sequence of loop transformations to obtain an optimized implementation.

We illustrate the two di↵erent approaches with a concrete example, the

triangular matrix-vector multiplication (Trmv-x), which can be described

mathematically as

y = Lx

where y and x are vectors, and L is a lower triangular matrix.

1.3.1 Mathematical approach to optimizing DLA algorithms

The DLA expert, when required to optimize a DLA operation, will rec-

ognize that there are, typically, multiple algorithms that compute the same op-

eration. The expert examines the operation to identify possible ways/algorithms

in which the operation can be computed and then analyzes each possible al-

gorithm to determine which of these algorithms should be implemented. Al-

gorithms that are deemed ine�cient and/or ine�cient sequences of operations

are replaced with more e�cient ones. Let us now illustrate this manual process

performed by the expert.

Examining the matrix-vector multiplication, the expert will note that

the output y can be viewed as a linear combination of the columns of L, and

y can be computed as a sequence of axpy (scaled vector addition) operations

8



as follows:
0

BBBBBB@

 
0

 
1

...
 
m�2

 
m�1

1

CCCCCCA

+

=

0

BBBBBB@

�
0,0

�
1,0

...
�
m�2,0
�
m�1,0

0
�
1,1

...
�
m�2,1
�
m�1,1

0 . . .
0 . . .
. . . . . .
. . . �

m�2,n�2
. . . �

m�1,n�2

0
0
...
0

�
m�1,n�1

1

CCCCCCA

0

BBBBB@

�
0

�
1

...
�
n�2
�
n�1

1

CCCCCA
,

where in each iteration of the loop, an axpy operation is performed. Each

axpy operation scales a column of L by the corresponding element of x, �
i

,

and the resulting scaled vector is accumulated into y.

Alternatively, y can be computed as a sequence of inner (dot) products

as follows:
0

BBBBB@

 
0

 
1

...
 
m�2

 
m�1

1

CCCCCA

+

=

0

BBBBB@

�
0,0

0 0 . . . 0
�
1,0

�
1,1

0 . . . 0
...

...
. . . . . .

...
�
m�2,0 �

m�2,1 . . . �
m�2,n�2 0

�
m�1,0 �

m�1,1 . . . �
m�1,n�2 �

m�1,n�1

1

CCCCCA

0

BBBBBB@

�
0

�
1

...
�
m�2
�
m�1

1

CCCCCCA

where in each iteration, an element ( 
i

) of y is computed by performing an

inner product of the corresponding row of L with all of x.

For each of the two algorithms, there are two directions in which L can

be access. Columns of L can be accessed left-to-right or right-to-left. Rows

can be access from top-to-bottom or bottom-to-top. This yields two more

algorithms that performs the same update but access L (and similarly, x or y)

in a di↵erent manner.

Having identified multiple algorithms for computing the matrix-vector

product, the expert will analyze the algorithms to determine their performance

9



characteristics. The expert would note that the axpy-based algorithms access

elements of L column-wise, while the other variants access elements of L row-

wise. If L is stored in column-major order (as is usually the case in the domain

of DLA), then axpy-based algorithms will access elements of L with unit stride.

This implies that there is spacial data locality, which reduces cache misses, and

thus yields better performance than the other variants.

Another characteristic of the algorithms the expert would note is that

there is more inherent parallelism in the inner-product-based algorithms. No-

tice that each inner-product computes a unique element of y. Therefore, all

elements of y can be computed in parallel. While each axpy operation in the

axpy-based algorithms can similarly be performed independently, their results

must be accumulated together, which is inherently sequential. Therefore, the

axpy-based algorithms have less parallelism.

Depending on the target machine architecture, the expert may choose

to implement a di↵erent algorithm. On a sequential machine, the axpy-based

algorithms would typically be better because of better cache performance. For

an system with shared memory, the inner-product-based algorithms would be a

better choice because of the inherent parallelism. Assuming a shared-memory

implementation is desired, the expert will pick one of the inner-product vari-

ants and assign a subset of the inner-products to each of the processors so

that the inner-products can be executed independently. A more sophisticated

solution would combine these ideas.

The expert will notice that multiple inner products assigned to each

10



processor is mathematically equivalent to a smaller matrix-vector operation.

A matrix-vector operation is more e�cient than multiple inner product opera-

tions because the vector x is read once instead of multiple times. This implies

that in order to compute the original matrix-vector operation, each processor

can perform a smaller matrix-vector locally instead of multiple inner prod-

ucts. As discussed previously, this local matrix-vector operation can then be

implemented with one of the axpy variants.

This optimization approach of replacing less e�cient mathematical op-

erations with more e�cient ones is encapsulated in the way the expert imple-

ments his chosen algorithm. The implementations developed by the expert are

often written in terms of subroutine calls to DLA libraries such as LAPACK [4]

and the Basic Linear Algebra Subroutines (BLAS) [32, 16, 15] that implement

other linear algebra operations. An example of how the four original variants

of matrix-vector multiplication are implemented is summarized in Figure 1.1.

1.3.2 Compiler approach to loop optimizations

The focus of the compiler approach towards optimizing DLA algorithms

is the loops that are inherent in DLA algorithms. By transforming the input

loops via a sequence of loop restructuring transformations, known collectively

as loop transformations, the optimizing compiler attempts to optimize the

loops of the input implementations into a more e�cient loop-based implemen-

tation that yields good performance.

Starting with an implementation of a DLA operation, a traditional
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for (int i = 0; i < n; ++i){

// BLAS call that performs

// dot (inner) product

y[i] = ddot(m, x[i],

L[i*n], 1);

}

for (int i = n; i >= n; --i){

// BLAS call that performs

// dot (inner) product

y[i] = ddot(m, x[i],

L[i*n], n);

}

Inner product from top to bottom Inner product from bottom to top
for (int j = 0; j < n; ++j){

//BLAS call that performs

//an axpy operation

daxpy(n, x[j],

L[j*m], 1, y, 1);

}

for (int j = n; j >= 0; --j){

//BLAS call that performs

//an axpy operation

daxpy(n, x[j],

L[j*m], 1, y, 1);

}

axpy from left to right axpy from right to left

Figure 1.1: Expert implementations that call subroutines that implement other
mathematical operations

compiler will first analyze the loop(s) and the statements within the body of

the loop(s) to determine a partial ordering of all instances of the statements

that will be executed over the course of the loop(s). Using the heuristics and

analytical models built into the compiler, the compiler then determines which

loop transformations to apply to the input loop(s), and the sequence/order in

which the loop transformations are applied so that the output has the desired

performance characteristic that should yield good performance on the desired

machine architecture.

For instance, assume that the starting input was an implementation of

one of the axpy variants, the compiler may first perform a loop optimization

called loop interchange [2] so that the iterations of the outer loop are indepen-

12



for (j = 0; j < m; ++j){

for (i = 0; i < n; ++i){

y[i] += L[i,j]x[j]

}

}

for (i = 0; i < n; ++i){

for (j = 0; j < m; ++j){

y[i] += L[i,j]x[j]

}

}

1) Input Code 2) After loop interchange
for (j = 0; j < m; j+= 4){

for (i = 0; i < n; ++i){

y[i] += L[i,j]x[j]

}

for (i = 0; i < n; ++i){

y[i] += L[i,j+1]x[j+1]

}

for (i = 0; i < n; ++i){

y[i] += L[i,j+2]x[j+2]

}

for (i = 0; i < n; ++i){

y[i] += L[i,j+3]x[j+3]

}

}

for (j = 0; j < m; j+= 4){

for (i = 0; i < n; ++i){

y[i] += L[i,j]x[j]

y[i] += L[i,j+1]x[j+1]

y[i] += L[i,j+2]x[j+2]

y[i] += L[i,j+3]x[j+3]

}

}

3) After loop unroll 4) After loop fusion (Output)

Figure 1.2: Resulting code after applying loop transformation in each of the
di↵erent phases

dent of each other. Next, another loop transformation, called loop unrolling

[1, 53], may be applied to transformed loop, yielding a new intermediate loop-

based code that will allow the next loop transformation to be applied. Finally,

loop fusion [31, 47] may be applied to the intermediate code to combine the

inner loops into a single loop that reduces memory accesses. The di↵erent

intermediate loops, created after each loop transformation is applied, is shown

in Figure 1.2.
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The loop transformations applied and the sequence in which the loop

transformations are performed is important. In this instance, if loop unrolling

is not performed before loop fusion, then loop fusion cannot be applied. As

loop transformations are applied in phases by the compiler, identifying which

loop transformation must be applied and the order in which the transfor-

mations need to be applied is known as the phase-ordering problem [3], an

NP-complete problem, in the compiler literature.

Recently, the compiler community has taken to using empirical search,

or a hybrid of empirical searching and analytical modeling to overcome the

phase-ordering problem [6, 5]. Essentially, a process that, repeatedly, applies

transformations to the code, compiles and execute the code on the target

machine, and determines if the transformation is beneficial is automatically

performed by the compiler as a tuning step to avoid the phase-ordering prob-

lem.

1.4 A Calculus of Loop Invariants

Starting around 2000,the Formal Linear Algebra Methods Environment

(FLAME) project [7] has systematized the process the DLA expert uses to

discover multiple algorithms for the same operation through a systematic ex-

ploration of loop invariants for the same operation. The essence of the project

is that each algorithm identified by the DLA expert can be represented by

its loop invariant. This implies that the optimization performed by the DLA

expert can be viewed as a replacement of the original loop invariant with the

14



loop invariant of the optimized loop.

Similarly, we argue that many of the loop transformations performed

by the compiler can be viewed as a transformation of the loop invariant. Recall

that a compiler optimizes a loop by applying a sequence of one or many loop

transformations to the input loop in order to restructure it into an optimized

output loop with a particular characteristic. Since each loop transformation

changes the input loop to a di↵erent output loop, each loop transformation

can be viewed as a function that maps the loop invariant of the input loop to

the loop invariant of the output loop. This implies that a sequence of loop

transformations can be viewed as a series of functions that maps the input

loop invariant to the desired output loop invariant.

Our observation is that despite the di↵erent approaches (and di↵erent

starting inputs) towards optimizing DLA loops, both approaches can be unified

using a framework that views optimization of DLA loops as a change in the loop

invariant. As compilers apply loop transformations in order to obtain output

loops that have desirable characteristics for particular machine architectures,

an understanding of how these desirable characteristics are described by the

loop invariants of the output loops will allow the systematic discovery of the

characteristics of the algorithms.

We have thus motivated characteristics of algorithms can be identified

from their loop invariants.
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1.5 Contributions

This dissertation contributes to the field of computer science in the

following ways:

� It provides evidence that loop invariants can be used for more than pro-

gram derivation and proofs of correctness. We show that loop invariants

can also be used to determine characteristics that impact performance

of the loop they represent. This allows one to identify loop-based al-

gorithms that have the potential to perform well on a given machine

architecture.

� The theories developed in this dissertation allows the generalization of

the notion of goal-oriented programming from goals related to the cor-

rectness of the computation performed by the loop to goals related to

the performance characteristics of the loop. The identification of loop in-

variant with a desired characteristic is shown to be so systematic that an

algorithm for their identification is one contribution of this dissertation.

� This dissertation demonstrates that the phase-ordering problem encoun-

tered by compilers can be avoided if one takes a goal-oriented approach

towards optimizing DLA loops. As compilers optimize loops by ensur-

ing that the output loop has a particular characteristic, deriving the

loop invariant of the output loop would allow one to avoid having to

identify the sequence of one or more transformation that results in the

output loop. The additional benefit of the goal-oriented approach is that
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multiple loop invariants (hence, mutliple output loops) with the desired

characteristic may be obtained. Obtaining multiple output loops where

each output loop is the result of a di↵erent sequence of transformations,

would exacerbate the phase-ordering problem using the tranformational

approach employed by compilers.

� This dissertation unifies the optimization approaches of the traditional

optimizing compiler, and the DLA expert into a common framework

based on the analysis and optimization of loop invariants. This unifi-

cation of the two approaches allows one to use both compiler and DLA

expert knowledge to optimize DLA loops by raising the level at which

analysis and optimization of loops are performed. In addition, it al-

lows analysis and optimization to be performed on loops that include

subroutine calls to black-box libraries.

1.6 Outline

This dissertation is structured as followed:

We start by providing a quick introduction to the FLAME methodology

for deriving dense linear algebra algorithms from their mathematical specifi-

cations in Chapter 2. We end that chapter with a discussion on the relevance

of the FLAME methodology to the rest of the dissertation.

In Chapters 3 and 4, we introduce and formalize the notion of the

remainder of a loop invariant. We also discuss its importance for analysis
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purposes and show how dependence analysis performed by a compiler can be

raised to a higher level of abstraction with the use of the loop invariant and

its remainder.

Chapters 5 through 7 provide examples of using the loop invariant and

its remainder to determine if a particular optimization is legal (i.e. still com-

putes the same output) and the resulting loop invariant after the optimization

is performed.

In Chapter 8, we introduce a goal-oriented approach to deriving algo-

rithms where the goal is not only to derive an algorithm that computes the

correct result, but also to derive an algorithm with a particular desired char-

acteristic. Using the theories developed in the previous chapters, we introduce

an algorithm to construct loop invariants that represent loops with the desired

performance characteristics.

Theoretical result that shows how the approach is applicable to domains

other than DLA is given in Chapter 9. Finally, a summary of this dissertation

is provided and future directions are identified in Chapter 10.

18



Chapter 2

Formal Linear Algebra Methods Environment

The Formal Linear Algebra Methods Environment (FLAME) is a project

with the ultimate aim of mechanically generating and implementing high per-

formance dense linear algebra libraries for any machine architecture from the

mathematical specification of the desired functionality. In this chapter, we

review the results from the FLAME project that are relevant to this disserta-

tion.

2.1 FLAME Derivation Methodology

The FLAME derivation methodology is a systematic process that guides

one through an 8-step derivation process by filling in the “worksheet” shown

in Figure 2.1. We illustrate the FLAME methodology with the derivation of

a loop for a triangular matrix-vector multiplication. Householder’s notation

will be used, where scalars, vectors and matrices are represented by lower-

case Greek letters, lowercase and uppercase letters, respectively. Vectors are

assumed to be column vectors. Row vectors are represented by transposed

column vectors.

The triangular matrix-vector multiplication (Trmv-x) is typical of a
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Step Annotated Algorithm:

1a {P

pre

}
4 Partition

where

2 {P

inv

}
3 while G do

2,3 {(P
inv

) ^ (G)}
5a Repartition

where

6 {P

before

}
8 S

update

5b Continue with

7 {P

after

}
2 {P

inv

}
endwhile

2,3 {(P
inv

) ^ ¬ (G)}
1b {P

post

}

Figure 2.1: Blank FLAME derivation Worksheet

large class of dense linear algebra operations. Mathematically, the operation

can be expressed as

y := Lx (2.1)

where x and y are vectors, and L is a triangular matrix. In this discussion, L

is assumed to be lower triangular, and dimensions of all operands are assumed

to be conformal so that the operation is well-defined.

Step 1a, b: Defining P
pre

and P
post

. The first step of the FLAME deriva-

tion process is to identify the pre-condition (P
pre

) and post-condition (P
post

)

of the Trmv-x operation. At the start of the algorithm, no computation has

occurred. This means that the values of all operands (x, y and L) must be

20



their original values. Using bx, by and bL to represent the original values of x, y

and L respectively, the pre-condition must be

P
pre

: x ⌘ bx ^ y ⌘ by ^ L ⌘ bL,

which states that, at the start of the algorithm, the current value of x is its

original value bx. The same can be said for y and L. Strictly speaking, P
pre

also

describes that the dimensions of x, y and L must be conformal and L must

always be a lower triangular matrix. However, these conditions are assumed

to be implicit.

Upon the completion of the loop, y must contain the final value, ey,

while L and x must still contain their original values. This implies that

y = ey ⌘ bLbx ^ x = ex ⌘ bx ^ L = eL ⌘ bL.

A more detailed description of the final value (ey) can be obtained by express-

ing ey as the result of computations with partitioned matrices. Basic linear

algebra states that matrix computation can be expressed in terms of opera-

tions on partitioned matrices so long as the di↵erent submatrices/regions of

the matrices after partitioning remain conformal. Therefore, when x, y and L

are partitioned into conformal regions in the following manner:

y !
✓

y
T

y
B

◆
, x!

✓
x
T

x
B

◆
, and L!

✓
L
TL

0

L
BL

L
BR

◆
,

Equation (2.1) can be re-written as:
✓

y
T

y
B

◆
:=

✓
L
TL

0

L
BL

L
BR

◆✓
x
T

x
B

◆

⌘
✓

L
TL

x
T

L
BL

x
T

+ L
BR

x
B

◆
,
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which implies that, at the end of the to-be-derived loop,

P
post

:

 
y
T

= ey
T

⌘ bL
TL

bx
T

y
B

= ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
^

 
eL
TL

⌘ bL
TL

0
eL
BL

⌘ bL
BL

eL
BR

⌘ bL
BR

!
^

✓
ex
T

⌘ bx
T

ex
B

⌘ bx
B

◆

This expression, P
post

, is also known as the Partitioned Matrix Expression(PME)

in the FLAME terminology1. Since the last two terms assert that the final

values of L and x are the same as their original values, these two terms are

dropped to simplify the expression for P
post

.

Notice that the PME is a recursive definition of the desired operation

and it describes the operations performed with the di↵erent regions of L and

x in order to compute the output y.

Step 2: Determine loop invariant. The next step of the derivation pro-

cess is the identification of possible loop invariants to use for the subsequent

steps in the derivation process.

Recall that the PME is an expression that describes what the di↵erent

regions of the output y must be when the loop has completed. When the loop

has not finished, it must be the case that some of the computations described

in the PME have not been performed. By deleting operations from the PME

1The predicates asserting that x and L are not changed at the end of the loop are removed
to simplify the expression for P

post

.
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and therefore asserting that only some of the operations needed to compute the

output has been performed, potential loop invariants can be found.

A fundamental insight of DLA algorithms used during the process of de-

riving feasible loop invariants is that DLA loops sweeps through the operands

in a systematic manner. Continuing with the Trmv-x example: At the start

of the loop, y is not computed. As the loop progresses, parts of y are updated

and the region of y that still contains the original value would shrink. At the

end of the loop, the region containing the original value of y is empty and all

of y must be fully computed.

A natural expression for the loop invariant that describes the current

value of the di↵erent regions of y at the start and end of every iteration is:

P
inv

:

 
y
T

= ey
T

⌘ bL
TL

bx
T

y
B

⌘ by
B

!
, (2.2)

which states that the current values of the region of y that is above the thick

lines (y
T

) already contain the computed value ey
T

while the other region (y
B

)

still contains the original value (by
B

). Here, the thick lines represent how far

through the operands the loop has proceeded. Other loop invariants that yield

loops for the Trmv-x operation are shown in Figure 2.2. For the rest of this

example, the loop invariant in (2.2) will be used to derive a loop that computes

Trmv-x.

Step 3: Determine loop guard G. After the loop completes, {P
inv

^

¬G} is true. In addition, since the loop is now complete, P
post

must also
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y
T

= ey
T

⌘ bL
TL

bx
T

y
B

= ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!

PME

 
y
T

⌘ by
T

y
B

⌘ bL
BR

bx
B

!  
y
T

⌘ bL
TL

bx
T

y
B

⌘ bL
BL

bx
T

!

Loop Invariant 1 Loop Invariant 2

 
y
T

⌘ by
T

y
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!  
y
T

⌘ bL
TL

bx
T

y
B

⌘ by
B

!

Loop Invariant 3 Loop Invariant 4

Figure 2.2: PME and loop invariants for the Trmv-x operation

be true. Therefore, G must be chosen such that {P
inv

^ ¬G} implies P
post

.

When y
T

contains all of y, it can be concluded that L
TL

⌘ L and x
T

⌘

x, as the dimensions of the regions must remain conformal for P
inv

to be a

mathematically valid expression. This implies that:

y
T

= ey
T

⌘ bL
TL

bx
T

is equivalent to:

y = ey ⌘ bLbx

when m(y
T

) = m(y) where m(.) returns the number of rows of the argument.

Therefore, a valid choice for G is:

m(y
T

) < m(y).
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Step 4: Determine initialization. Step 4 is essentially an indexing step to

ensure that the operands x, y and L are partitioned such that P
pre

implies P
inv

.

Notice that if y
T

is not empty (contains no elements), then some computation

must be performed to update those elements of y in y
T

in order for P
inv

to

be true. This cannot be the case since no computation has been performed

before the loop has started. This implies that P
pre

cannot imply P
inv

unless y
T

is empty. Therefore, the initial partitioning of y must be such that m(y
T

) = 0,

which implies that L
TL

must be a 0⇥ 0 matrix and x
T

is also empty.

Step 5a, 5b: Determine how to traverse the operands. Recall that

the thick lines represent how far through the operands the loop has proceeded.

To ensure progress is made in computing y, the region of y that still contains

its original values, i.e. y
B

, is repartitioned to expose the next subregion of y

that is to be updated. This is indicated by thin lines as follows:

✓
y
T

y
B

◆
!

0

@
y
0

 
1

y
2

1

A ,

which exposes the top row of y
B

2. At the end of the loop, the newly exposed

subregion ( 
1

) of y
B

is updated and is moved across the thick line in the

following manner:
✓

y
T

y
B

◆
 

0

@
y
0

 
1

y
2

1

A ,

2 In this case, that top row of y

B

happened to be a row of one element.
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making the top row of the previous y
B

, the bottom row of previous y
T

. This

achieves two objectives: (1) progress is ensured since the size of y
B

that con-

tains the original values has decreased and eventually y
B

will be empty; and

(2) the loop invariant is maintained in that y
T

contains computed values while

y
B

still contains original values. In addition, when y is repartitioned, L and x

also need to be repartitioned in a conformal manner to ensure that P
inv

is still

a valid expression. This implies that x and L are repartitioned at the start of

an iteration as follows:

✓
x
T

x
B

◆
!

0

@
x
0

�
1

x
2

1

A and

✓
L
TL

0

L
BL

L
BR

◆
!

0

@
L
00

0 0

l
10

�
11

0
L
20

l
21

L
22

1

A ;

and at the end of an iteration, the di↵erent subregions of x and L are shifted

in the following manner:

✓
x
T

x
B

◆
!

0

@
x
0

�
1

x
2

1

A and

✓
L
TL

0

L
BL

L
BR

◆
 

0

@
L
00

0 0
l
10

�
11

0

L
20

l
21

L
22

1

A .

Step 6: Determine P
before

. Steps 5a and 5b are indexing operations

that do not change the values of the operands. Therefore, the status before

the update statement (Pbefore) can be obtained by textual substitution of the

expressions obtained in Step 5a into the loop invariant, yielding:

Pbefore :

0

B@
y
0

⌘ bL
00

bx
0

 
1

⌘ b 
1

y
2

⌘ by
2

1

CA
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Step 7: Determine P
after

. Similarly, the status of the operands after the

update statements (Pafter) has been performed can be obtained by textual

substitution of the expression obtained in Step 5b into the loop invariant,

yielding:

Pafter :

0

B@
y
0

⌘ bL
00

bx
0

 
1

⌘ bl
10

bx
0

+ b�
11

b�
1

y
2

⌘ by
2

1

CA

Step 8: Determine the update statements, S
update

. The update state-

ments are now dictated by the current status of the output in Step 6 and the

status they must be in at Step 7:

1. y
0

must contain bL
00

bx
0

at the end of the iteration. Since it already con-

tains that value at Step 6, no update to y
0

is required.

2.  
1

contains its original value b 
1

at Step 6 and it needs to contain the

value bl
10

bx
0

+ b�
11

b�
1

at Step 7. This means that  
1

needs to be updated

in the following manner:  
1

:= l
10

x
0

+ �
11

�
1

.

3. y
2

needs to contain its original value by
2

at Step 7, which is already the

current value of y
2

. Therefore, no computation is required to update y
2

.

The completed worksheet for the Trmv-x operation with the loop in-

variant:  
y
T

⌘ bL
TL

bx
T

y
B

⌘ bL
BL

bx
T

+ L
BR

bx
B

!

is given in Figure 2.3. Removing the assertions (grayed out rows) from the

worksheet yields a loop that is derived to be correct.
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Step Annotated Algorithm: y := Lx

1a {y ⌘ by}

4 Partition y !
✓

y

T

y

B

◆
, L!

✓
L

TL

0

L

BL

L

BR

◆
, x!

✓
x

T

x

B

◆

where y

T

has 0 rows, L

TL

is 0⇥ 0, x

T

has 0 rows

2

⇢✓
y

T

⌘ L

TL

x

T

y

B

⌘ by
B

◆�

3 while m(y
T

) < m(y) do

2,3

⇢✓✓
y

T

⌘ L

TL

x

T

y

B

⌘ by
B

◆◆
^ (m(y

T

) < m(y))

�

5a Repartition

✓
y

T

y

B

◆
!

0

@
y0

 1

y2

1

A ,

✓
L

TL

0

L

BL

L

BR

◆
!

0

@
L00 0 0

l

T

10 �11 0
L20 l21 L22

1

A,

✓
x

T

x

B

◆
!

0

@
x0

�1

x2

1

A

where  1 has 1 row, �11 is 1⇥ 1, �1 has 1 row

6

8
<

:

0

@
y0 ⌘ L00x0

 1 ⌘ b 1

y2 ⌘ by2

1

A

9
=

;

8  1 := L01x0 + �11�1

5b Continue with

✓
y

T

y

B

◆
 

0

@
y0

 1

y2

1

A ,

✓
L

TL

0

L

BL

L

BR

◆
 

0

@
L00 0 0
l

T

10 �11 0

L20 l21 L22

1

A,

✓
x

T

x

B

◆
 

0

@
x0

�1

x2

1

A

7

8
<

:

0

@
y0 ⌘ L00x0

 1 ⌘ L01x0 + �11�1

y2 ⌘ by2

1

A

9
=

;

2

⇢✓
y

T

⌘ L

TL

x

T

y

B

⌘ by
B

◆�

endwhile

2,3

⇢✓✓
y

T

⌘ L

TL

x

T

y

B

⌘ by
B

◆◆
^ ¬ (m(y

T

) < m(y))

�

1b {ey ⌘ y ⌘ Lx}

Figure 2.3: Completed worksheet for deriving a loop for theTrmv-x operation
using loop invariant 1
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2.2 FLAME APIs

Having derived a loop that is provably correct, it is then necessary

to translate that loop into actual code. The FLAME APIs [9] is a set of

interfaces for di↵erent programming languages that were designed to capture

the correctness of the derived loop in code. This is achieved by making the

code visually similar to the derived loop. In addition, by hiding details such

as indices, storage methods and matrix dimensions through the use of objects

and methods, commonly encountered programming errors are avoided.

The derived loop in Figure 2.3 when implemented with the FLAME

Matlab API is given in Figure 2.4.

2.3 Relevance to this Work

We make the following observations:

� Using the FLAME API, the code is now visually similar to the derived

loop. An analysis of the code is identical to the analysis of the derived

loop.

� The derived loop is dependent on one key input, the loop invariant.

With the loop invariant (identified in Step 2), a loop guard and the up-

date statements in the loop body can be derived. In other words, the

loop guard and update statements are prescribed by the loop invariant.

Hence, the loop invariant is the essence of the derived loop and an anal-

ysis of the derived loop is equivalent to an analysis of the loop invariant.

29



function [ y_out ] = Trmv_x( L, x, y )

[ LTL, LTR, ...

LBL, LBR ] = FLA_Part_2x2( L, ...

0, 0, ’FLA_TL’ );

[ xT, ...

xB ] = FLA_Part_2x1( x, ...

0, ’FLA_TOP’ );

[ yT, ...

yB ] = FLA_Part_2x1( y, ...

0, ’FLA_TOP’ );

while ( size( LTL, 1 ) < size( L, 1 ) )

[ L00, l01, L02, ...

l10t, lambda11, l12t, ...

L20, l21, L22 ] = FLA_Repart_2x2_to_3x3( LTL, LTR, ...

LBL, LBR, ...

1, 1, ’FLA_BR’ );

[ x0, ...

\chi1, ...

x2 ] = FLA_Repart_2x1_to_3x1( xT, ...

xB, ...

1, ’FLA_BOTTOM’ );

[ y0, ...

psi1, ...

y2 ] = FLA_Repart_2x1_to_3x1( yT, ...

yB, ...

1, ’FLA_BOTTOM’ );

%------------------------------------------------------------%

psi1 = l10t * x0 + lambda11 * chi1;

%------------------------------------------------------------%

[ LTL, LTR, ...

LBL, LBR ] = FLA_Cont_with_3x3_to_2x2( L00, l01, L02, ...

l10t, lambda11, l12t, ...

L20, l21, L22, ...

’FLA_TL’ );

[ xT, ...

xB ] = FLA_Cont_with_3x1_to_2x1( x0, ...

\chi1, ...

x2, ...

’FLA_TOP’ );

[ yT, ...

yB ] = FLA_Cont_with_3x1_to_2x1( y0, ...

psi1, ...

y2, ...

’FLA_TOP’ );

end

y_out = [ yT

yB ];

return

Figure 2.4: Matlab implementation of derived loop using the FLAME API
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� Since many loop invariants can be obtained by removing di↵erent sets

of operations from the PME, the analysis of multiple loop invariants can

be performed simultaneously with a single analysis of the PME.

In the rest of this dissertation, we show how the code analysis can be

raised to a higher level of abstraction, by providing the theory and techniques

for analyzing PMEs and loop invariants.
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Chapter 3

The Loop Invariant and its Remainder

Recall that the loop invariant is an assertion that states how (possibly

intermediate) values have been computed and stored in the di↵erent regions of

the output operand at the start and end of every iteration. More computations

must be performed in order to compute the final result. In this chapter, we

introduce an expression called the remainder of a loop invariant that describes

the additional computations required to compute the final result.

3.1 The Remainder

Since the loop invariant in the FLAME methodology is obtained by

removing operations from the PME (which describes the final result), the

operations that were removed from the PME must describe computation that

still need to be performed in order to obtain the final result. This is apparent

when a textual substitution of the loop invariant into the PME is performed.

We illustrate how to obtain an expression that describes computation

that still has to be performed, by revisiting the Trmv-x (y := Lx) example.
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For convenience, we replicate the PME and the loop invariant in (2.2):

PME (P
post

) :

 
ey
T

⌘ bL
TL

bx
T

ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
, P

inv

:

 
y
T

⌘ bL
TL

bx
T

y
B

⌘ by
B

!
.

Since P
inv

asserts that some computations have been performed on y
T

,

and the current value of y
T

is given by the expression bL
TL

bx
T

, we can substitute

y
T

for the sub-expression bL
TL

bx
T

in the top expression of the PME:

PME :

0

B@ ey
T

⌘

yTz }| {
bL
TL

bx
T

ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

1

CA ,

which yields:  
ey
T

⌘ y
T

ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
. (3.1)

Similarly, since the current value in y
B

is by
B

, y
B

can be substituted

for any occurrence of by
B

in the bottom region of the PME. Since by
B

does not

appear in the P
post

, the resulting expression of performing the substitution of

y
B

for by
B

is still given by (3.1).

The expression in (3.1) states that the final value of ey
T

is the current

value of y
T

. This implies that y
T

is already fully computed and no future

computation is required. Similarly, the expression also states that the value

given by the operations bL
BL

bx
T

+ bL
BR

bx
B

still needs to be performed in order

to obtain ey
B

. In other words, the expression in (3.1) tells us the remaining

computation that must be performed on the current values in y in order to

compute the final result. Since Expression (3.1) states what remaining com-

putation must be performed, we term it the remainder of the loop invariant,

or simply, the Remainder.

33



3.2 Generalization and Formalization

Having provided an example to illustrate the relationship between the

loop invariant and its remainder, we now generalize and formalize the insights

to arbitrary DLA operations with one output operand.

3.2.1 Prototypical operation

Assume that the operation that we intend to analyze is of the following

form:

C := F(C, {A})

where C is both an input and output operand, {A} is a set of inputs whose

values are read but never overwritten, and F is a function that operates over

C [ {A}. In addition, we assume that the output value ( eC) and input value

( bC) of C are di↵erent, i.e. eC 6= bC.

Let us assume that C has been partitioned into di↵erent regions as

follows:

C !
✓

C
TL

C
TR

C
BL

C
BR

◆
,

and the post-condition (PME), PF, which asserts what the final values of the

di↵erent regions of C must be, can be expressed in the following manner:

PF =

 
eC
TL

⌘ F
TL

( bC
TL

) eC
TR

⌘ F
TR

( bC
TR

)
eC
BL

⌘ F
BL

( bC
BL

) eC
BR

⌘ F
BR

( bC
BR

)

!
, (3.2)

where each F
X

for all X 2 {TL, TR, BL, BR} represents all computation re-

quired to compute the final value eC
X

of region C
X

from its original value bC
X

.
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The expression in (3.2) is the PME of the operation in the FLAME termi-

nology. Each F
X

can be viewed as a mapping of the original contents of C
X

,

denoted bC
X

, to the final values, eC
X

. All other operands to each F
X

are treated

as constants as the only region updated by F
X

is C
X

, including bC
Y

, eC
Y

and

C
Y

, where Y 6= X.

3.2.2 Other partitionings of operands

Operands can be partitioned into multiple regions in di↵erent manners.

As we have seen in the Trmv-x example, one partitioning yields top and

bottom portions of an operand, i.e.:

y :=

✓
y
T

y
B

◆
.

Apart from being partitioned into four regions, two commonly encountered

ways of partitioning a matrix into regions are as follows:

C !
✓

C
T

C
B

◆
or C !

�
C

L

C
R

�
.

These di↵erent ways of partitioning a matrix are represented by our prototyp-

ical operation where some of the regions are degenerate regions. For example,

the partitioning:

C !
✓

C
T

C
B

◆

is represented by our prototypical operation in the following manner:

C !
✓

C
T (L)

C
B(L)

◆
,
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where the regions to the right of the thick lines are empty (i.e. contain no val-

ues), and the regions to the left are relabeled as C
T

and C
B

. The partitioning

that yields left and right regions of an operand can be similarly defined.

3.2.3 Expressing loop invariants in general

Any function, F
X

, for all X 2 {TL, TR, BL, BR}, can always be ex-

pressed in terms of two simpler functions f
X

and fR
X

, such that:

F
X

( bC
X

) ⌘ fR
X

(f
X

( bC
X

)).

A function F
X

can be expressed in the desired form by setting either f
X

or fR
X

to F
X

, and the other function (either fR
X

or f
X

respectively) to the identity

function, i.e. G(X) = X.

Formulating F
X

as two simpler functions allows one to interpret the

necessary computation of eC
X

from bC
X

as a two-step process. First, some of the

operations of F
X

, represented by f
X

, are performed to obtain an intermediate

value C
X

where C
X

⌘ f
X

( bC
X

). The final value of eC
X

is then computed from

C
X

by performing the remaining operations of F
X

(represented by fR
X

) to

compute eC
X

.

A loop-based algorithm that computes eC must inherently compute C

incrementally. In each iteration of the loop, some additional computation

must be performed to all or some regions of C. Therefore, a loop invariant

that tracks the current value of C must assert that C only contains a par-

tial/intermediate result. Hence, such a loop invariant, denoted IF, can be
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defined in terms of f
X

’s as follows:

IF =

 
C

TL

⌘ f
TL

( bC
TL

) C
TR

⌘ f
TR

( bC
TR

)

C
BL

⌘ f
BL

( bC
BL

) C
BR

⌘ f
BR

( bC
BR

)

!
. (3.3)

3.2.4 Expressing the remainder of a loop invariant

In Section 3.1, we illustrated for a specific example (namely, theTrmv-x

operation) that the Remainder is obtained by a textual substitution of the loop

invariant into the PME. In this section, we describe more precisely what we

mean. Recall that the PME (PF) is given by:
 
eC
TL

⌘ F
TL

( bC
TL

) eC
TR

⌘ F
TR

( bC
TR

)
eC
BL

⌘ F
BL

( bC
BL

) eC
BR

⌘ F
BR

( bC
BR

)

!
,

which, as discussed in Section 3.2.3, is equivalent to:

PF ⌘
 
eC
TL

⌘ fR
TL

(f
TL

( bC
TL

)) eC
TR

⌘ fR
TR

(f
TR

( bC
TR

))
eC
BL

⌘ fR
BL

(f
BL

( bC
BL

)) eC
BR

⌘ fR
BR

(f
BR

( bC
BR

))

!
.

Since a loop invariant has the general form:
 

C
TL

⌘ f
TL

( bC
TL

) C
TR

⌘ f
TR

( bC
TR

)

C
BL

⌘ f
BL

( bC
BL

) C
BR

⌘ f
BR

( bC
BR

)

!
,

we know that the expression f
X

( bC
X

) is equivalent to C
X

, for allX 2 {TL, TR, BL, BR}.

This means that we can replace the expression f
X

( bC
X

) in PF with C
X

, yield-

ing:

RIF ⌘
 
eC
TL

⌘ fR
TL

(C
TL

) eC
TR

⌘ fR
TR

(C
TR

)
eC
BL

⌘ fR
BL

(C
BL

) eC
BR

⌘ fR
BR

(C
BR

)

!
.

Here, RIF , is the expression for what is known as the remainder of the loop

invariant (the Remainder). Again, in RIF , all other operands (including bCY

,

eC
Y

and C
Y

where Y 6= X) to each F
X

are treated as constants.
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3.2.5 Status of Computation

In describing IF and RIF , we did not restrict what f
X

and fR
X

must be.

If f
X

( bC
X

) = bC
X

, it means that no computation updated C
X

in past iterations,

and C
X

contains its original value. Similarly, if f
X

( bC
X

) = F
X

( bC
X

) = eC
X

, it

means that the final result already exists in the region C
X

and no future

computation needs to be performed on C
X

. Therefore, for each region of

the output, we can describe the status of computation for that region in the

following manner:

Definition 3.2.1. The status of computation of a region X of an output C,

denoted as �(C
X

), takes on one of three values, depending on the relationship

between F
X

, f
X

and fR
X

:

�(C
X

) =

8
<

:

Fully Updated if F
X

= f
X

.
Partially Updated if F

X

6= f
X

and F
X

6= fR
X

.
Not Updated if F

X

= fR
X

and f
X

6= F
X

.

Now assume that for all X 2 {TL, TR, BL, BR}, f
X

= F
X

. This means

that IF ⌘ PF, which can be interpreted as C ⌘ eC ⌘ bC at the start of the

first iteration of the loop. This implies that no computation of C is required.

IF ⌘ PF is an example of a loop invariant that is no feasible, in that it does

not yield a valid loop.

Definition 3.2.2. A loop invariant is feasible if a provably correct algorithm

can be derived from it and the computation performed in the loop body is not

equivalent to a no-op.
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Generalizing the above example, we can identify the following necessary

conditions for a feasible loop invariant:

Theorem 3.2.1. Every feasible loop invariant for the operation C := F(C, {A})

must satisfy the following:

1. There exists at least one f
X

such that f
X

6⌘ F
X

.

2. There exists at least one fR
X

such that fR
X

6⌘ F
X

.

Proof: We prove the conditions separately with proofs by contradiction.

Condition 1: Assume that f
X

= F
X

for X 2 {TL, TR, BL, BR}. This means

that IF ⌘ PF. By definition, IF is true at the start of the first iteration

of the loop. IF ⌘ P F implies that the current value of C at the start of

the first iteration is the final value eC. Therefore, no update needs to be

performed in the loop and hence IF ⌘ PF is not a feasible loop invariant.

Therefore, there exist at least one f
X

6= F
X

for X 2 {TL, TR, BL, BR}.

Condition 2: Assume that fR
X

= F
X

for X 2 {TL, TR, BL, BR}. This means

that IF ⌘ bC. At the end of the last iteration, IF must be true. IF ⌘ bC

asserts that at the end of the last iteration, the value stored in C is its

original value. If bC ⌘ eC, then nothing needs to be computed in the loop.

If bC 6⌘ eC, then IF does not imply the post-condition, which means the

derived loop will not compute the correct result. In both cases, IF ⌘ bC is

not a feasible loop invariant. Therefore, there exist at least one fR
X

6= F
X

for X 2 {TL, TR, BL, BR}.
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Since both conditions are true, the theorem is thus proven.

3.3 Properties of the Remainder

Apart from simply being an expression that states what remaining com-

putation must still be performed, the Remainder has several properties that

are relevant to this work. We discuss these properties of the Remainder.

Every loop invariant has a corresponding Remainder. This follows

from Theorem 3.2.1. Since for some X 2 {TL, TR, BL, BR}, fR
X

6= F
X

, we

know that a loop invariant is an assertion stating that some proper subset

of the operations described in the PME has been performed. As the set of

operations is a proper subset, there must be at least one operation in the

PME that is not within that set of operations that forms the loop invariant.

Therefore, some computation must still be performed, and thus there must be

a Remainder that describes this remaining operation.

The Remainder is true at the start and end of every iteration. The

Remainder was obtained by textual substitution of the loop invariant into the

PME. This means that whenever the loop invariant is true, the substitution

of the loop invariant into the PME will ensure that the resulting Remainder

will remain true. Since the loop invariant is true at the start and end of every

iteration of the loop, its Remainder must also be true at the start and end of

every iteration.
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An assertion about computation in future iterations. Recall that the

Remainder is obtained by substituting the loop invariant into the PME. When

performing this textual substitution, subexpressions in the PME are replaced

by the current value of the operands as indicated by the loop invariant. This

implies that the Remainder is an expression that computes the condition using

the current values of the operands.

Now, our definition of a loop invariant is that it is an assertion about

how the current values of the operands have been computed. At the end of

an iteration, the current values in the operands must have been computed

by either previous iterations or the current iteration. Since the Remainder

computes the post-condition using those current values, the computation de-

scribed by the remainder of the loop invariant could not have been performed

in previous or current iterations of the loop. Therefore, the computation rep-

resented by the remainder of the loop invariant must be performed in future

iterations of the loop.

Thus, the loop can either be derived using the loop invariant or its

remainder. We illustrate this by using the Remainder in (3.1) as input to

the FLAME derivation methodology. The completed worksheet using the Re-

mainder is shown in Figure 3.1. Unsurprisingly, using either the loop invariant

or the Remainder yields the same derived loop. This is because the loop in-

variant and its Remainder are duals of each other. While the former describes

what has already been computed, and the latter describes what has yet to be

computed.
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Step Annotated Algorithm: y := Lx

1a {ey ⌘ Lx}

4 Partition y !
✓

yT

yB

◆
, L!

✓
LTL 0

LBL LBR

◆
, x!

✓
xT

xB

◆

where yT has 0 rows, LTL is 0⇥ 0, xT has 0 rows

2

⇢✓
eyT ⌘ yT

eyB ⌘ LBLxT + LBRxB

◆�

3 while m(yT ) < m(y) do

2,3

⇢✓✓
eyT ⌘ yT

eyB ⌘ LBLxT + LBRxB

◆◆
^ (m(yT ) < m(y))

�

5a Repartition

✓
yT

yB

◆
!

0

@
y

0

 

1

y

2

1

A
,

✓
LTL 0

LBL LBR

◆
!

0

@
L

00

0 0

l

T
10

�

11

0

L

20

l

21

L

22

1

A
,

✓
xT

xB

◆
!

0

@
x

0

�

1

x

2

1

A

where �

11

is 1⇥ 1

6

8
<

:

0

@
ey
0

⌘ y

0

e
 

1

⌘ L

01

x

0

+ �

11

�

1

ey
2

⌘ L

20

x

0

+ l

21

�

1

+ L

22

x

2

1

A

9
=

;

8

 

1

:= L

01

x

0

+ �

11

�

1

5b Continue with

✓
yT

yB

◆
 

0

@
y

0

 

1

y

2

1

A
,

✓
LTL 0

LBL LBR

◆
 

0

@
L

00

0 0

l

T
10

�

11

0

L

20

l

21

L

22

1

A
,

✓
xT

xB

◆
 

0

@
x

0

�

1

x

2

1

A

7

8
<

:

0

@
ey
0

⌘ y

0

e
 

1

⌘  
1

ey
2

⌘ L

20

x

0

+ l

21

�

1

+ L

22

x

2

1

A

9
=

;

2

⇢✓
eyT ⌘ yT

eyB ⌘ LBLxT + LBRxB

◆�

endwhile

2,3

⇢✓✓
eyT ⌘ yT

eyB ⌘ LBLxT + LBRxB

◆◆
^ ¬ (m(yT ) < m(y))

�

1b {ey ⌘ y}

Figure 3.1: Completed FLAME Worksheet using the Remainder as input
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Remark 1. In our experience, it is sometimes better to use the Remainder

as input to the FLAME derivation methodology. Using the Remainder can

simplify the derivation process because the expression for the Remainder may

be simpler than that for the loop invariant. An example of such a situation is

described in Poulson et al [44].

An assertion about future operands. Analyzing the loop invariant tells

us what operations must have been performed in the past. In addition, regions

of the (input and output) operands present in the loop invariant represent re-

gions of data that are required for computation in past iterations. Similarly,

analyzing the remainder of a loop invariant will yield information on the oper-

ations that must be performed in the future and the regions of data that will

be required in future iterations.

3.4 Summary

In this chapter, we introduced the notion of a remainder of a loop

invariant. The Remainder is the dual of the loop invariant in that the loop

invariant describes computation that was performed in past iterations while its

remainder describes computation that will be performed in future iterations

of the same loop.

More importantly, the key insight in this chapter is the recognition that

the loop invariant and its remainder describe computation in all iterations

of the derived loop. This motivates the need to analyze both expressions
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in order to determine the characteristic(s) of the derived loop. As the loop

invariant and its remainder represent computation in past and future iterations

respectively, analyzing both expressions will yield information about past and

future computation.

In the rest of the dissertation, we will show that the analysis of both

the loop invariant and its remainder yield information about all computations

performed by the loop, and it is through these information about past and

future computation that characteristics of the derived loop can be identified.
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Chapter 4

Analysis at a Higher Level of Abstraction

Compilers require loop-based algorithms to be implemented as loop-

based code with explicit indexing before dependence analysis can be per-

formed. Inherently, when implementing an algorithm, knowledge about alter-

native algorithms is lost or obscured. In this chapter, we show that by using

the status of computation of the di↵erent regions, the analysis performed by

compilers can now be performed at a higher level of abstraction, namely at

the level of the PME, loop invariant and its remainder, while retaining infor-

mation that would otherwise be lost or obscured in the representation of the

algorithm in code.

4.1 Types of Dependences

We begin with a discussion on the types of data dependence that are

identified by compilers during dependence analysis.

4.1.1 True (Flow) dependence

True dependences, also known as flow dependences, are dependences

that occur when a piece of data is computed by one statement and then read
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subsequently by another statement in the future or a future instance of the

same statement (read-after-write).

Consider the following code snippet:

C = A * B

D = E * C

Notice that C is computed by the first statement and then read by the next

statement. This creates a dependence between the two statements such that

the order of the statements cannot be swapped. If the statements are swapped,

then in computing the value of D, a potentially wrong value of C will be used.

4.1.2 Anti-dependence

An anti-dependence occurs when a piece of data is read and then sub-

sequently overwritten some time in the future.

Consider the following snippet of code:

D = E * C

C = A * B

The original value of C is used to compute D. That value is then subsequently

overwritten by the second statement. This is a write-after-read situation where

again the statements cannot be swapped. Notice that anti-dependence is a

form of false dependence that can be eliminated with the use of additional

46



memory. By storing the original value of C in another variable, the two state-

ments can now be swapped. This is because the original value of C is then not

destroyed.

4.1.3 Output dependence

The last form of data dependence that is important when optimizing

code is output dependence, which occurs in a write-after-write situation. The

dependence between two statements is of the output dependence type when

the two statements update the same piece of data.

We illustrate output dependence with the following example:

C = D * E

...

F = D * C

...

C = A * B

Notice that both statements update C. Any statement between the two state-

ments (e.g. the statement F = D * C in the code segment above) that reads

the value of C, will read that value computed by the first statement. State-

ments after the second statement will read the second computed value. Again,

these statements cannot be swapped. This is because any reads of C between

the two statements will yield a di↵erent value for C if the two statements are

swapped. Similarly, reads of C after the second statement will also be reading
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a the first computed value if the statements were swapped. This is another

form of false dependence where the use of additional memory can be used to

break the dependence.

4.2 Loop-carried Dependence

An orthogonal type of dependence that a compiler extracts during de-

pendence analysis is loop-carried dependence. A loop-carried dependence is a

dependence (regardless of whether it is a true dependence, anti-dependence, or

output dependence) that exists between statements in two di↵erent iterations

of the loop. We illustrate loop-carried dependence with the following example:

for (i = 1; i < n; ++i){

a[i] += a[i-1];

b[i] = a[i];

}

Notice that in order to compute a[i], a[i-1] must already have been com-

puted in past iterations. Since this is a read-after-write scenario, the depen-

dence is a true dependence. In addition, because a[i-1] was computed in a

previous iteration, this true dependence between two di↵erent instances of the

first statement is a loop-carried dependence.

Contrast this with the true dependence between the first and second

statement in the loop body. The dependence between these two statements

occurs within the same iteration. Hence, this dependence is not a loop-carried

dependence.
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4.3 Analysis of PF, IF and RIF

In this section, we show how the di↵erent types of dependences de-

scribed previously can be identified at a higher level of abstraction, namely

from the PME, the loop invariant and its remainder.

4.3.1 Dependencies in PF

Data dependences occur when a piece of computed data is required

in a subsequent computation (true dependence), or when data required is

overwritten in subsequent operation(s) (anti-dependence, output dependence).

This suggests that our analysis needs only to focus on data whose values are

changed by the operation.

Recall that for a given operation,

C := F(C, {A}),

only C is updated. In addition, the PME, PF, describes the operations per-

formed with the di↵erent regions of elements of the set {A} [ C in order to

compute di↵erent regions of C. Therefore, we start our analysis of PF by dif-

ferentiating between uses of the original value ( bC), and the final value ( eC) of

regions of C.

True Dependence. Let C
X

, C
Y

be arbitrary regions of C. If eC
Y

is required

to compute C
X

(i.e. eC
Y

appears in F
X

), then it must be the case that eC
Y

is computed before it can be used to compute C
X

. Therefore, there must be
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a true dependence between F
Y

, which computes eC
Y

, and F
X

, which requires

the value of eC
Y

.

Anti-dependence. Let C
X

, C
Y

be arbitrary regions of C. If bC
Y

is required

to compute C
X

, then it must be the case that the value of bC
Y

must be preserved

until the computation of C
X

no longer requires the use of bC
Y

. Once bC
Y

is no

longer required to compute C
X

, C
Y

can be updated and overwritten. Since

this is a write-after-read situation, the dependence between the functions F
Y

and F
X

must be an anti-dependence.

Output dependence. Recall that an output dependence occurs when the

same piece of data is updated by two separate computations. From PF, we

know that an arbitrary region C
X

is only updated by F
X

. There cannot be

any output dependences between F
X

and F
Y

when X 6= Y , as both functions

update di↵erent regions.

4.3.2 An illustration

We illustrate the presence of true and anti-dependences with a concrete

example: the inversion of a triangular matrix (Trinv). The Trinv operation

can be mathematically described as

L := L�1, where L is lower triangular.

One possible PME for the Trinv operation is as follows: 
eL
TL

⌘ bL�1
TL

0
eL
BL

⌘ �bL�1
BR

bL
BL

eL
TL

eL
BR

⌘ bL�1
BR

!
.
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Notice that there is a true dependence between L
TL

and L
BL

, as eL
TL

is required

to compute L
BL

. Hence, L
TL

must be computed before L
BL

, so that the value

eL
TL

is available for use during the computation of L
BL

.

There is also an anti-dependence between L
BL

and L
BR

. In order to

compute eL
BL

, the original content of L
BR

, bL
BR

, is required. If eL
BR

was

computed before bL
BR

was used to compute eL
BL

, the value of bL
BR

would be

overwritten and the computed value of eL
BL

would be incorrect. Hence, with

the PME given above, the anti-dependence requires that L
BL

be either fully

computed or partially computed before the computation of eL
BR

commences.

4.3.3 Loop-carried dependences in IF and RIF

Having identified both true and anti-dependences in the PME, we show

how to determine if the identified dependences are loop-carried.

Recall that each function F
X

, where X 2 {TL, TR, BL, BR}, in PF can

be expressed in terms of two functions f
X

and fR
X

in the following manner

F
X

( bC
X

) ⌘ fR
X

(f
X

( bC
X

)),

where f
X

and fR
X

represents computations in past and future iterations.

Since loop-carried dependences are dependences between computations

in two di↵erent iterations, it must mean that the dependence is between a

computation performed in a previous iteration and another computation that

will be carried out in a future iteration. This means that if eC
Y

is required in

order to compute C
X

, where X, Y 2 {TL, TR, BL, BR}, and X 6= Y , and that
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dependence is a loop-carried dependence, then eC
Y

must have been computed

in the past and eC
Y

will be required in the future. This means that eC
Y

must

be appear in fR
X

.

Similarly, if the loop-carried dependence is an anti-dependence, then

bC
Y

must be read in the past and overwritten in the future. Therefore, bC
Y

must appear in f
X

where X 6= Y , X, Y 2 {TL, TR, BL, BR}. In addition, if no

computation was performed in the past or no computation will be performed in

the future, then any dependences between C
X

and C
Y

cannot be loop-carried.

This observation suggest the following theorem:

Theorem 4.3.1. Let C
X

and C
Y

be two di↵erent regions of the PME and

assume that there exists a dependence between C
X

and C
Y

such that C
X

must

be computed before C
Y

. If either �(C
X

) = �(C
Y

) = Fully Updated, or

�(C
X

) = �(C
Y

) = Not Updated, then the dependence is not loop-carried.

Proof: We prove this theorem with a proof-by-cases, where each case is proven

by contradiction.

Case 1: If �(C
X

) = �(C
Y

) = Fully Updated, then dependence is not loop-

carried.

Assume �(C
X

) = �(C
Y

) = Fully Updated, and the dependence is

loop-carried. Since �(C
X

) = �(C
Y

) = Fully Updated, no compu-

tation will be performed on either C
X

or C
Y

in the future. Since a

loop-carried dependence is a dependence between a computation from a
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past iteration and a computation in a future iteration, and no computa-

tion will be performed on either C
X

or C
Y

in the future, the dependence

cannot be a loop-carried dependence. Hence a contradiction is obtained.

Case 2: If �(C
X

) = �(C
Y

) = Not Updated, then dependence is not loop-

carried.

Assume �(C
X

) = �(C
Y

) = Not Updated, and the dependence is loop-

carried. Since �(C
X

) = �(C
Y

) = Not Updated, then no computation

was performed on either C
X

or C
Y

in the past. Since a loop-carried

dependence is a dependence between a computation from a past itera-

tion and a computation in a future iteration, and no computation was

performed on either C
X

or C
Y

in past iterations, the dependence cannot

be a loop-carried dependence. Hence a contradiction is obtained.

In both cases, a contradiction was obtained and hence, the loop dependence

cannot be loop-carried if �(C
X

) = �(C
Y

) = Not Updated or �(C
X

) =

�(C
Y

) = Fully Updated.

So far, the discussion about loop-carried dependence assumes that C
X

and C
Y

are di↵erent regions of the output. We now examine the situation

where X = Y .

Recall that f
X

and fR
X

are functions that update C
X

in the past and

future respectively. If f
X

and fR
X

both update C
X

, this is a write-after-write

situation which implies that there must be an output dependence between the

two functions.
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Theorem 4.3.2. An output dependence exists if and only if �(C
X

) =

Partially Updated.

Proof: An output dependence exists if and only if f
X

and fR
X

both update

C
X

. Since f
X

updates C
X

if and only if �(C
X

) 6= Not Updated, and C
X

is updated by fR
X

if and only if �(C
X

) 6= Fully Updated, then there exist

an output dependence if and only if �(C
X

) 6= Fully Updated ^ �(C
X

) 6=

Not Updated. Since

✓
�(C

X

) 6= Fully Updated ^
�(C

X

) 6= Not Updated

◆
⌘ (�(C

X

) = Partially Updated),

the theorem is proven.

In addition, because the output dependence is between f
X

and fR
X

, this

dependence is also loop-carried.

4.3.4 An additional illustration

We return to our Trinv operation to illustrate loop-carried depen-

dence. Consider the following loop invariant and its remainder:

ITrinv =

 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ �bL�1
BR

bL
BL

eL
TL

L
BR

⌘ bL
BR

!
;

RITrinv =

 
eL
TL

⌘ L
TL

0
eL
BL

⌘ L
BL

eL
BR

⌘ L�1
BR

!

We start with the true dependence and anti-dependence identified previously

in Section 4.3.2. Since eL
TL

appears in f
BL

and eL
TL

was computed by f
TL

and f
X

= F
TL

, this implies that the true dependence is NOT between a
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computation in the past and a computation that will be performed in the

future. Therefore, the true dependence is not loop-carried.

Similarly, recall that bL
BR

is required to compute L
BL

. Since bL
BR

is

required in past iterations (bL
BR

appears in ITrinv), and eL
BR

is computed in

future iterations, it follows that this anti-dependence is loop-carried.

Finally, because the status of computation for all regions of L are either

Fully Updated or Not Updated, this implies that there is no output de-

pendence in the loop represented by this pair of loop invariant and Remainder.

The following Matlab implementation of the loop with the above loop

invariant illustrates the dependences identified through our analysis:

for i=1:n

% LTL = LTL^{-1}

L(i,i) = 1/L(i,i);

% LBL = -LBR^{-1}*LBL*LTL

L(i+1:n,i) = -L(i+1:n,i+1:n) \ L(i+1:n,i) * L(i,i);

end

The true dependence described by the loop invariant corresponds to the true

dependence between the first and second statement in the loop body. During

each iteration, L(i,i) is first computed by the first statement and then used

in the second statement. Hence, the true dependence is not loop-carried. As

L(i+1,i+1) is an element of the region L(i+1:n,i+1:n), L(i+1,i+1) is used

to compute L(i+1:m,i). In addition, as L(i+1,i+1) will be overwritten by

the first statement of the next iteration, this is a loop-carried anti-dependence.

Finally, as each iteration only updates elements in the i-th column of the ma-
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trix L, we know that no single element is computed in two di↵erent iterations.

Hence, there cannot be an output dependence.

4.4 Summary

In this chapter, we demonstrated how within the domain of DLA, de-

pendence analysis performed on code by traditional compilers can be per-

formed at a higher level of abstraction on the PME PF, loop invariant IF and

its remainder RIF .

By analyzing the expression for PF, we show that true dependences

and anti-dependences can be identified. Since PF describes all required com-

putations, and these computations are divided up between the loop invariant

and remainder, the dependences between the operations must be present in

all pairs of loop invariants and remainders that are obtained. Hence, a single

analysis performed on the PME allows us to analyze multiple pairs, consisting

of a loop invariant and its remainder, and hence multiple algorithms at once.

This preserves information about other algorithms that would have been lost

or obscured if a chosen algorithm was implemented as code.

In addition, we presented a theory for identifying loop-carried depen-

dences from the status of computations of the di↵erent regions. Since the

functions f
X

and fR
X

describe computations in past and future iterations re-

spectively, a dependence between f
X

and fR
Y

for any X and Y describes a

dependence between computation in the past and in the future. This means

that this dependence is a loop-carried dependence.
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The insights and theory developed in this chapter allows compiler-like

dependence analysis to be performed without having to analyze code. This

allows dependence analysis to be applied even if the implementation uses sub-

routine calls to black-box libraries, as is commonly the case in the domain of

DLA. Indeed, the theory allows dependence analysis to be performed

even before the algorithm has been derived!
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Chapter 5

Independent Iterations

A common way in which a DLA operation is parallelized is to divide

the tasks performed by the loop amongst the processors such that each pro-

cessor computes the di↵erent tasks independently [33, 2]. To implement such

a parallelization scheme, these tasks have to be independent of each other. If

a task is defined as all the updates that occur in an iteration of the loop, then

tasks are independent when the iterations of the loop are independent.

5.1 Characteristics of Loop Invariants for Loops with
Independent Iterations

Iterations are independent when a given iteration of the loop neither

uses data computed by any other iteration in the loop, nor overwrites data

that will be used by other iterations of the loop. In other words, there must

not be any loop-carried dependence [2, 41].

Recall that, in Chapter 4, the theory behind identifying loop-carried de-

pendence from the loop invariant and its remainder was developed for our pro-

totypical operation. We thus begin our analysis for independent iterations with

a simple lemma for our prototypical operation as described in Section 3.2.1:
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Lemma 5.1.1. If a loop has independent iterations, then for all

X 2 {TL, TR,BL, BR}, �(C
X

) 6= Partially Updated.

Proof: We prove this lemma by contradiction. Assume a loop has independent

iterations but there exists a region C
X

such that �(C
X

) = Partially Updated.

Theorem 4.3.2 tell us that �(C
X

) = Partially Updated implies that there

exists an output dependence between a computation performed on C
X

in the

past, and a computation that will be performed on C
X

in the future. Since

the dependence is between a computation in the past and a computation in

the future, this output dependence is loop-carried and hence, the iterations of

the loop are not independent. Hence, a contradiction is obtained. Therefore,

�(C
X

) 6= Partially Updated if a loop has independent iterations.

Consider the operation x := Lx (Trmv), where L is lower triangular.

This operation performs the same computation as Trmv-x, but the result is

written back into x. Here, the assumption is that no temporary storage will be

used. The PME of this operation and one of the loop invariants for computing

it are given by:

PTrmv =

 
ex
T

⌘ bL
TL

bx
T

ex
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
; ITrmv =

 
x
T

⌘ bx
T

x
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
.

Recall that bx
T

represents the original value of x
T

. Notice that bx
T

is

required to compute both ex
T

and ex
B

. In addition, when x
T

is computed, bx
T

will be overwritten. Therefore, ex
B

has to be computed before ex
T

in order

to ensure that bx
T

remains available. This implies that there is a dependence

between the regions x
T

and x
B

and this dependence is an anti-dependence.
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Given that the regions are now dependent, if x
T

and x
B

are computed

in di↵erent iterations through the loop, the iterations will be dependent. This

observation suggests the following lemma:

Lemma 5.1.2. Let X and Y be two regions of the output and there exists a

dependence between X and Y such that X needs to be computed before Y . If

a loop has independent iterations, then regions X and Y are both either fully

updated or not updated.

Proof: We prove this via a proof by contradiction.

Assume that the loop has independent iterations but there exists re-

gions X and Y that are neither both fully updated nor both not updated.

Since the loop has independent iterations, Lemma 5.1.1 tells us that both

�(X) and �(Y ) cannot be partially updated. This implies that �(X) 6= �(Y ),

since they are neither both fully updated nor both not updated.

Without loss of generality, assume that �(X) = Fully Updated and

�(Y ) = Not Updated. This means that f
X

= F
X

and fR
Y

= F
Y

. This

implies that X was computed in past iterations while Y will be computed in

future iterations. Since there exists a dependence between X and Y , it follows

that the iteration(s) that compute(s) Y must depend on the the iteration(s)

that compute(s) X, and so the loop cannot have independent iterations which

contradicts our initial assumptions. Hence, the lemma is proven.

Both Lemmas 5.1.1 and 5.1.2 are necessary conditions for a loop to have

independent iterations. We prove that these conditions are also su�cient to
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determine when a loop has independent iterations, with the following theorem:

Theorem 5.1.1. A loop has independent iterations if and only if the following

conditions are met:

1. No region of the loop invariant has a partially updated status, and

2. If there exists a dependence between regions X and Y , then the status of

X must be the same as the status of Y .

Proof: We prove the theorem in two parts:

Part 1: If a loop has independent iterations, then the loop invariant has the

two characteristics.

This part follows the proofs for Lemmas 5.1.1 and 5.1.2.

Part 2: If a loop invariant has the two characteristics, then its loop has

independent iterations.

We prove this direction with a proof by contradiction. Assume that the

loop invariant has the required two characteristics but there exists at

least one pair of iterations that are not independent. This implies that

there is at least a loop-carried dependence.

Since no regions in the loop invariant are partially updated, then Theo-

rem 4.3.2 tells us that there are no output dependences. This implies that

any dependence is either a true dependence or an anti-dependence. Fur-

thermore, as two regions that are dependent (either via true dependence
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or anti-dependence) have the same status of computation, Theorem 4.3.1

tells us that that dependence is not loop-carried. This contradicts our

assumptions and thus the loop must have independent iterations.

Since both directions are proven, the theorem holds.

5.2 Application of Theory

We examine our complex example of the inversion of a triangular matrix

(Trinv) to determine if there are algorithms with independent iterations. For

convenience, we repeat the post-condition, PTrinv, below:

PTrinv =

 
eL
TL

⌘ bL�1
TL

0
eL
BL

⌘ �bL�1
BR

bL
BL

bL�1
TL

eL
BR

⌘ bL�1
BR

!
. (5.1)

Notice that L
BL

requires bL
BR

and bL
TL

. This means that all three regions of

L are dependent. If an algorithm with a loop invariant derived from PF has

independent iterations, then Theorem 5.1.1 requires that �(L
TL

) = �(L
BL

) =

�(L
BR

) 6= Partially Updated

However, �(L
TL

) = Fully Updated or �(L
TL

) = Not Updated

implies that bC = eC. This means that there are no feasible loop invariants

from PTrinv that have independent iterations. Therefore, NONE of the loop

invariants obtained by removing operations from the PME in (5.1) yields an

algorithm with independent iterations.

If, instead of overwriting L, the result was stored into another matrix
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T , then the PME for this operation can be expressed as:

PTrinv�Alt =

 
eT
TL

⌘ bL�1
TL

0
eT
BL

⌘ �bL�1
BR

bL
BL

bL�1
TL

eT
BR

⌘ bL�1
BR

!
.

In this situation, we know that there cannot be any true dependence or anti-

dependence because every region T
X

of T does not require either bT
Y

or eT
Y

where X 6= Y . This also implies that Condition 2 of Theorem 5.1.1 is met.

Condition 1 of Theorem 5.1.1 tells us that a loop invariant for Trinv-

Alt represents an algorithm with independent iterations when no regions

are partially updated. Hence, the loop invariants represent algorithms with

independent iterations can be easily identified. These loop invariants are shown

in Figure 5.1.

5.3 Summary

In this chapter, we developed a theory that allows one to determine,

from an analysis of the loop invariant, whether a loop has independent iter-

ations. In addition, we also demonstrated the e↵ectiveness of performing an

analysis at a higher level of abstraction. A single analysis of the post-condition

allowed us to determine that there are no algorithms, whose loop invariant was

derived from the post-condition, with independent iterations.
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ITrinv RITrinv

1

 
T

TL

⌘ bL�1
TL

0

T

BL

⌘ bT
BL

T

BR

⌘ bT
BR

!  
e
T

TL

⌘ T

TL

0
e
T

BL

⌘ �bL�1
BR

b
L

BL

b
L

TL

e
T

BR

⌘ bL�1
BR

!

3

 
T

TL

⌘ bL�1
TL

0

T

BL

⌘ �bL�1
BR

b
L

BL

b
L

�1
TL

T

BR

⌘ bT
BR

!  
e
T

TL

⌘ T

TL

0
e
T

BL

⌘ bT
BL

e
T

BR

⌘ bL�1
BR

!

5

 
T

TL

⌘ bT
TL

0

T

BL

⌘ bT
BL

T

BR

⌘ bL�1
BR

!  
e
T

TL

⌘ bL�1
TL

0
e
T

BL

⌘ �bL
BR

b
L

BL

b
L

�1
TL

e
T

BR

⌘ T

BR

!

7

 
T

TL

⌘ bT
TL

0

T

BL

⌘ �bL�1
BR

b
L

BL

b
L

�1
TL

T

BR

⌘ bL�1
BR

!  
e
T

TL

⌘ bL�1
TL

0
e
T

BL

⌘ �bL
BR

b
L

BL

b
L

�1
TL

e
T

BR

⌘ T

BR

!

Figure 5.1: Loop invariants and remainders that represent algorithms with
independent iterations for the Trinv-Alt operation.
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Chapter 6

Merging DLA Loops

Merged operations are commonly encountered in the domain of DLA.

A merged operation is an operation that provides the same functionality as

multiple operations performed in sequence. In this chapter, we describe how

loop-based algorithms for computing merged operations can be identified from

the loop invariants and their remainders of loop-based algorithms for the sep-

arate operations.

6.1 Motivation

We illustrate the benefits of merged operations with an example that

is representative of many situations in DLA:

y := Lx (Trmv-x)
x := LTy (Trmv-trans).

In the sequence of operations shown above, the vector y is first computed by

the first operation (Trmv-x) and subsequently used in the second operation

(Trmv-trans) to compute x. Notice that the separate operations will ac-

cess L twice. Since matrix-vector operations consists of O(n2) floating point

operations and (On2) memory accesses, and memory accesses are orders of

magnitude more costly than floating point operations, reducing the number
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of times L is read from memory typically improves the performance of that

sequence of operations [51, 47]. On distributed memory architectures, merged

operations can also reduce communication cost and/or improve load-balance

[45, 8].

A merged operation that replaces the separate operations Trmv-x and

Trmv-trans is:

y := Lx; x := LTy (Trmv-merge),

which computes y and x at the same time. In other words, the two separate

operations are replaced with a merged operation that reduces the number

of times L is read, hence improving temporal locality and thus, improving

performance.

6.2 Loop Fusion

Recall that DLA algorithms are typically implemented in terms of

loops. Merged operations can, thus, be created by the application of a loop

transformation, called loop fusion [31, 37], onto the separate loops for the sep-

arate operations that we want to merged. The result of loop fusion is that

multiple (in this case, two) loops are merged into a single loop. Algorithms for

computing the operations Trmv-x, Trmv-trans, and the merged operation

Trmv-merge are given in Figure 6.1. Notice that the update statements

of algorithms that compute Trmv-merge in Figure 6.1 are composed from

the update statements of the separate algorithms concatenated in the exact
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sequence in which the separate operations were performed.

6.2.1 Loop fusion for DLA in practice

While loop fusion is a loop transformation that can be automatically

performed by existing compilers, a number of hurdles hinders the wide-spread

application of loop fusion in the domain of DLA.

As most high performance implementation in DLA are often imple-

mented in terms of subroutine calls to highly optimized black-box libraries such

as the Basic Linear Algebra Subroutines (BLAS), LAPACK and ScaLAPACK[11],

this means that compilers are limited in their ability to analyze the implemen-

tation. This reduces the opportunity for loop transformations, including loop

fusion, to be applied automatically by the compiler.

When a compiler is given implementations of the separate operations

that cannot be merged, other loop transformations are required to be ap-

plied to one or both of the implementations. After a loop transformation is

performed, the newly generated implementations are analyzed to determine if

they can be merged. If not, the process is repeated. Since compilers apply loop

transformations in phases, the incorrect ordering of the transformation phases

could potentially prevent compatible implementations from being identified.

Furthermore, not all merged implementations are beneficial. This means

that multiple merged implementations must be identified in order to deter-

mine the merged implementation that is most beneficial. This exacerbates

the phase-ordering problem since the compiler now has to identify multiple
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Algorithm:

Partition L!
✓

LTL LTR

LBL LBR

◆
, x!

✓
xT

xB

◆
, y !

✓
yT

yB

◆

where LTL is 0⇥ 0, xT has 0 rows, yT has 0 rows

while m(LTL) < m(L) do
Repartition

✓
LTL LTR

LBL LBR

◆
!

0

@
L

00

l

01

L

02

l

T
10

�

11

l

T
12

L

20

l

21

L

22

1

A
,

✓
xT

xB

◆
!

0

@
x

0

�

1

x

2

1

A
,

✓
yT

yB

◆
!

0

@
y

0

 

1

y

2

1

A

where �

11

is 1⇥ 1, �

1

has 1 row,  

1

has 1 row

Operation: Trmv-x y := Lx
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x
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�

1
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T
y

Variant 1
�

1
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�
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�
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Figure 6.1: Top: Algorithms for the separate operations Trmv-x

and Trmv-trans, and Bottom: Algorithm for the merged operation
Trmv-merge

.
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merged implementations.

Often, loop fusion is performed manually by the DLA expert. This

overcomes some of the hurdles, such as implementations using subroutine calls,

encountered by the compiler. However, this process is laborious and time-

consuming. For each pair of operations that is to be merged, the DLA expert

derives multiple algorithms that compute the separate operations. Next, each

possible pair of algorithms is analyzed to determine if the algorithms can be

merged. As there are often many algorithms that compute each of the separate

operations, there is a combinatorial number of ways in which the separate

algorithms can potentially be merged. As a result, a large number of analyses

must be performed to determine if algorithms can be merged.

6.3 Characteristics of Desired Loop Invariants

Let us examine the separate operations Trmv-x and Trmv-trans to

gain insights into loop fusion. For convenience, the separate operations are

repeated below:

y := Lx Trmv-x

x := LTy Trmv-trans.

Notice that there exist two types of dependence between the two operations.

Firstly, y is computed by the first operation and then subsequently used. This

is a true dependence. The other dependence between the two operations is

an anti-dependence as x is used by the first operation and then subsequently

overwritten. These dependences mean that (1) any algorithm that computes

Trmv-x must use the original value bx, and (2) any algorithm that computes
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Trmv-trans must use the computed value of ey in order to ensure that the

two algorithms compute the correct result.

Now, let us examine the loop invariant and remainder of an algorithm

for each of the two separate operations to determine if they can be merged.

The loop invariants and remainders for Trmv-x and Trmv-trans are given

below:

F = Trmv-x

IF =

 
y
T

⌘ bL
TL

bx
T

y
B

⌘ bL
BL

bx
T

!
, RIF =

 
ey
T

⌘ y
T

ey
B

⌘ y
B

+ bL
BR

bx
B

!

G = Trmv-trans

IG =

 
x
T

⌘ bLT

TL

ey
T

+ bLT

BL

ey
B

x
B

⌘ bx
B

!
, RIG =

 
ex
T

⌘ x
T

ex
B

⌘ bLT

BR

ey
B

!
.

Observe that RIF indicates that bx
B

will be used in future iterations to compute

ey
B

. This implies that at the start of an iteration, bx
B

must not have been

overwritten. Fortunately, IG asserts that at the start of any iteration, �(x
B

) =

Not Updated, which implies that x
B

= bx
B

. Hence, the anti-dependence

between the two operations is preserved.

Similarly, we can use the status of computation to determine if the true

dependence is preserved. The loop invariant IG asserts that ey
B

was used in

past iterations to compute x
T

. In addition, an examination of either IG or

RIF states that �(y
B

) 6= Fully Updated. This means that when loop fusion

is applied to the two algorithms, the value of y
B

read by the algorithm for

Trmv-trans has not been fully computed. Therefore, the true dependence

between the two operations is not preserved. This implies that loop fusion,
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when applied to the loops described by the loop invariants and remainders

described above, is not legal.

6.4 Generalization

Let us generalize the above observations. Assume that there is a se-

quence of two operations

eB := F( bB, bC, {A})
eC := G( bC, eB, {D})

that we would like to merge. Recall that bB and eC represent the initial and

final values of B and C respectively. As with our prototypical operation,

described in Section 3.2.1, {A} and {D} represent operands that are read but

not written.

It should be noted that it is possible that C and B are not used in the

first and second operation, respectively, or that C and B are one and the same

matrix. In the first case, this implies that no dependence exists between the

two operations, while in the latter case, an output dependence exists between

the two operations.

We assume that the two operations are prototypical operations and

their PMEs can be expressed as follow:

PF =

 
eB
TL

⌘ F
TL

( bB
TL

) eB
TR

⌘ F
TR

( bB
TR

)
eB
BL

⌘ F
BL

( bB
BL

) eB
BR

⌘ F
BR

( bB
BR

)

!
;

PG =

 
eC
TL

⌘ G
TL

( bC
TL

) eC
TR

⌘ G
TR

( bC
TR

)
eC
BL

⌘ G
BL

( bC
BL

) eC
BR

⌘ G
BR

( bC
BR

)

!
.
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We can generalize the observations discussed in Section 6.3 with the following

theorem:

Theorem 6.4.1. Let the two operations that are to be merged be F and G, such

that F is computed before G. Let B
X

and C
Y

be arbitrary regions of matrices

B and C that were respectively updated by F and G. In addition, let there be

a dependence that requires B
X

to be computed before C
Y

.

If the following conditions are satisfied by the loop invariant and re-

mainder of algorithms that compute two separate operations, F and G:

1. If B
X

was updated by g
Y

(i.e., B and C are the same matrix and B
X

is

C
Y

) or B
X

is required by g
Y

, then �(B
X

) = Fully Updated, and,

2. If C
Y

will be updated by fR
X

(i.e., B and C are the same matrix and B
X

is C
Y

) or C
Y

is required by fR
X

, then �(C
Y

) = Not Updated,

then the algorithms derived from those particular loop invariants and remain-

ders can be merged.

Proof: We prove the theorem with a proof by contradiction. Assume that

B
X

and C
Y

are arbitrary regions in matrices B and C updated by F and

G, respectively. In addition, assume that the two conditions hold for the

loop invariants for the respective algorithms, for these regions. Furthermore,

assume that there exists a dependence such that B
X

must be computed before

C
Y

and that this dependence is not preserved after loop fusion. We will show

this leads to a contradiction.
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Because the dependence is not preserved, either (1) C
Y

has to be up-

dated before B
X

in the same iteration and B
X

is used to compute C
Y

(a

dependence flows from C
Y

to B
X

in the same iteration); or (2) C
Y

was up-

dated in some iteration in the past and C
Y

is used to compute B
X

in future

iterations (a dependence flows from B
X

in future iterations to C
Y

in past

iterations). Each of these cases leads to a contradiction:

Case 1: A dependence flows from C
Y

to B
X

in the same iteration. Since the

dependence requires B
X

to be computed after C
Y

has been computed, it

follows that �(B
X

) 6= Fully Updated. The contrapositive of the first

condition tells us that if �(B
X

) 6= Fully Updated, then B
X

was not

be updated by computations represented by g
Y

, and B
X

is not required

by g
Y

. Since B
X

is not required by g
Y

and not updated by g
Y

, then B
X

must not be required to update C
Y

, and B
X

cannot be the same region

as C
Y

. Hence, there cannot be a dependence between the B
X

and C
Y

.

Therefore, a contradiction is obtained.

Case 2: A dependence flows from B
X

in future iterations to C
Y

in past itera-

tions. Since C
Y

is (either partially or fully) computed in past iterations,

it follows that �(C
Y

) 6= Not Updated. �(C
Y

) 6= Not Updated and

the contrapositive of the second condition tells us that C
Y

is not updated

by computations represented by fR
X

and C
Y

is not required by fR
X

. Since

C
Y

is not updated by fR
X

, this implies that C
Y

is not the same region

as B
X

. In addition, since fR
X

represents updates to B
X

in future itera-

tions, then C
Y

must not be required to compute B
X

in future iterations.
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Therefore, there cannot exist a dependence between B
X

and C
Y

. Hence

a contradiction is found.

In both cases, we have shown that if a fusion-preventing dependence exists,

then a contradiction with one of our assumptions is found and thus no fusion-

preventing dependence can exist if both conditions are satisfied.

6.5 Merging More Than Two Operations

Recall that algorithms can be merged if the regions of the two loop

invariants have the appropriate status of computation that preserves depen-

dences. If we know that status of computation for all regions of the output of a

merged operation, then identifying if a third (or more) loop(s) can be merged

can simply be performed by repeated application of Theorem 6.4.1.

By definition, the status of computation of a region is determined by

identifying when the region is updated (i.e. in the past, in the future, or

both). Therefore, to identify the status of computation of a region for a

merged operation, we similarly identify when the region has been or will be

updated.

When the regions updated by the separate loops are disjoint (i.e. the

two loops do not update the same region(s)), then the status of computation

of a region in the merged operation is determined by the loop invariant of the

separate loop which updates that particular region. As the regions being up-

dated by the separate loops are disjoint, we are assured that a region updated
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by one loop will not be updated by the other loop.

When the separate loops update the same regions, then we need to

consider if a region X has been updated in the past, or will be updated in the

future. If both operations fully update region X in the past, then we know

that region X will not be updated by either of the operations in the future.

Therefore, �(X) = Fully Updated for the merged operation. Similarly, if

both operations will only update region X in future iterations, then �(X) =

Not Updated. Otherwise, region X was updated in the past, and will be

updated in future iterations. Hence �(X) = Partially Updated.

6.6 Application of the Theory

When L in the operation Trmv-merge is the inverse of the Cholesky

factor of a Symmetric Positive Definite (SPD) matrix S, the operation

Trmv-merge computes the operation

x := S�1x, where S = LLT .

Here, S is a SPD matrix. To demonstrate how the theory developed in this

chapter can be applied in practice, we apply loop fusion to the following three

operations that are part of the operations required to compute x := S�1x:

L := L�1 Trinv

y := Lx Trmv-x

x := LTy Trmv-trans.
(6.1)

Consider the following set of loop invariants for the three operations
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that we want to merge.

ITrinv =

 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ �bL�1
BR

bL
BL

bL�1
TL

L
BR

⌘ bL
BR

!
;

ITrmv-x =

✓
y
T

⌘ L
TL

x
T

y
B

⌘ L
BL

x
T

◆
; and

ITrmv-trans =

✓
x
T

⌘ L
TL

y
T

x
B

⌘ bx
B

◆
.

(6.2)

Examining the operations in (6.1), we note that the dependence between the

Trinv and Trmv-x is a true dependence created by the need to update

L. Since ITrmv-x requires L
TL

and L
BL

, Theorem 6.4.1 tells us that �(L
TL

) and

�(L
BL

) must both be Fully Updated. Since ITrinv fulfills those criteria, then

the two loop invariants, ITrinv and ITrmv-x, can be merged.

Since Trinv and Trmv-x compute L and y respectively, we know that

the status of computation of y is determined only by the chosen loop invariant

for Trmv-x. In addition, because a true dependence and an anti-dependence

exist between the Trmv-x and Trmv-trans, Theorem 6.4.1 tells us that

because bx
B

is required by RITrmv-x , �(x
B

) = Not Updated. Furthermore,

because �(y
B

) 6= Fully Updated, then y
B

cannot be an operand of ITrmv-trans.

Since ITrmv-x and ITrmv-trans fulfills those criteria, we know that they can be

merged. Hence, the set of three loop invariants shown in (6.2) yields algorithms

that can be merged.

For the remaining 8 ⇥ 4 ⇥ 4 � 1 = 1271 possible sets of three loop

1There are at least 8, 4 and 4 di↵erent algorithms for the Trinv, Trmv-x, and
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invariants, we leave these as an exercise for the reader to determine if they can

be merged.

6.7 Summary

In this chapter, we developed the theory that allows one to determine

the legality of loop fusion using the loop invariant and the remainder of the

separate algorithms. By raising the level at which analysis is performed, this

simplifies the analysis process performed by either the DLA expert or the

compiler. However, there is still a need to examine a combinatorial number

of possible combinations of loop invariants and remainders. In Chapter 8,

we show how the developed theory can be used to derive loop invariants

and remainders with the characteristics necessary to ensure that the derived

algorithms can be merged, thus making the whole optimization process goal-

oriented.

Trmv-trans operations respectively.
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Chapter 7

Domain-Specific Heuristics

When optimizing DLA operations, the DLA expert has to manually

examine multiple algorithms to determine if the algorithms possess desirable

characteristics that will yield high performance on a given computer archi-

tecture. To limit the number of algorithms that must be explored, the DLA

expert uses domain-specific heuristics. In this chapter, we describe some of

the heuristics used by the DLA expert and show how heuristics can be applied

to the loop invariant and its remainder to yield the same insights.

7.1 Unit Stride Data Accesses

For the domain of DLA, ensuring that data is accessed with unit stride

is critical for attaining high performance. Often, data is packed into continu-

ous storage so that data accesses are to contiguous memory with unit stride

[51, 24]. For matrix multiplications and its many variants, the cost of pack-

ing can be amortized e�ciently by the computations performed. However, for

operations that have O(n2) memory accesses and O(n2) floating point compu-

tation, the cost of packing cannot be similarly amortized. For these operations

(e.g. matrix-vector operations similar to those in the level-2 BLAS), it is im-
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portant to identify algorithms that naturally access matrices with unit stride.

7.1.1 Matrix storage

In order to identify when matrices are accessed with unit stride, we

need to discuss how matrices are stored. For the domain of DLA, matrices are

usually stored in column-major order. This means that elements in the same

column can be accessed with unit stride. This, in turn, implies that algorithms

that access matrices one column at a time will access elements with unit stride.

Similarly, matrices accessed by rows will not access elements with unit stride.

7.1.2 An example of access by columns

Now, let us examine the loop invariant and Remainder for two algo-

rithms that compute the Trmv-x operation to gain insights into how to iden-

tify algorithms that access matrix elements with unit stride.

Consider the following loop invariants and their remainders for an axpy-

based and an inner-product-based algorithm for the Trmv-x operation:

axpy-based inner-product-based

ITrmv-x

 
y
T

⌘ bL
TL

bx
T

y
B

⌘ bL
BL

bx
T

!  
y
T

⌘ bL
TL

bx
T

y
B

⌘ by
B

!

RITrmv-x

 
ey
T

⌘ y
T

ey
B

⌘ ey
B

+ bL
BR

bx
B

!  
ey
T

⌘ y
T

ey
B

⌘ bL
BL

bx
T

+ bL
BR

bx
B

!
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In both cases, L is partitioned in the following manner:

L!
✓

L
TL

0

L
BL

L
BR

◆
,

where the thick lines denotes how far into matrix L the loop has progressed.

We start by examining the loop invariant and its remainder for the

axpy-based algorithm. Recall that axpy-based algorithms for Trmv-x access

the elements of L with unit stride. Notice that L
TL

and L
BL

are the only

regions of L that appear in the loop invariant. Similarly, L
BR

is the only

region of L that appears in the Remainder. This tells us that elements of L

that will be used in the body of the loop, must be part of L
BR

at the start of

an iteration, and will be part of L
TL

or L
BL

at the end of the iteration.

In addition, because of the way L is partitioned, the regions L
TL

and

L
BL

represent the columns of L to the left of the vertical thick line (left

columns), which implies that only the left columns of L were used in past

iterations. Similarly, we know that:

✓
0

L
BR

◆
,

represents the columns of L that are to the right of the vertical thick line, and

L
BR

represents the non-zero part of those columns of L. Furthermore, because

L
BR

appears only in the Remainder, we know that only columns to the right

of the thick lines will be used in the future. This, coupled with the observation

in the previous paragraph, implies that elements in the columns of L that are

to the right of the thick lines will be used in an iteration. In addition, these
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elements will form part of the columns of L that lie to the left of the thick lines.

Hence, the elements must be accessed by columns, which validates the DLA

expert’s observation that axpy-based algorithms for Trmv-x access elements

of L with unit stride.

Contrast this with the loop invariant and remainder for the inner-

product-based algorithm, which access elements of L by rows. From the loop

invariant and its remainder, we know that L
TL

was used in the past, and L
BL

and L
BR

will be used in the future. Since L
TL

represents the non-zero ele-

ments of the rows to the top of the horizontal thick line, and the regions L
BL

and L
BR

form the rows of L that lies below the horizontal thick line, elements

of L must be accessed by rows. Hence, the DLA expert’s observation that

inner-product-based algorithm for Trmv-x do not access elements of L with

unit stride.

7.1.3 The theory

Let us now generalize the insights in the previous section to our proto-

typical operation, where A is an operand (regardless of whether it is used as

input, output, or both) that has been partitioned by in the following manner:

A!
✓

A
TL

A
TR

A
BL

A
BR

◆
.

Without loss of generality, assume that A is swept through from top-left to

bottom-right. In addition, assume that A
TL

and A
BL

appear only in the loop

invariant and the remaining regions appear only in the remainder of the loop

invariant.
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At the start of any iteration, A will be repartitioned into subregions

such that:
✓

A
TL

A
TR

A
BL

A
BR

◆
!

0

@
A

00

a
01

A
02

aT
10

↵
11

aT
12

A
20

a
21

A
22

1

A

Since the regions A
TR

and A
BR

appear only in the remainder, we know that

these two regions will be used in any given iteration. This means that at least

one of the following subregions:

�
a
01

A
02

�
and

✓
↵
11

aT
12

a
21

A
22

◆

will be used during the iteration. We also know that the remaining regions

(A
00

, aT
10

, A
20

) will not be used in the iteration because A
TL

and A
BL

do not

appear in the remainder of the loop.

At the end of the iteration, the thick lines are shifted such that:

✓
A

TL

A
TR

A
BL

A
BR

◆
 

0

@
A

00

a
01

A
02

aT
10

↵
11

aT
12

A
20

a
21

A
22

1

A .

Since columns represented by A
TR

and A
BR

were not used in past iterations,

this means that the subregions A
02

, aT
12

and A
22

were not used. Therefore, the

subregions that were used during the iteration must be from the following set

of regions: a
01

,↵
11

and a
21

. Since the three subregions are di↵erent segments

of the same column of A, we know that A must be accessed by columns.

We can summarize this discussion with the following theorem:

Theorem 7.1.1. Let S
A

and S
A

R be sets of regions of matrix A that appear

in the loop invariant and the remainder, respectively. If S
A

\ S
A

R = ;, and

either
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1. S
A

✓ {A
TL

, A
BL

}, or

2. SR
A

✓ {A
TL

, A
BL

}

then A is accessed by columns.

Proof: The proof follows the previous discussion.

7.2 Matrix Multiplication

For a DLA expert, implementing high-performance DLA code often

boils down to finding algorithms that are rich in matrix multiplication. It

has been shown that high-performance DLA loops can be attained when most

of the computation within the loop is cast in terms of a highly optimized

GEneral Matrix Multiplication (Gemm) kernel that computes some variant

of the operation C := ↵AB + �C [30, 24, 26, 51]. Without loss of generality,

we will focus on C := AB + C, which we will also write as C+ = AB.

In general, there are three di↵erent algorithms to compute Gemm [26,

24]. The three variants of Gemm, namely the matrix-panel, panel-matrix and

panel-panel variants, are shown in Figure 7.1.

Of particular interest to the DLA expert is the panel-panel (also known

as the rank-k) variant of Gemm. The panel-panel variant is important for

many architectures. For sequential architectures, this variant of Gemm is

often the algorithm of choice [24, 51]. It has also been shown to asymptoti-

cally yield near-peak performance when correctly parallelized for distributed-

memory architectures [49]. Hence, identifying whether a panel-panel matrix
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Variant Shape of Operands

Matrix-panel

C
+

= A B

Panel-matrix

C
+

=
A

B

Panel-panel

C
+

= A
B

Figure 7.1: The di↵erent variants of Gemm, and the shapes of the operands,
A,B and C.

multiplication is absent or present allows the DLA expert to prioritize di↵erent

algorithms that compute a given operation.

A key feature of the panel-panel variant of Gemm is that it is the only

variant where both the dimensions of C are large, and both A and B have one

small dimension. Therefore, by examining the shapes of the operands, A, B

and C, of the Gemm operation, we can identify if the Gemm operation is of

the panel-panel variant.
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7.2.1 Examples of analysis with shapes of operands

Consider the following pair of loop invariant and remainder for the

Trinv operation, which computes L := L�1:

Loop Invariant Remainder 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ �bL�1
BR

bL
BL

bL�1
TL

L
BR

⌘ bL
BR

!
;

 
eL
TL

⌘ L
TL

0
eL
BL

⌘ L
BL

eL
BR

⌘ bL�1
BR

!
.

Without loss of generality, assume that L is a Nb⇥Nb matrix, where N is the

number of iterations, and b is the numbers of columns and/or rows computed

in each iteration.

Notice that �(L
TL

) = �(L
BL

) = Fully Updated. This implies that

the regions L
TL

and L
BL

contain the final result, and no further computation is

required to update them. Hence, the panel-panel matrix multiplication is NOT

required to update those regions of L. In addition, �(L
BR

) = Not Updated

implies that computation must be performed on L
BR

.

Since the final result must be stored in L
TL

, we know that L is computed

from top-left to bottom-right. In addition, at the start of an iteration, the

regions of L are repartitioned into subregions in the following manner:

✓
L
TL

0

L
BL

L
BR

◆
!

0

@
L
00

0 0

L
10

L
11

0
L
20

L
21

L
22

1

A ,

where L
11

is a small b⇥ b matrix. Notice that L
BR

is now represented by the

subregions ✓
L
11

0
L
21

L
22

◆
. (7.1)
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Since computation must be performed on L
BR

, then computation must be

performed on at least one of the subregions in (7.1).

At the end of the iteration, the subregions are then merged back into

regions in the following manner:

✓
L
TL

0

L
BL

L
BR

◆
 

0

@
L
00

0 0
L
10

L
11

0

L
20

L
21

L
22

1

A ,

where, now, L
BR

is L
22

. Since �(L
BR

) must still be Not Updated, then

we know that L
22

cannot have been updated during the iteration. This also

implies that the subregions that could have been updated during the iteration

must be either L
21

, L
11

or both.

Since L
21

and L
11

are output operands and they also have a small col-

umn dimension (in this case, both subregions have a small number of colums,

namely b), we know from examining their shape that the operation that up-

dates either L
21

or L
11

is not a panel-panel matrix multiplication.

Let us consider another pair of loop invariant and remainder for the

Trinv operation:

Loop Invariant Remainder 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ bL
BL

bL�1
TL

L
BR

⌘ bL
BR

!
;

 
eL
TL

⌘ L
TL

0
eL
BL

⌘ bL�1
BR

L
BL

eL
BR

⌘ bL�1
BR

!
.

Notice that in this loop invariant, �(L
TL

) = Fully Updated, �(L
BL

) =

Partially Updated, and �(L
BR

) = Not Updated. This implies that the

regions L
BL

and L
BR

will need to be updated in any given iteration.
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Again, we consider what subregions of L will be updated during a given

iteration. After repartitioning, we know that:

✓
L
TL

0

L
BL

L
BR

◆
!

0

@
L
00

0 0

L
10

L
11

0
L
20

L
21

L
22

1

A ,

where

L
BL

=

✓
L
10

L
20

◆
, (7.2)

and

L
BR

=

✓
L
11

0
L
21

L
22

◆
. (7.3)

Since �(L
BL

) = Partially Updated and �(L
BR

) = Not Updated, these

imply that some of the subregions described in (7.2) and (7.3) must be updated

during an iteration. Similar to the previous loop invariant for Trinv, because

�(L
BR

) = Not Updated at the end of an iteration, we know that only the

subregions L
11

and L
21

need to be updated, and due to their shapes (they

only have a small number of columns, namely b columns), the operations that

update L
11

and L
21

are not panel-panel matrix-multiplications.

As �(L
BL

) = Partially Updated, we know that some updates must

be performed on at least one of the two subregions, L
10

and L
20

. While

we know that L
10

has a small dimension (it has b rows), the same cannot

be concluded for subregion L
20

. Hence, we can conclude that a panel-panel

matrix multiplication is not required in order to update L
10

. However, it

remains possible that L
20

is updated by a panel-panel matrix multiplication.
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7.2.2 The theory

It is trivially true that if our operation consists of only matrix additions,

then no matrix multiplication is required. Similarly, for each region, C
X

,

where X 2 {TL, TR, BL, BR} of our prototypical operation, if the function

F
X

, describing how C
X

needs to be updated at the end of the loop, consists

of only additions, then no panel-panel matrix multiplication is required to

compute C
X

. Hence, we can focus on the the case where there exists a matrix

multiplication in F
X

that computes an arbitrary region, C
X

, of our prototypical

operation.

Theorem 7.2.1. Let X be a region of the output C, where X 2 {TL, TR, BL, BR}.

If �(C
X

) = Fully Updated or �(C
X

) = Not Updated, then the operation

that updates C
X

is not a panel-panel matrix multiplication.

Proof: We prove this theorem with a proof by cases.

Case 1: �(C
X

) = Fully Updated.

Let C
X

be an arbitrary region of C where X 2 {TL, TR, BL, BR}. If

�(C
X

) = Fully Updated, then it implies that C
X

⌘ eC
X

, i.e. C
X

already contains the final result. Therefore, no panel-panel matrix mul-

tiplication is required to compute C
X

.

Case 2: �(C
X

) = Not Updated.

Without loss of generality, let us assume that C is a Nb ⇥ Nb matrix

that is computed from top-left to bottom-right. Here, N is the number
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of iterations required to compute C and b is the number of columns,

and/or rows exposed (also known as the block or tile size) during each

iteration. This implies that at the start of an iteration, the di↵erent

regions of C are partitioned into subregions in the following manner:

✓
C

TL

C
TR

C
BL

C
BR

◆
!

0

@
C

00

C
01

C
02

C
10

C
11

C
12

C
20

C
21

C
22

1

A ,

where C
11

is a b⇥ b matrix.

In addition, at the end of the loop, the regions are C are obtained by

merging the subregions in the following manner:

✓
C

TL

C
TR

C
BL

C
BR

◆
 

0

@
C

00

C
01

C
02

C
10

C
11

C
12

C
20

C
21

C
22

1

A .

We want to prove that if �(C
X

) = Not Updated, for all values of

X 2 {TL, TR, BL, BR}, then no panel-panel matrix multiplication is

required to update C
X

. We prove this by considering all possible values

of X.

Case 2a: C
X

= C
TL

.

Since C is updated from top-left to bottom-right, this implies that

C
TL

contains all of C at the end of the last iteration. This means

that C
TL

must contain the final result ( eC) at the end of the loop.

Since �(C
TL

) = Not Updated at the end of the loop, it implies

that C
TL

contains the original value bC at the end of the loop. This

contradicts our assumption that C
TL

contains the final value at the
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end of the loop, and thus a contradiction is obtained. Therefore,

this situation cannot exist as �(C
TL

) 6= Not Updated.

Case 2b: C
X

= C
TR

.

Notice that C
TR

consists of the subregions C
01

and C
02

at the start

of the iteration, and C
02

and C
12

at the end of the loop. Since

�(C
TR

) = Not Updated, it implies that C
02

contains the original

value at the start of the iteration, and C
02

is not updated at the

end of the iteration. Hence, no panel-panel matrix multiplication

is required to update C
02

.

Now, C
01

and C
12

may have been updated in the iteration. However,

since C
01

and C
12

each have one small dimension, they cannot be

the output of a panel-panel matrix multiplication. Therefore, when

�(C
TR

) = Not Updated, C
TR

is not the output of a panel-panel

matrix multiplication.

Case 2c: C
X

= C
BL

.

At the start of an iteration, C
BL

consists of the subregions C
10

and

C
20

. In addition, because �(C
BL

) = Not Updated, both C
10

and

C
20

contain their original value. At the end of the iteration, C
BL

is

made up of subregions C
20

and C
21

. Again, the values of C
20

and

C
21

must be the original values because �(C
BL

) = Not Updated.

This implies that C
20

cannot be updated during the iteration. In

addition, because both C
21

and C
10

have one dimension that is

small, C
21

and C
10

cannot be the output of a panel-panel matrix
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multiplication.

Since C
20

, C
21

and C
10

cannot be the output of a panel-panel matrix

multiplication, therefore, C
BL

cannot be updated by a panel-panel

matrix multiplication when �(C
BL

) = Not Updated.

Case 2d: C
X

= C
BR

.

At the start of an iteration, C
BR

is partitioned into C
11

, C
12

, C
21

and C
22

. At the end of the iteration, C
BR

is C
22

. Since �(C
BR

) =

Not Updated, this means that C
22

starts o↵ being not updated

at the start of the iteration, and must remain not updated at the

end of the iteration. This means that C
22

is not updated within the

iteration. For the other three subregions (C
11

, C
12

, and C
21

), each

of them has at least one small dimension. Therefore, they cannot

be the output of a panel-panel matrix multiplication, which means

that C
BR

cannot be updated by a panel-panel matrix multiplication.

�(C
BR

) = Not Updated.

Since all X 2 {TL, TR, BL, BR} leads to a situation where C
X

can-

not be updated by a panel-panel matrix multiplication, then C
X

can-

not be updated by a panel-panel matrix multiplication when �(C
X

) =

Not Updated.

Since both �(C
X

) = Fully Updated and �(C
X

) = Not Updated

imply that the operation that updates C
X

is not a panel-panel variant of

Gemm, the theorem is proven.

91



Remark 2. When a compiler parallelizes for a shared-memory system, one

of the heuristics used is to identify algorithms where the outermost loop has

independent iterations. This maximizes the size of the tasks that are issued to

the di↵erent processors/threads. However, a loop with independent iterations

means that no region in the loop invariant is partially updated, which means

that there cannot be panel-panel matrix multiplication in the update statements.

Since the DLA expert favors algorithms rich in panel-panel matrix multiplica-

tions, this means that the heuristic used by the compiler is unlikely to yield the

algorithm favored by the DLA expert.

7.3 Algorithms with Small Checkpoint Sizes

Checkpoint-and-restart is a commonly encountered technique for de-

veloping fault-tolerant DLA code [17, 27]. In essence, code is inserted into a

DLA algorithm so that (1) the state of the loop is saved periodically (Check-

point), and (2) the loop can be restarted from the last saved state when a

hardware fault or software error occurs (Restart). It has been shown that the

overhead of checkpointing can be reduced by either reducing the frequency at

which checkpointing is performed, or reducing the amount of data saved at

each checkpoint [36]. In this section, we focus on the latter, by describing how

loop-based algorithms that require small checkpoint sizes can be identified.
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7.3.1 Checkpoint-optimal algorithms

A common approach for ensuring that checkpoint sizes are small, is to

only save data that have been modified since that last checkpoint [36, 39]. Since

only modified data were saved, this implies that no unnecessary, or redundant

data are saved at each checkpoint. Hence, the size of each checkpoint is small.

In addition, by saving all modified data, no additional computation is necessary

during restart.

Since the key to small checkpoint sizes is to ensure that no unnecessary,

or redundant data are saved, we examine what sort of data need to be saved:

1. Initial values of all input operands must be saved during an

initial checkpoint before the loop-based algorithm commences.

This ensures that in the worst case, the entire algorithm can be re-

executed using the initial values.

2. Final values must be saved during a checkpoint. This ensures

that computed values are saved, and they need not be recomputed when

restarting after a failure.

3. All data required in order to restart from a checkpoint without

additional (re)computation needs to be saved. The purpose of

saving all modified data is to ensure that no additional computation has

to be performed before the loop can restart from the checkpoint. This

minimizes the time between restart and the continuation of the original
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algorithm, thus reducing the overhead of restart. In addition, the code

inserted for restart is also simplified because only the restoration of data

from a previous checkpoint is necessary.

Under these assumptions about the types of data that need to be saved

during a checkpoint, each element of all operands is saved a minimum of

once. If the operand is an input, then its elements are saved during the initial

checkpoint. If an operand is an output, then the final value of that operand

needs to be checkpointed. However, when an operand is both an input and

an output, then its elements are checkpointed at least twice; once during the

initial checkpoint, and when the final value has been computed.

When checkpoints can be inserted into a loop-based algorithm such that

each element of all operands are saved the minimum number of times, and the

algorithm can be restarted from a checkpoint without any recomputation, then

we say that the algorithm is checkpoint-optimal.

Definition 7.3.1. An algorithm is said to be checkpoint-optimal if all the

following holds:

� Every element of an operand that is only an input, or only an output is

saved exactly once.

� Every element of an operand that is both an input and an output operand,

is saved exactly twice.

� Restarting from any checkpoint does not incur additional computation.
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7.3.2 Example of checkpoint-optimal algorithms

Consider the following pair of loop invariant and remainder for the

Trinv operation:

Loop Invariant Remainder 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ b�L�1
BR

bL
BL

bL�1
TL

L
BR

⌘ bL
BR

!
;

 
eL
TL

⌘ L
TL

0
eL
BL

⌘ L
BL

eL
BR

⌘ bL�1
BR

!
.

Recall that L is computed from top-left to bottom-right. In addi-

tion, �(L
TL

) = �(L
BL

) = Fully Updated, and �(L
BR

) = Not Updated.

Again, at the start of an iteration, L is repartitioned into subregions 1 in the

following manner:

✓
L
TL

0

L
BL

L
BR

◆
!

0

@
L
00

0 0

lT
10

�
11

0
L
20

l
21

L
22

1

A ,

and at the end of the iteration, the di↵erent subregions are merged in the

following manner:

✓
L
TL

0

L
BL

L
BR

◆
 

0

@
L
00

0 0
lT
10

�
11

0

L
20

l
21

L
22

1

A .

Notice that at the start of the iteration, �
11

and l
21

were subregions of L
BR

,

and at the end of the iteration, �
11

and l
21

become subregions of L
TL

and L
BL

respectively. From the status of computation, it can be concluded that at the

start of the iteration, �
11

and l
21

contain original values, and at the end of the

iteration, the two subregions contain the final values.

1 In practice, a blocked (tiled) algorithm is used to compute L. For simplicity, an
unblocked algorithm is used in this example.
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Notice that L
22

remains uncomputed at the end of an iteration. Since

we assumed that the original values have been saved during the initial check-

point, we know that L
22

does not need to be saved during any other check-

points. However, because final values have to be checkpointed at least once,

then at the end of an iteration, we have to decide which (or any) of the fol-

lowing subregions belonging to fully updated regions need to be checkpointed:

L
00

, lT
10

, LT

20

, �
11

, or l
21

.

Recall that the DLA expert is interested in small checkpoint sizes. A

small checkpoint size implies that values that have been saved at a previous

checkpoint should not be saved again. As �
11

and l
21

have most recently been

updated to their final values, we know that their values were not available at

previous checkpoints and thus could not have been saved. Therefore, saving

the data in these two subregions of L would ensure that no redundant data

saved.

In addition, the subregions L
00

, and L
20

have two large dimensions,

whereas l
21

and lT
10

each has one small dimension. �
11

is the smallest of the

five fully updated subregions where both of its dimensions are small. Hence,

saving the values of subregions �
11

and l
21

ensures that the checkpoint sizes

are as small as, or smaller than most other combinations of subregions2.

Now, recall that the DLA expert also wants checkpoints that require no

2The exception being only �11 is saved during a checkpoint. However, saving only �11

does not ensure that all final values are checkpointed
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(re)computation during restart. Notice that L is computed column-wise. The

Remainder tells us that pristine columns of L are required for computation in

the future. This means that at the start of an iteration, a pristine column of

L, namely the column: 0

@
0
�
11

l
21

1

A ,

is required. Since the computation of L only requires uncomputed data, and

we know that those data were saved during the initial checkpoint, then no

further computation is required during restart. Hence, the algorithm derived

from the loop invariant is checkpoint-optimal.

Contrast this with the following loop invariant-Remainder pair for the

Trinv operation:

Loop Invariant Remainder 
L
TL

⌘ bL�1
TL

0

L
BL

⌘ bL
BL

bL�1
TL

L
BR

⌘ bL
BR

!
;

 
eL
TL

⌘ L
TL

0
eL
BL

⌘ �bL�1
BR

L
BL

eL
BR

⌘ bL�1
BR

!
,

where �(L
TL

) = Fully Updated, �(L
BL

) = Partially Updated, and

�(L
BR

) = Not Updated. As with the previous example, L is repartitioned

into subregions at the start of an iteration, and the subregions are merged at

the end of the iteration. Comparing the subregions at the start and end of the

iteration:

At the start:

✓
L
TL

0

L
BL

L
BR

◆
!

0

@
L
00

0 0

lT
10

�
11

0
L
20

l
21

L
22

1

A

At the end:

✓
L
TL

0

L
BL

L
BR

◆
 

0

@
L
00

0 0
lT
10

�
11

0

L
20

l
21

L
22

1

A ,
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the status of computation tells us that �
11

and lT
01

are subregions where final

values are computed. �
11

starts o↵ containing its original value, and is fully

computed at the end of the iteration. lT
01

is partially updated at the start of the

iteration but is fully updated at the end of the iteration. Therefore, a check-

point that saves data from these two subregions would ensure no redundant

data are saved, and also ensure that the checkpoint sizes are small.

However, notice that the values in L
BL

are in a partially updated state,

and l
21

is part of L
BL

at the end of the iteration. This means that l
21

started

the iteration containing its original values but at the end of the iteration, l
21

is partially updated. As the values in l
21

have been modified, these interme-

diate values are not available after a failure has occurred. Hence, either these

intermediate values are recomputed during restart, or the intermediate values

need to be saved at each checkpoint. This means that this algorithm is not

checkpoint-optimal.

7.3.3 The theory

A key insight that allows us to identify checkpoint-optimal algorithms

is that if a loop invariant for an algorithm has partially updated regions, then

the algorithm is not checkpoint-optimal. This insight can be summarized for

our prototypical operation whose output C is partitioned into regions C
X

,

where X 2 {TL, TR, BL, BR} with the following lemma.

Lemma 7.3.1. Let C
X

be an arbitrary region of the loop invariant. If �(C
X

) =

Partially Updated, then the algorithm is not checkpoint-optimal.
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Proof: We prove the theorem with a proof by contradiction. Assume that

the loop invariant for a checkpoint-optimal algorithm has an arbitrary region

C
X

where �(C
X

) = Partially Updated. We want to show that such an

algorithm is not checkpoint-optimal.

As �(C
X

) = Partially Updated, it implies that at the end of a loop,

the values in C
X

are partially updated. We consider the following two cases:

Case 1: Values in C
X

is saved at a checkpoint.

Since the values in C
X

are intermediate and not final values, this means

that at a future checkpoint, when the final values in elements in C
X

are

computed, those final values have to be checkpointed. This implies that

the values in elements in C
X

are saved more than the minimum number

of times. Hence the algorithm is not checkpoint-optimal.

Case 2: Values in C
X

are not saved at a checkpoint.

If the intermediate values in C
X

are not saved at a checkpoint, then these

intermediate values are not available after restarting from that particular

checkpoint. Hence, additional computation must be performed to restore

these partially-computed results during restart, before computation can

proceed. Therefore, the algorithm is not checkpoint-optimal.

In both cases, when the loop invariant of an algorithm has regions whose sta-

tus of computation is Partially Updated, the algorithm is not checkpoint-

optimal. Hence, a contradiction is obtained and the lemma is proven.
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Now, for our prototypical operation:

C := F(C, {A}),

an algorithm that computes C is checkpoint-optimal can be identified with the

following theorem.

Theorem 7.3.1. A loop invariant of an algorithm contains no partially up-

dated region if and only if the algorithm is checkpoint-optimal.

Proof: The forward direction follows the proof for Lemma 7.3.1.

We prove the backward direction by showing how to insert checkpoints

into algorithms whose loop invariants contain no partially updated regions,

such that the algorithms are checkpoint-optimal.

Checkpoint Strategy. We insert checkpoints in the following manner:

� Initial checkpoint. Since the inputs of our prototypical operation is

C [ {A}, then the initial checkpoint will save all elements of C and

operands in {A}.

� Other checkpoints at the end of each iteration. Since C is an

output, checkpoints will be inserted at the end of each iteration such that

elements of C whose final values have been computed in that iteration

will be saved at the checkpoint.
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We prove that the algorithm is checkpoint-optimal with this checkpoint

strategy by showing that the checkpointing strategy fulfills all requirements in

the definition of a checkpoint-optimal algorithm:

Every element of an operand that is only an input, or only an output is saved

exactly once.

The input-only operands are operands in {A}, and there are no output-

only operands. Since the elements of operands in {A} are saved only at

the initial checkpoint, they are saved exactly once.

Every element of an operand, that is both an input and an output operand, is

saved exactly twice.

Since C is both an input and an output, elements of C must be saved

exactly twice. Elements of C are saved once during the initial checkpoint.

In addition, the elements of C are saved at the checkpoint at the end of

the iteration in which their final values are computed. Hence, elements

of C are saved exactly twice.

Restarting from any checkpoint does not incur additional computation.

Since the loop invariant only consists of regions that are fully updated

and not updated, it means that at the start of any iteration, elements of

C are either pristine or contain their final values, and all other operands

contain their original values. Since pristine values are saved during the

initial checkpoint and the final computed values of C are saved in the

iterations where they are computed, we know that the values at the
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start of any iteration are saved at some previous checkpoint. Hence, no

additional computation is required during restart.

Since our checkpointing strategy satisfies the definition of a checkpoint-optimal

algorithm, an algorithm whose loop invariant contains no partially updated

regions is checkpoint-optimal.

Since both directions have been proven, the theorem is proven.

7.4 Summary

In this chapter, we showed that domain-specific heuristics employed by

the DLA expert can be described in terms of constraints on the loop invariant

and its remainder. By raising the level of abstraction at which loops are

analyzed, we showed that characteristics of the loop, such as the absence of

panel-panel matrix multiplication, that cannot be described using traditional

compiler dependence analysis, can be identified from the loop invariant and its

remainder. The examples presented in this chapter provide evidence for our

claim that the DLA expert’s approach to optimization can be unified with the

compiler approach through the use of a framework that is based on a calculus

of loop invariants.
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Chapter 8

A Goal-Oriented Approach To
Loop Invariants Derivation

In the previous chapters, we developed theories that allow one to de-

termine if a loop has a particular characteristic from an analysis of the loop

invariant and/or its remainder. This implies that one has to first derive multi-

ple loop invariants, analyze them with the developed theory, and then discard

loop invariants that do not have the desired characteristics.

In this chapter, we take the theories one step further by using them

in a goal-oriented approach towards deriving loop invariants. We introduce

a constructive algorithm that, given the PME and a desired characteristic of

the loop as inputs, derives loop invariants with the desired characteristic. It

is through this goal-oriented approach that the phase-ordering problem can be

side-stepped.

8.1 Key Insights

Recall that loop invariants and their remainders are defined by the sets

of functions {f
X

} and {fR
X

}. These functions are obtained from the operations

specified in the PME. Operations that are removed from the PME form the
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functions in {fR
X

}, and those that were not removed from the PME form the

set {f
X

}.

In addition, the characteristics of loops (e.g. independent iterations

and unit stride) can be described in terms of the status of computation. Since

the status of computation is prescribed by the decompositions of operations in

the PME into the functions in {f
X

} and {fR
X

}, the characteristics of loops can

be determined by selectively choosing which operations from the PME belong

to the functions from {f
X

} and {fR
X

}.

Furthermore, selectively determining if an operation in the PME be-

longs to f
X

or fR
X

, allows us to preserve the status of computation that are

required for the desired characteristic. This ensures that any loop invariant

(and its remainder) that is derived will always have the necessary characteris-

tic. If no feasible loop invariant can be derived in this manner, then no loop

invariant derived from the input PME has the desired characteristic.

These insights suggest that a goal-oriented approach to deriving loop

invariants with the necessary characteristic is achievable with a loop invariant

derivation algorithm that preserves the status of computation required for the

desired characteristic to appear in the loop.

8.2 Goal-Oriented Loop Invariant Derivation Algorithm

We present a constructive loop invariant derivation algorithm that takes

as input, the PME and the theory that describes the necessary status of com-
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putation for the desired characteristic, and returns a set (possibly empty) of

loop invariants such that all returned loop invariants have the desired charac-

teristic.

Our algorithm is similar to that described in Fabregat-Traver and Bi-

entinesi [21]. The key di↵erence between the two algorithms is that their goal

is to systematically derive loop invariants, whereas the goal of our algorithm is

to systematically derive loop invariants that yield loops with the desired char-

acteristic. The theory described in this dissertation can be used to enhance

the algorithm in Fabregat-Traver and Bientinesi to also obtain loop invariants

that yield loops with the desired characteristic.

Our loop invariant derivation algorithm for constructing a loop invari-

ant with the necessary characteristics comprises of three phases: Initialization,

Construction, and Enumeration. We describe the three phases in detail.

8.2.1 Initialization

Theorem 3.2.1 tells us that for the loop invariants to be feasible, some

operations described in the PME must have been performed in the past and

certain operations must still be performed in the future. This implies that

the status of computation of at least one region, C
X

, of any feasible loop in-

variant is not Fully Updated, and at least one region, C
Y

(possibly the

same region, i.e. X = Y ) of any feasible loop invariant is not Not Updated.

This means that computation that requires eC
X

cannot be computed since

�(C
X

) 6= Fully Updated. Similarly, regions that require bC
Y

must be com-
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puted to a state where bC
Y

is no longer required.

Hence, because loop invariants have to be feasible, an initial set of

constraints on the status of computations of at least one region is created. In

addition, these initial constraints may impose further constraints on the status

of computation of other regions. As such, these initial constraints seed the

propagation of constraints in the subsequent phase, the Construction phase.

8.2.2 Construction

The Construction phase propagates the initial set of constraints on the

status of computation, created during Initialization, to other regions of the

loop invariant. Through propagating these constraints to other regions, the

status of computation for other regions may be determined, which in turn

may create constraints for even more regions. This process of propagating

constraints is then repeated until one of the following conditions hold:

1. The characteristic described by the theory cannot be preserved.

If the characteristic described by the theory cannot be preserved, then

there exist no feasible loop invariant, obtained by removing operations

from the given PME, that has the desired characteristic. In this case,

the algorithm returns without finding a feasible loop invariant with the

desired characteristic.

2. All operations described in the PME have been divided up

between the f
X

’s and fR
X

’s. When all operations have been divided
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up between the f
X

, and fR
X

, then the loop invariant and remainder have

been defined. Therefore, the constructed loop invariant is then returned

as a feasible loop invariant, obtained by removing operations from the

input PME, that possesses the desired characteristic.

3. No new constraints are introduced, and some operations have

not been assigned to either f
X

or fR
X

. If no new constraints are

introduced and the operations described in the PME have yet to be

completely divided up between f
X

and fR
X

, then there may be multiple

loop invariants that possess the desired characteristic. As no constraints,

thus far encountered, requires the operations to be either in f
X

or fR
X

,

then any of the operations that has yet to be assigned can be in either f
X

or fR
X

. Hence, the next phase of our algorithm enumerates through two

sets of loop invariants; one that assigns the operation to f
X

and another

that assigns the operation to fR
X

.

8.2.3 Enumeration

The Enumeration phase is executed when there are operations in the

PME that have not been assigned to either f
X

or fR
X

.

An operation that has yet to be assigned exists because no constraint

encountered so far requires it to be assigned either to f
X

or fR
X

. As such, the

operation can be assigned either to f
X

or fR
X

. Therefore, this phase creates

two sets of loop invariants where one set assigns the operation to f
X

, and the

other set assigns the same operation to fR
X

.
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Since assigning an operation to f
X

or fR
X

may result in a new constraint

being generated, the Construction phase is then repeated to propagate the new

constraint to other regions such that the desired characteristic is preserved.

In addition, by assigning the operation to f
X

(or fR
X

), the number of

unassigned operations is now reduced by one. Hence, we are ensured that

progress is made towards assigning all operations in the PME to either f
X

or

fR
X

, which is one of our two terminating conditions.

8.3 Illustration

We illustrate the constructive algorithm with an actual example, the

merging of the Cholesky factorization, followed by theTrinv operation. These

two operations are required in order to compute the inverse of a Symmetric

Positive Definite matrix [8]1.

The inputs to our algorithm are as follows:

1. Theorem 6.4.1, which describes the status of computation required to

ensure that loops can be merged, and

1 The inversion of the Symmetric Positive Definite matrix is a sequence of three opera-
tions, but to illustrate the Enumeration phase, only the first two operations will be merged.
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2. PMEs for the Cholesky factorization and Trinv, as given below:

F = Cholesky

PF =

 
eL
TL

⌘ Chol( bA
TL

) 0
eL
BL

⌘ bA
BL

eL�T
TL

eL
BR

⌘ Chol( bA
BR

� eL
BL

eLT

BL

)

!
,

where L ⌘ Chol(A) ^ LLT ⌘ A

G = Trinv

PG =

 
eT
TL

⌘ eL�1
TL

0
eT
BL

⌘ eL�1
BR

eL
BL

eL�
TL

1 eT
BR

⌘ eL�1
BR

!
.

Initialization Phase In this phase, we need to identify operations that must

be performed in the past and future. Recall that a loop invariant must assert

that the final result has been computed at the end of the loop. This implies

that

f
TL

(L
TL

) ⌘ Chol( bA
TL

) and g
TL

(T
TL

) ⌘ eL�1
TL

.

This implies that �(L
TL

) = Fully Updated, and �(T
TL

) = Fully Updated.

Similarly, because the loop invariant also asserts that nothing has been com-

puted at the start of the loop, then

gR
BR

(T
BR

) ⌘ eL�1
BR

,

and the Cholesky operation in the bottom-right region of P F must be per-

formed in fR
BR

.

Construction Phase Since the Cholesky Factorization of L
BR

cannot be

performed, �(L
BR

) 6= Fully Updated. Theorem 6.4.1 tells us that L
BR

must

only be used in future computation. In addition, because L
BR

is required to
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compute T
BL

, this implies that the operation L�1
BR

L
BL

must be computed in

the future. Hence, gR
BL

must minimally compute L�1
BR

L
BL

. Furthermore, this

means that �(T
BL

) 6= Fully Updated. This also implies that any operations

involving L
BR

in the post-condition for the Trinv cannot be fully updated.

For both F and G, there are still operations in their post-conditions

that we need to decide if they should be computed in the past or in the future.

For example, for the Cholesky operation, we still need to determine if the

operation A
BL

L�T
TL

, required to compute L
BL

, is performed in the past or in

the future. This implies that the Enumeration Phase will be performed.

Enumeration Phase Since the operation A
BL

L�T
TL

for the Trinv operation

can either be performed in the past or in the future, this phase of the algo-

rithm will enumerate the di↵erent loop invariants that perform the operation

A
BL

L�T
TL

in the past, followed by loop invariants that perform the operation

in the future.

It is first assumed that A
BL

L�T
TL

is performed in the past. This implies

that �(L
BL

) = Fully Updated. Since there is a change in the status of

�(L
BL

), the Construction Phase is repeated to propagate this change of status

to other regions. It may be the case that at the end of the Construction

Phase, there are still more operations that have not been divided between the

loop invariant and its remainder. Then the Enumeration Phase is executed

again, where now, in addition to performing the operation A
BL

L�T
TL

in the past,

another operation (e.g. A
BR

� L
BL

LT

BL

) is also performed in the past. This
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alternating execution of the Construction and Enumeration Phase creates a

tree-like structure as shown in Figure 8.1.

When loop invariants that assume A
BL

L�T
TL

is performed in the past

have been generated, the operation is then assigned to fR
X

, indicating that it is

performed in the future. Again, there is a change in the status of �(L
BL

) and

the Construction phase is repeated. The resulting five pairs of loop invariants

whose loops can be merged are given in Figure 8.2.

8.4 Summary

In this chapter, we introduced a constructive algorithm for deriving

loop invariants for algorithms that possess a desired characteristic. With this

constructive algorithm, the process of deriving a loop with a desired charac-

teristic is now a goal-oriented process.

This generalizes the notion of goal-oriented programming advocated by

eminent computer scientists such as Dijkstra [13, 14, 25], where the goal is not

only to derive a loop that computes the correct output, but also to derive a

loop that has a particular desired characteristic.
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L

BL

⌘ A

BL

L

�T

TL

L

BL

⌘ b
L

BL

L

BR

⌘ A

BR

� L

BL

L

T

BL

T

BL

⌘ b
T

BR

T

BL

⌘ T

BR

L

�1
TL

L

BR

⌘ b
L

BR

T

BL

⌘ b
T

BR

L

BR

⌘ b
L

BR

T

BL

⌘ T

BR

L

�1
TL

T

BL

⌘ b
T

BR

Enumeration!

Construction!

Enumeration!

Construction!

Enumeration!

Construction!

Merged Variant 1!
Merged Variant 2!

Merged Variant 3!
Merged Variant 4!

Merged Variant 5!

Figure 8.1: Enumerating di↵erent assignments of operations. Nodes represent
f
X

and g
X

, edges represent paths taken by the algorithm when enumerating
loop invariants
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Merged Variant 1

ICholesky =

✓
L
TL

⌘ Chol(A
TL

) 0

L
BL

⌘ A
BL

L�T
TL

L
BR

⌘ A
BR

� L
BL

LT

BL

◆
,

ITrinv =

 
T
TL

⌘ L�1
TL

0

T
BL

⌘ L�1
BR

L
BL

L�1
TL

T
BR

⌘ bT
BR

!

Merged Variant 2

ICholesky =

✓
L
TL

⌘ Chol(A
TL

) 0

L
BL

⌘ A
BL

L�T
TL

L
BR

⌘ A
BR

� L
BL

LT

BL

◆
,

ITrinv =

 
T
TL

⌘ L�1
TL

0

T
BL

⌘ bT
BL

T
BR

⌘ bT
BR

!

Merged Variant 3

ICholesky =

 
L
TL

⌘ Chol(A
TL

) 0

L
BL

⌘ A
BL

L�T
TL

L
BR

⌘ bL
BR

!
,

ITrinv =

 
T
TL

⌘ L�1
TL

0

T
BL

⌘ L
BL

L�1
TL

T
BR

⌘ bT
BR

!

Merged Variant 4

ICholesky =

 
L
TL

⌘ Chol(A
TL

) 0

L
BL

⌘ A
BL

L�T
TL

L
BR

⌘ bL
BR

!
,

ITrinv =

 
T
TL

⌘ L�1
TL

0

T
BL

⌘ bT
BL

T
BR

⌘ bT
BR

!

Merged Variant 5

ICholesky =

 
L
TL

⌘ Chol(A
TL

) 0

L
BL

⌘ bL
BL

L
BR

⌘ bL
BR

!
,

ITrinv =

 
T
TL

⌘ L�1
TL

0

T
BL

⌘ bT
BL

T
BR

⌘ bT
BR

!

.

Figure 8.2: Pairs of loop invariants whose loops can be merged
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Chapter 9

Beyond Dense Linear Algebra

Recall that the fundamental observation is that an analysis of the code

can be replaced by an analysis of the loop invariant because the loop invariant

is the essence of the loop. If a loop invariant can be found, then that loop

invariant is su�cient to derive an algorithm that computes the desired oper-

ation. The natural questions are “Can such a loop invariant be found?”, and

“Can the FLAME derivation process be relied upon to turn that loop invariant

into an algorithm that can be implemented?”. In this chapter, we examine

the applicability of the approach beyond dense linear algebra.

9.1 Insights From Dense Linear Algebra Algorithms

In the DLA domain, algorithms for a desired DLA operation are imple-

mented as a loop with finite iterations around sequences of other simpler DLA

operations. This is inherently the nature of linear algebra operations, and is

apparent when we examine the DLA software stack.

At the lowest level of the DLA software stack are the level 1 BLAS,

which are operations on vectors. These operations are, themselves, loops

around addition and/or multiplications of scalar elements. Using a single loop
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with finite iterations around these level 1 BLAS subroutines, matrix-vector

operations that make up the level 2 BLAS subroutines are then implemented.

Level 3 BLAS routines and more complicated operations, incorporated in soft-

ware libraries such as libFLAME and LAPACK, are then implemented as loops

around the lower levels of the DLA software stack.

The FLAME derivation process captures these particular characteris-

tics of DLA algorithms in that all FLAME derived algorithms are made up

of a loop around other DLA operations and the loop has finite iterations. A

finite number of iterations is ensured because the FLAME derivation process

identifies a loop guard that is bounded by the size of one of the operands.

When the loop has swept through the operand, the loop terminates.

These properties of algorithms derived using the FLAME derivation

process implies that the operation is an example of a class of functions known

as primitive recursive functions [12].

9.2 Primitive Recursive Functions (PRF)

The study of primitive recursive functions can be traced back to Dedekind

in 1888, where he tried to understand the meaning of the natural numbers [12].

Skolem and other mathematicians showed that many interesting mathemat-

ical functions, such as addition, multiplication, exponentiation, the min (or

max) function, are all primitive recursive [48]. However, it was only in 1935

that Rózsa Péter, considered the founder of Recursive Functions Theory [43],

coined the term “primitive recursive”.
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Definition 9.2.1. The set of Primitive Recursive Functions is defined as the

smallest set of functions that

1. Contains the following initial functions:

(a) the Zero function, Z : Nn ! N where

O(x
0

, x
1

, . . . , x
n�1) = 0,

(b) the Successor function, S : N! N where

S(x) = x+ 1,

and

(c) the Identity (sometimes known as Projection) functions, ⇡n

i

: Nn !

N where

⇡n

i

(x
0

, x
1

, . . . , x
n�1) = x

i

.

2. Is closed under composition, i.e given primitive recursive functions G,H
0

,

H
1

, . . . ,H
k�1:

F(x
0

, x
1

, . . . , x
n�1) = G( H

0

(x
0

, x
1

, . . . , x
n�1),

H
1

(x
0

, x
1

, . . . , x
n�1), . . . ,

H
k�1(x0

, x
1

, . . . , x
n�1))

3. Is closed under primitive recursion, i.e:

F(x
0

, x
1

, . . . , x
n�1, 0) = G(x

0

, x
1

, . . . , x
n�1)

F(x
0

, x
1

, . . . , x
n�1, S(k)) = H(x

0

, x
1

, . . . , x
n�1, k,F(x0

, x
1

, . . . , x
n�1, k)),

where H and G are primitive recursive functions, and the recursion is

said to be with respect to variable k.
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Primitive recursive functions are defined on the natural numbers in-

stead of floating point numbers or more complicated data structures such as

vectors, matrices, tuples, trees and graphs. However, it has been shown that

floating point numbers and other data structures can be mapped to the nat-

ural numbers using encoding and decoding functions (e.g. Cantor or Gödel

encoding) that are themselves primitive recursive [46, 40]. Without loss of

generality, we will continue the discussion assuming that there exists such en-

coding and decoding functions have been applied to map more complicated

data structures to the natural numbers.

9.2.1 Important results regarding primitive recursive functions

A key result of primitive recursive functions that is pertinent to this

discussion is that primitive recursive functions that are defined via primitive

recursion can be defined iteratively [46, 22, 23].

Definition 9.2.2. A function F is defined iteratively from the primitive re-

cursive function H in the following manner:

F(x, 0) = x
F(x, S(k)) = HS(k)(x)

= Hk+1(x)
= H(Hk(x, k))
= H(F(x, k)),

where Hk(x) denotes the result of applying H k times, successively.

Intuitively, the iterative definition of a primitive recursive function

states that if no iteration is performed then nothing is computed and the
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function simply returns the original value. Otherwise, the value computed in

k+1 iterations is computed by applying the function H to the value computed

after k iterations.

More generally, it is proven that a function is primitive recursive if and

only if there exists a for-loop that computes the function [38].

9.3 FLAME algorithms compute primitive recursive func-
tions

Let ⌦ be a DLA operation that can be derived using the FLAME

methodology. This means that ⌦ can be computed with an algorithm in a

finite number of iterations and the updates performed by the algorithm are

DLA operations that can be derived using the FLAME process.

This implies that ⌦ is primitive recursive and there exists an iterative

definition of ⌦ of the form:

⌦(x) = F(x, n) where

⇢
F(x, 0) = x,

F(x, S(k)) = H(F(x, k)).

Here, H is primitive recursive.

Notice that if the FLAME methodology is able to derive an algorithm

for the function ⌦, it means that the primitive recursive functions F and H

are defined. In addition, there exists a parameter k which is monotonically

decreasing due to the Successor function S. We show, next, how these functions

are related to di↵erent steps in the FLAME derivation process.
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9.3.1 F and the loop invariant

Recall that the fundamental ingredient that underlies the FLAME

derivation process is the identification of the loop invariant which asserts how

the current values have been computed at the start and end of every iteration.

Notice that the function F(x, k) computes the value obtained after k succes-

sive application of the function H. In addition, the value computed by F(x, k)

is an intermediate result that is used to compute the final value computed by

⌦(x). Since the loop invariant describes how the current values after k itera-

tion was computed, and the function F(x, k) computes the intermediate value

after k applications of the function H, it follows that the loop invariant must

be equivalent to the function F(x, k), for 0  k  n.

9.3.2 H and the update statements

The last step of the FLAME derivation process is to derive the update

statements by comparing the di↵erence between the loop invariants described

in Steps 6 and 7. Since the loop invariants in Steps 6 and 7 describe the value

computed by the previous iteration and the value that will be computed at the

end of the current iteration respectively, it implies that in the S(k)th iteration

of the loop, the loop invariant in Step 6 describes F(x, k) whereas the loop

invariant in Step 7 describes F(x, S(k)). Since

F(x, S(k)) = H(F(x, k)),

it follows that H must be a function that represents all the update statements

within the loop body. This implies that Step 8 of the FLAME derivation
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process derives H.

9.3.3 S(k) and sweeping through the operands

Recall that the FLAME derivation process ensures progress is made

through the loop by systematically sweeping through the operands during

Steps 5a and 5b. Steps 5a and 5b serve to repartition the regions of the

operands to expose subregions and move these exposed subregions across the

thick lines at the end of every iteration. When no more subregions can be

exposed, the loop has ended.

The e↵ect of Steps 5a and 5b is that the two steps ensure that the

dimensions of the regions containing all of the operands at the start of the

loop will decrease monotonically and will eventually become empty.

In the definition the function F, the second parameter k and the Suc-

cessor function S perform a similar function as Steps 5a and 5b in that they

ensure progress is made and the recursion/iteration will eventually terminate.

9.4 Characterizing Domains Outside of Dense Linear
Algebra

Now, we attempt to generalize the FLAME derivation process beyond

the DLA domain. Specifically, we want to know if the FLAME derivation

methodology is applicable when the desired function is primitive recursive and

defined iteratively.

We know that if a primitive recursive function F is defined iteratively,
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then there exist a primitive recursive function H and a particular value S(k)

such that:

F(x, S(k)) = H(F (x, k)).

For all 0 < i < S(k), F(x, i) describes how intermediate values are computed

after H is applied successively i times. In addition, F(x, i) describes the input

values to H and F(x, S(i)) describes the output of applying H to F(x, i).

Since F describes both the input and output of H, F must be both the pre-

condition and post-condition for H. Therefore F must be, by definition, the

loop invariant.

Now, given F, we want to show that H can be derived from F. We

prove that H can be derived given F, by proving the stronger statement that

all primitive recursive functions can be derived from their pre-condition and

post-condition.

Theorem 9.4.1. If F is primitive recursive, then an algorithm that computes

F can be derived from its pre-condition and post-condition.

Proof: Since F is primitive recursive, then F must be defined as described

in Definition 9.2.1. Hence, we prove the theorem via structural induction.

Without loss of generality, let us assume that:

y = F(x
0

, x
1

, . . . , x
n�1),

and the pre-condition is given by:

P
pre

: y ⌘ by ^ 8
0k<n

x
k

⌘ bx
k

.
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Base Case: F is an initial function.

We want to show that all three initial functions can be derived.

Case 1: F is the zero function, O.

By definition, the zero function returns the value 0 for all possible

input values. Therefore, the post-condition is given by y ⌘ 0. Given

the post-condition y ⌘ 0, then an algorithm that computes F is

y := 0;

Case 2: F is the successor function, S.

The successor function has exactly one input parameter, x
0

, and

returns the next value following the value of its input. Hence, its

post-condition must be

P
post

: n = 1 ^ y ⌘ x
0

+ 1,

where n is the number of parameters of F. Therefore, an algorithm

that computes y must be

y := x
0

+ 1;

Case 3: F is a projection function, ⇡
i

.

A projection function returns the value of one of the input parame-

ters as the output value. Hence, for each projection function ⇡
i

, the

post-condition of ⇡
i

is y ⌘ x
i

. Then, an algorithm that computes

F is given by

y := x
i

;
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Inductive Cases

Inductive Hypothesis: Assume that there exists primitive recursive func-

tions G,H, and H
i

, i 2 N where algorithms that computes them can be

derived from their pre-conditions and post-conditions. We want to show

that an algorithm that computes a primitive recursive function F, can

be derived from its pre-condition and post-condition, if F is composed

from the primitive recursive functions G,H, and H
i

, i 2 N.

Case 1: F is obtained via composition.

Since F is obtained via composition, there must exist primitive

recursive functions G and H
i

, where 0  i < k such that:

F(x
0

, x
1

, . . . , x
n�1) = G( H

0

(x
0

, x
1

, . . . , x
n�1),

H
1

(x
0

, x
1

, . . . , x
n�1), . . .

H
k�1(x0

, x
1

, . . . , x
n�1)).

Notice that F can be computed in the following manner:

y
0

:= H
0

(x
0

, x
1

, . . . , x
n�1)

y
1

:= H
1

(x
0

, x
1

, . . . , x
n�1)

...
y
k�1 := H

k�1(x0

, x
1

, . . . , x
n�1)

y := G(y
0

, y
1

, . . . , y
k�1).

This means that the post-condition for F can be described as fol-

lows:

P
post

:
^

0i<k

y
i

⌘ H
i

(x
0

, x
1

, . . . , x
n�1) ^ y ⌘ G(y

0

, y
1

, . . . , y
k�1).

Hence, an algorithm for F can be derived if algorithms that compute

G and H
i

can be derived.
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Since the input parameters of F are not changed by the sequence of

computation, and the input parameters of F are the input parame-

ters of H
i

for all i, then the pre-conditions for all H
i

’s must be the

pre-condition for F. In addition, the post-conditions for H
i

’s must

be y
i

⌘ H
i

(x
0

, x
1

, . . . , x
n�1).

The parameters of G are the outputs of H
i

’s. This implies that the

pre-condition for G must be:

^

0i<k

y
i

⌘ H
i

(x
0

, x
1

, . . . , x
n�1).

In addition, because G must compute the final result y, it follows

that the post-condition for Gmust be the same as the post-condition

for F.

Since the pre-condition and post-conditions for G and H
i

’s can be

identified from the pre-condition and post-condition of F, then the

inductive hypothesis allows us to conclude that algorithms for G

and H
i

’s can be derived. Hence, an algorithm that computes F can

be derived.

Case 2: F is obtained via primitive recursion.

Recall that functions obtained via primitive recursion can be de-

fined iteratively. This implies that there exist a primitive recursive

function H and a particular value S(k) such that:

F(x
0

, x
1

, . . . , x
n�1, S(k)) = HS(k)(x

0

, x
1

, . . . , x
n�1)

= H(Hk(x
0

, x
1

, . . . , x
n�1))

= H(F (x
0

, x
1

, . . . , x
n�1, k)).
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This implies that F can be computed in the following manner:

y
0

:= (x
0

, x
1

, . . . , x
n�1)

i := 0
while(i  k){
y
i+1

:= H(y
i

)
i := i+ 1

}
y := yS(k)

and the post-condition for F is given by:

P
post

: 8
0ik yi+1

⌘ H(y
i

) ^
y ⌘ yS(k) ^
y
0

⌘ (bx
0

, bx
1

, . . . , bx
n�1)

If an algorithm can be derived for computing H, then an algorithm

for F can be derived from its pre-condition and post-condition.

This implies that we need to identify the pre-condition and post-

condition for H.

Since

F(x
0

, x
1

, . . . , x
n�1, k) ⌘ H(F(x

0

, x
1

, . . . , x
n�1, k � 1)),

the H computes the desired output when the input is

F(x
0

, x
1

, . . . , x
n�1, k � 1). Hence, the post-condition of H must be

the post-condition of F(x
0

, x
1

, . . . , x
n�1, k). In addition, the input

to H is the output of F(x
0

, x
1

, . . . , x
n�1, k�1). This means that the

pre-condition forHmust be the post-condition of F(x
0

, x
1

, . . . , x
n�1, k�

1). Hence the pre-condition for H is given by:

8
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⌘ H(y
i

) ^
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k�1 ^
y
0
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0
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1

, . . . , bx
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Since the pre-condition and post-condition for H can be derived,

then our induction hypothesis tells us that an algorithm for H can

be derived. This implies that an algorithm that computes F can be

derived from its pre-condition and post-condition.

Since algorithms for F can be derived for the base case where F is an

initial function, and the inductive cases where F is either obtained via composi-

tion or primitive recursion, then by structural induction, all primitive recursive

functions can be derived from their pre-conditions and post-conditions.

9.5 Summary

In this section, we showed that the DLA algorithms derived using the

FLAME derivation methodology compute functions that belong to the class of

primitive recursive functions. In particular, we showed that the di↵erent steps

in the FLAME derivation methodology map to the di↵erent primitive recur-

sive functions, F,H, and S in the iterative definition of a primitive recursive

function.

More importantly, we showed that primitive recursive functions that

are defined iteratively have a loop invariant described by the function F. In

addition, we proved that given F, algorithms that computes these primitive

recursive functions can be derived. This implies that the FLAME derivation

methodology extends to other domains beyond dense linear algebra as long as

F can be described.
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Chapter 10

Conclusion and Future Directions

The thesis of this dissertation is that the loop invariant can be used to

formally derive loops that have the potential for attaining high performance,

in a goal-oriented fashion. In this dissertation, we provided evidence support-

ing the thesis by demonstrating that characteristics of the loop that impact

performance can be identified a priori from the loop invariant. In addition,

we introduced a constructive algorithm for identifying loop invariants of loops

that possess the desired characteristic when implemented.

10.1 Results

In this section, we reiterate the contributions of this work to computer

science.

Loop invariants contain information regarding the performance char-

acteristic of the loop. For the domain of DLA, we showed that perfor-

mance characteristics of loops can be identified from their loop invariants (and

remainders). This result supports the thesis of this dissertation in that the

loop invariant is used to identify algorithms with specific performance char-
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acteristics. The theories developed in this dissertation allow one to analyze

and identify loop invariants for a given operation such that the identified loop

invariants yield algorithms that have the potential to perform well on a given

machine architecture.

Generalization of goal-oriented programming. The generalization of

goal-oriented programming is demonstrated through the introduction of a con-

structive algorithm for identifying loop invariants with desired characteristics.

In this dissertation, we generalized the notion of a goal from obtaining a prov-

ably correct loop to a goal that requires the derived loop to also possess a

particular desirable characteristic.

Avoiding the phase-ordering problem when optimizing DLA loops.

We showed that a goal-oriented approach towards optimizing DLA loops al-

lows one to avoid the phase-ordering problem when optimizing DLA loops. By

deriving the loop invariant(s) with the desired characteristic, one avoids hav-

ing to identify the sequence of transformations that will restructure the input

loop into an output loop with the desired characteristic. The goal-oriented

approach has the additional benefit of potentially yielding multiple loop in-

variants with the desired characteristic. As there may be multiple loops with

the desired characteristic, identifying di↵erent sequences of transformations

would exacerbate the phase ordering-problem.
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Unified optimization framework for loop transformations and DLA

expert knowledge. For the domain of DLA, we showed that many loop

transformations automatically applied by traditional compilers and heuristics

used by the DLA expert can be unified under a framework based on a calculus

of loop invariants. Through this unified framework, one can reap the benefits

of compiler loop transformation and/or use expert knowledge as leverage to

optimize DLA algorithms, without being hindered by the di↵erent representa-

tions (e.g., explicit indices, or black-box subroutine calls) required by the two

approaches. We showed that dependence analysis and legality of commonly

employed loop transformations in DLA can be determined through an analysis

of the status of computation. This higher level of abstraction with the loop

invariant allows analysis and optimization to be performed on loop-based code

that includes calls to black-box libraries. DxTer [34], a prototype system that

implements Design by Transformation (DxT) [35], implements these ideas by

using status of computation to simplify the analysis and optimization of the

DLA algorithms.

10.2 Future Work

Possible directions that build and extend the work in this dissertation

are suggested in this section.

Extension of the theories. Recall that the prototypical operation consists

of a single output operand that has been partitioned into four regions. As the
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FLAME derivation methodology has been applied to operations where there

are more than one output operand [50] or the output operand has been par-

titioned into more than four regions [18, 19], a natural extension is to prove

that the analysis and theories in this dissertation extend to these operations

that do not conform to our prototypical operation. For these non-conforming

operations, the inputs to the FLAME derivation methodology are the PME

and loop invariants that describe how regions of the output have been com-

puted, which are also the exact inputs required for the analysis and theories

developed in this dissertation. Hence, we believe that work in this dissertation

can be extended to these non-conforming operations.

Non-performance related properties. We provided concrete examples

for using the loop invariant to identify performance characteristics of the loop.

In a future where power consumption of a chip is increasingly becoming a

limit [20], the measure of what is a desired characteristic of an algorithm

may be GFLOPS/Watt instead of maximum GFLOPS attained. Architecture

research has shown that significant reduction in power consumption can be

attained through delayed normalization, where intermediate values are kept in

the accumulator for as long as possible [52, 42]. As each algorithm is unique

in the way data is accessed and computed, we conjecture that identifying

algorithms that allow normalization to be delayed as long as possible may,

in essence, be similar to finding algorithms with the “right” data access and

computation behavior. The “right” data access and computation would then
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be the desired characteristic that we attempt to extract from the loop invariant

of the loop.

Loop invariants of domains outside of DLA. The analysis and theories

developed in this dissertation were based on the observation that a loop, in the

DLA domain, sweeps through inputs and the output in a systematic manner.

Hence, the loop invariant for such a loop can be described in terms of the status

of computation of the di↵erent regions of the output operand. In addition, we

showed that every primitive recursive function that is defined by primitive

recursion has a loop invariant, and that given a loop invariant for a primitive

recursive function, an algorithm that computes the function can be derived

from the loop invariant.

Hence, a domain where (1) the operations are primitive recursive func-

tions, (2) loops sweep through data in a systematic manner, and (3) loop

invariants can be described in terms of the status of computation, seems to

hold potential for extending the work in this dissertation. The natural ques-

tion is “How would one describe such a loop invariant in domains outside

of DLA?”. A detailed analysis of loop-based algorithms in other domains is

warranted.
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Appendix 1

Table of Symbols

↵, �, . . . Scalars variables
a, b, . . . Vectors variables
A,B . . . Matrices variables
a
T

, B
TL

, . . . Regions of variables

b↵,ba, bA, . . . Original values in the variables ↵, a, and A

e↵,ea, eA, . . . Final values in the variables ↵, a, and A
F,G,H Operations for which algorithms need to be found
PF Partitioned Matrix Expression (PME) for the opera-

tion F
IF A loop invariant for the operation F
RIF The Remainder of loop invariant IF

F
TL

,G
TR

, . . . Expression for di↵erent regions in the Partitioned Ma-
trix Expression

f
TL

, g
TR

, . . . Functions that represent how the di↵erent regions in
the loop invariant can be computed from the original
values

fR
TL

, gR
TR

, . . . Functions that represent how the di↵erent regions in
the Remainder need to be computed to obtain the
final values

�(x) Status of computation for the region x
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