
Updating an LU factorization with Pivoting

FLAME Working Note #21

Enrique S. Quintana-Ort́ı
Departamento de Ingenieŕıa y Ciencia de Computadores

Universidad Jaume I
Campus Riu Sec

12.071 Castellón, Spain
quintana@icc.uji.es

Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
rvdg@cs.utexas.edu

September 6, 2006

Abstract

We show how to compute an LU factorization of a matrix when the factors of a leading principle
submatrix are already known. The approach incorporates pivoting akin to partial pivoting, a strategy we
call incremental pivoting. An implementation using the Formal Linear Algebra Methods Environment
(FLAME) Application Programming Interface (API) is described. Experimental results demonstrate
practical numerical stability and high performance on an Intel Itanium2 processor based server.

1 Introduction

In this paper we consider the LU factorization of a nonsymmetric matrix, A, partitioned as

A →
(

B C
D E

)
(1)

when a factorization of B is to be reused as the other parts of the matrix change. This is known as the
updating of an LU factorization.

Applications arising in Boundary Element Methods (BEM) often lead to very large dense linear systems [3,
5]. For many of these applications the goal is to optimize a feature of an object. For example, BEM may
be used to model the radar signature of an airplane. In an effort to minimize this signature, it may be
necessary to optimize the shape of a certain component of the airplane. If the degrees of freedom associated
with this component are ordered last among all degrees of freedom, the matrix presents the structure given
in (1). Now, as the shape of the component is modified, it is only the matrices C, D, and E that change
together with the right-hand side vector of the corresponding linear system. Since the dimension of B is
frequently much larger than those of the remaining three matrices, it is desirable to factorize B only once
and to update the factorization as C, D, and E change. A standard LU factorization with partial pivoting
does not provide a convenient solution to this problem, since the rows to be swapped during the application
of the permutations may not lie only within B.

1

Little literature exists on this important topic. We have been made aware that an unblocked OOC
algorithm similar to our algorithm was reported in [22], but we have not been able to locate a copy of that
report. The proposed addition of this functionality to LAPACK is discussed in [4]. We already discussed
preliminary results regarding the algorithm proposed in the current paper in a conference paper [12], in
which its application to out-of-core LU factorization with pivoting is the main focus1. In [9] the updating of
a QR factorization via techniques that are closely related to those proposed for the LU factorization in the
current paper is reported.

The paper is organized as follows: in Section 2 we review algorithms for computing the LU factorization
with partial pivoting. In Section 3, we discuss how to update an LU factorization by considering the
factorization of a 2 × 2 blocked matrix. The key insight of the paper is found in this section: High-
performance blocked algorithms can be synthesized by combining the pivoting strategies of LINPACK and
LAPACK. Numerical stability is discussed in Section 4 and performance is reported in Section 5. Concluding
remarks are given in the final section. We hereafter assume that the reader is familiar with Gauss transforms,
their properties, and how they are used to factor a matrix.

We start indexing elements of vectors and matrices at 0. Capital letters, lower case letter, and lower case
Greek letters will be used to denote matrices, vectors, and scalars, respectively. The identity matrix of order
n is denoted by In.

2 The LU factorization with partial pivoting

Given an n × n matrix A, its LU factorization with partial pivoting is given by PA = LU . Here P is a
permutation matrix of order n, L is n × n unit lower triangular, and U is n × n upper triangular. We will
denote the computation of P , L, and U by

[A, p] := [{L\U}, p] = LU(A), (2)

where {L\U} is the matrix whose strictly lower and upper triangular parts equal those of L and U , respec-
tively. Matrix L has ones on the diagonal, which need not be stored, and the factors L and U overwrite the
original contents of A. The permutation matrix is generally stored in a vector p of n integers.

Solving the linear system Ax = b now becomes a matter of solving Ly = Pb followed by Ux = y. These
two stages are referred to as forward substitution and backward substitution, respectively.

2.1 Unblocked right-looking LU factorization

Two unblocked algorithms for computing the LU factorization with partial pivoting are given in Figure 1.
There, n(·) stands for the number of columns of a matrix; the thick lines in the matrices/vectors denote how
far computation has progressed; Pivot(x) determines the element in x with largest magnitude, swaps that
element with the top element, and returns the index of the element that was swapped; and P (π1) is the
permutation matrix constructed by interchanging row 0 and row π1 of the identity matrix. The dimension
of a permutation matrix will not be specified since it is obvious from the context in which it is used. We
believe the rest of the notation to be intuitive [2, 1]. Both algorithms correspond to what is usually known
as the right-looking variant. Upon completion matrices L and U overwrite A.

The LINPACK variant, LUlin
unb hereafter, computes the LU factorization as a sequence of Gauss transforms

interleaved with pivot matrices:

Ln−1

(
In−1 0

0 P (πn−1)

)
· · ·L1

(
1 0
0 P (π1)

)
L0P (π0)A = U.

For the LAPACK variant, LUlap
unb, it is recognized that by swapping those rows of matrix L that were

already computed and stored to the left of the column that is currently being eliminated, the order of
1More practical approaches to out-of-core LU factorization with partial pivoting exist [19, 18, 15], which is why that appli-

cation of the approach is not further mentioned.

2

Algorithm: [A, p] := [{L\U}, p] = LUunb(A)

Partition A→
ţ

ATL ATR

ABL ABR

ű
and p→

ţ
pT

pB

ű

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A and

ţ
pT

pB

ű
→

0
@

p0

π1

p2

1
A

where α11 and π1 are scalars

LINPACK variant: LAPACK variant:ůţ
α11

a21

ű
, π1

ÿ
:= Pivot

ţ
α11

a21

ű

if α11 6= 0 thenţ
aT
12

A22

ű
:= P (π1)

ţ
aT
12

A22

ű

a21 := a21/α11

A22 := A22 − a21aT
12

endif

ůţ
α11

a21

ű
, π1

ÿ
:= Pivot

ţ
α11

a21

ű

if α11 6= 0 thenţ
aT
10 aT

12
A20 A22

ű
:= P (π1)

ţ
aT
10 aT

12
A20 A22

ű

a21 := a21/α11

A22 := A22 − a21aT
12

endif

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A and

ţ
pT

pB

ű
←

0
@

p0

π1

p2

1
A

endwhile

Figure 1: LINPACK and LAPACK unblocked algorithms for the LU factorization.

the Gauss transforms and the pivot matrices can be rearranged so that P (p)A = LU . Here P (p), with
p = (π0 · · · πn−1)T , denotes the n× n permutation

(
In−1 0

0 P (πn−1)

)
· · ·

(
1 0
0 P (π1)

)
P (π0).

Both algorithms will execute to completion even if an exact zero is encountered on the diagonal of U . This
is important since it is possible that matrix B in (1) is singular even if A is not.

The difference between the two algorithms becomes most obvious when forward substitution is performed.
For the LINPACK variant forward substitution requires the application of permutations and Gauss trans-
forms to be interleaved. For the LAPACK algorithm, the permutations can be applied first, after which a
clean lower triangular solve yields the desired (intermediate) result: Ly = P (p)b. Depending on whether the
LINPACK or the LAPACK variant was used for the LU factorization, we denote the forward substitution
stage respectively by y := FSlin(A, p, b) or y := FSlap(A, p, b), where A and p are assumed to be the outputs
of the corresponding factorization.

2.2 Blocked right-looking LU factorization

It is well-known that high performance can be achieved in a portable fashion by casting algorithms in terms
of matrix-matrix multiplication [13, 10, 14, 8]. In Figure 2 we show LINPACK(-like) and LAPACK blocked
algorithms, LUlin

blk and LUlap
blk respectively, both built upon an LAPACK unblocked algorithm. The former

algorithm really combines the LAPACK style of pivoting, within the factorization of a panel of width b,
with the LINPACK style of pivoting. The two algorithms attain high performance on modern architectures
with (multiple levels of) cache memory by casting the bulk of the computation in terms of the matrix-
matrix multiplication A22 := A22 − L21U12, also called a rank-k update, which is known to achieve high
performance [6].

3

Algorithm: [A, p] := [{L\U}, p] = LUblk(A)

Partition A→
ţ

ATL ATR

ABL ABR

ű
and p→

ţ
pT

pB

ű

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Determine block size b
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

ţ
pT

pB

ű
→

0
@

p0

p1

p2

1
A

where A11 is b× b and p1 has b elements

LINPACK variant: LAPACK variant:ůţ
A11

A21

ű
, p1

ÿ
:=

ůţ {L\U}11
L21

ű
, p1

ÿ

= LUlap
unb

ţ
A11

A21

ű

ůţ
A11

A21

ű
, p1

ÿ
:=

ůţ {L\U}11
L21

ű
, p1

ÿ

= LUlap
unb

ţ
A11

A21

ű

ţ
A12

A22

ű
:= P (p1)

ţ
A12

A22

ű ţ
A10 A12

A20 A22

ű
:= P (p1)

ţ
A10 A12

A20 A22

ű

A12 := U12 = L−1
11 A12 A12 := U12 = L−1

11 A12

A22 := A22 − L21U12 A22 := A22 − L21U12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

ţ
pT

pB

ű
←

0
@

p0

p1

p2

1
A

endwhile

Figure 2: LINPACK and LAPACK blocked algorithms for the LU factorization built upon an LAPACK
unblocked factorization.

3 Updating an LU factorization

In this section we discuss how to compute the LU factorization of the matrix in (1) in such a way that the
LU factorization with partial pivoting of B can be reused if D, C, and E change. We consider A in (1) to
be of dimension n × n, with square B and E of orders nB and nE , respectively. For reference, factoring
the matrix in (1) using the standard LU factorization with partial pivoting costs 2

3n3 flops (floating-point
arithmetic operations). In this expression (and future computational cost estimates) we neglect insignificant
terms of lower-order complexity, including the cost of pivoting the rows.

3.1 Basic procedure

We propose employing the following procedure, consisting of 5 steps, which computes an LU factorization
with incremental pivoting of the matrix in (1):

Step 1: Factor B. Compute the LU factorization with partial pivoting

[B, p] := [{L\U}, p] = LUlap
blk(B).

This step is skipped if B was already factored. If the factors are to be used for future updates to C, D, and
E, then U needs to be saved since it is overwritten by subsequent steps.

Step 2: Update C consistent with the factorization of B:

C := FSlap(B, p, C).

4

Approximate cost (in flops)
Operation Basic SA LAPACK SA LINPACK

procedure procedure procedure
1: Factor B 2

3n3
B

2
3n3

B
2
3n3

B

2: Update C n2
BnE n2

BnE n2
BnE

3: Factor
(

U
D

)
n2

BnE + 2
3n3

B n2
BnE + 1

2bn2
B n2

BnE + 1
2bn2

B

4: Update
(

C
E

)
2nBn2

E +n2
BnE 2nBn2

E +n2
BnE 2nBn2

E +bnBnE

5: Factor E 2
3n3

E
2
3n3

E
2
3n3

E

Total 2
3n3 + 2

3n3
B + n2

BnE
2
3n3 +n2

B

(
1
2b + nE

)
2
3n3 +bnB

(
nB

2 + nE

)

Table 1: Computational cost (in flops) of the different approaches to compute the LU factorization of the
matrix in (1). The highlighted costs are those incurred in excess of the cost of a standard LU factorization.

Step 3: Factor
(

U
D

)
. Compute the LU factorization with partial pivoting

[({L̄\Ū}
D

)
, r

]
:= LUlin

blk

(
U
D

)
.

Here Ū overwrites the upper triangular part of B (where U was stored before this operation). The lower
triangular matrix L̄ that results needs to be stored separately, since both L, computed in Step 1, and L̄ are
needed during the forward substitution stage when solving a linear system.

Step 4: Update
(

C
E

)
consistent with the factorization of

(
U
D

)
:

(
C
E

)
:= FSlin

((
L̄
D

)
, r,

(
C
E

))
.

Step 5: Factor E. Finally, compute the LU factorization with partial pivoting

[E, s] := LUlap
blk(E).

3.2 Analysis of the basic procedure

For now, the factorization in Step 3 does not take advantage of any zeroes below the diagonal of U : After

matrix B is factored and C is updated, the matrix
(

U C
D E

)
is factored as if it is a matrix without special

structure. Its cost is stated in the column labeled “Basic procedure” in Table 1. If nE is small (that is,
nB ≈ n), there is clearly no benefit to reusing an already factored B. Also, the procedure requires additional
storage for the nB × nB lower triangular matrix L̄ computed in Step 3.

We describe next how to reduce both the computational and storage requirements by exploiting the upper
triangular structure of U during Steps 3 and 4.

3.3 Exploiting the structure in Step 3

A blocked algorithm that exploits the upper triangular structure of U is given in Figure 3 and illustrated
in Figure 4. We name this algorithm LUsa−lin

blk to reflect that it computes a “Structure-Aware” (SA) LU

factorization. At each iteration of the algorithm, the panel of b columns consisting of
(

U11

D1

)
is factored

using the LAPACK blocked algorithm LUlap
unb. (In our implementation this algorithm is modified to, in

5

Algorithm:

ůţ
U
D

ű
, L̄, r

ÿ
:= LUsa−lin

blk

ţ
U
D

ű

Partition U →
ţ

UTL UTR

0 UBR

ű
, D → ą

DL DR

ć
, L̄→

ţ
L̄T

L̄B

ű
, r →

ţ
rT

rB

ű

where UTL is 0× 0, DL has 0 columns, L̄T has 0 rows, and rT has 0 elements

while n(UTL) < n(U) do
Determine block size b
Repartition

ţ
UTL UTR

0 UBR

ű
→

0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,

ą
DL DR

ć→ ą
D0 D1 D2

ć
,

ţ
L̄T

L̄B

ű
→

0
@

L̄0

L̄1

L̄2

1
A,

ţ
rT

rB

ű
→

0
@

r0

r1

r2

1
A

where U11 is b× b, D1 has b columns, L̄1 has b rows, and r1 has b elements

ůţ {L̄1\U11}
D1

ű
, r1

ÿ
:= LUlap

unb

ţ
U11

D1

ű

ţ
U12

D2

ű
:= P (r1)

ţ
U12

D2

ű

U12 := L̄−1
1 U12

D2 := D2 −D1U12

Continue withţ
UTL UTR

0 UBR

ű
←

0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,

ą
DL DR

ć← ą
D0 D1 D2

ć
,

ţ
L̄T

L̄B

ű
←

0
@

L̄0

L̄1

L̄2

1
A,

ţ
rT

rB

ű
←

0
@

r0

r1

r2

1
A

endwhile

Figure 3: SA-LINPACK blocked algorithm for the LU factorization of
(
UT , DT

)T built upon an LAPACK
blocked factorization.

addition, take advantage of the zeroes below the diagonal of U11.) As part of the factorization, U11 is
overwritten by {L̄1\Ū11}. However, in order to preserve the strictly lower triangular part of U11 (where part
of the matrix L, that was computed in Step 1, is stored), we employ the b × b submatrix L̄1 of the nB × b
array L̄. As in the LINPACK blocked algorithm in Figure 2, the LAPACK and LINPACK styles of pivoting
are combined: the current panel of columns are pivoted using the LAPACK approach but the pivots from

this factorization are only applied to
(

U12

D2

)
.

The cost of this approach is given in Step 3 of the column labeled “SA LINPACK procedure” in Table 1.
The extra cost comes from the updates of U12 in Figure 3 which, provided b ¿ nB , is insignificant compared
to 2

3n3.
An SA LAPACK blocked algorithm for Step 3 only differs from that in Figure 3 in that, at a certain

iteration, after the LU factorization of the current panel is computed, the pivots have to be applied to(
U10

D0

)
as well. As indicated in Step 3 of the column labeled “SA LAPACK procedure”, this does not

incur extra cost for this step. However, it does require an nB ×nB array for storing L̄ (see Figure 4) and, as
we will see next, makes Step 4 more expensive.

3.4 Revisiting the update in Step 4

The same optimizations made in Step 3 must now be carried over to the update of
(

C
E

)
. The algorithm

for this is given in Figure 5. Computation corresponding to zeroes is avoided so that the cost of performing

6

U00 U01 U02

U110

0

00

U12

U22

D0 D1 D2

-

U00 U01 U02

U11

L̄1
0?

0

00

U12

U22

untouched!

D0 D1 D2

L̄1

@
@@

@
@@

@
@@

@
@@

@
@@

-

L̄

6

Figure 4: Illustration of an iteration of the SA LINPACK blocked algorithm used in Step 3 and how it
preserves most of the zeroes in U . The zeroes below the diagonal are preserved, except within the b × b
diagonal blocks, where pivoting will fill below the diagonal. The shaded areas are the ones updated as part
of the current iteration. The fact that U22 is not updated demonstrates how computation can be reduced.
If the SA LAPACK blocked algorithm was used, then nonzeroes would appear during this iteration in the
block marked as 0?, due to pivoting; as a result, upon completion, zeros would be lost in the full strictly
lower triangular part of U .

the update is 2nBn2
E + bnBnE flops, as indicated in Step 4 of Table 1.

Applying the SA LAPACK blocked algorithm in Step 3 destroys the structure of the lower triangular
matrix, which cannot be recovered during the forward substitution stage in Step 4, and explains the additional
cost reported for this variant in Table 1.

3.5 Key contribution

The difference in cost of the three different approaches analyzed in Table 1 is illustrated in Figure 6. It reports
the ratios between the costs of the different procedures described above and that of the LU factorization with
partial pivoting for a matrix with nB = 1000 and different values of nE using b = 32. The analysis shows
that the overhead of the SA LINPACK procedure is consistently low. On the other hand, as nE/n → 1 the
cost of the basic procedure, which is initially twice as expensive as that of the LU factorization with partial
pivoting, is decreased. The SA LAPACK procedure only presents a negligible overhead when nE → 0 that
is, when the dimension of the update is very small.

The key insight of the proposed approach is the recognition that combining LINPACK- and LAPACK-
style pivoting allows one to use a blocked algorithm while avoiding filling most of the zeroes in the lower
triangular part of U . This, in turn, makes the extra cost of Step 4 acceptable. In other words, for the SA
LINPACK procedure, the benefit of the higher performance of the blocked algorithm comes at the expense
of a lower-order amount of extra computation.

7

Algorithm:

ůţ
C
E

űÿ
:= FSsa−lin

blk

ţţ
L̄
D

ű
, r,

ţ
C
E

űű

Partition L̄→
ţ

L̄T

L̄B

ű
, D → ą

DL DR

ć
, r →

ţ
rT

rB

ű
, C →

ţ
CT

CB

ű
,

where L̄T and CT have 0 rows, DL has 0 columns, and rT has 0 elements

while n(DL) < n(D) do
Determine block size b
Repartition

ţ
L̄T

L̄B

ű
→

0
@

L̄0

L̄1

L̄2

1
A,

ą
DL DR

ć→ ą
D0 D1 D2

ć
,

ţ
rT

rB

ű
→

0
@

r0

r1

r2

1
A,

ţ
CT

CB

ű
→

0
@

C0

C1

C2

1
A,

where L̄1 and C1 have b rows, D1 has b columns,
and r1 has b elements

ţ
C1

E

ű
:= P (r1)

ţ
C1

E

ű

C1 := L̄−1
1 C1

E := E −D1C1

Continue withţ
L̄T

L̄B

ű
←

0
@

L̄0

L̄1

L̄2

1
A,

ą
DL DR

ć← ą
D0 D1 D2

ć
,

ţ
rT

rB

ű
←

0
@

r0

r1

r2

1
A,

ţ
CT

CB

ű
←

0
@

C0

C1

C2

1
A,

endwhile

Figure 5: SA-LINPACK blocked algorithm for the update of
(
CT , ET

)T consistent with the SA-LINPACK

blocked LU factorization of
(
UT , DT

)T .

0 100 200 300 400 500 600 700 800 900 1000
0.8

1

1.2

1.4

1.6

1.8

2

Overhead of the procedures for the LU factorization

Dimension of E

R
at

io
 o

f o
ve

rh
ea

d

Basic
SA−LAP
SA−LIN

Figure 6: Overhead cost of the different approaches to compute the the LU factorization in (1) with respect
to the cost of the LU factorization with partial pivoting.

8

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
Stability of the algorithms for the LU factorization

Dimension of E

M
ag

ni
tu

de
 o

f e
le

m
en

t g
ro

w
th

partial
pairwise
incremental

Figure 7: Element growth in the LU factorization using different pivoting techniques.

4 Remarks on Numerical Stability

The algorithm for the LU factorization with incremental pivoting carries out a sequence of row permutations
(corresponding to the application of pivots) which are different from those that would be performed in an LU
factorization with partial pivoting. Therefore, the numerical stability of this algorithm is also different. In
this section we provide some remarks on the stability of the new algorithm. We note that all three procedures
described in the previous section (basic, SA LINPACK, and SA LAPACK) perform the same sequence of
row permutations.

The numerical (backward) stability of an algorithm that computes the LU factorization of a matrix A
depends on the growth factor [17]

ρ =
‖L‖‖U‖
‖A‖ , (3)

which is basically determined by the problem size and the pivoting strategy. For example, the growth
factors of complete, partial, and pairwise ([21, p. 236]) pivoting have been demonstrated to be bounded
as ρc ≤ n1/2(2 · 31/2 · · ·n1/n−1), ρp ≤ 2n−1, and ρw ≤ 4n−1, respectively [16, 17]. Statistical models and
extensive experimentations in [20] showed that, on average, ρc ≈ n1/2, ρp ≈ n2/3, and ρw ≈ n, inferring that
in practice partial/pairwise pivoting are both numerically stable, and pairwise pivoting can be expected to
numerically behave only slightly worse than partial pivoting.

The new algorithm applies partial pivoting during the factorization of B and then again in the factoriza-

tion of
(

U
D

)
. This can be considered as a blocked variant of pairwise pivoting. Thus, we can expect an

element growth for the algorithm that is between those of partial and pairwise pivoting. Next we elaborate
an experiment that provides evidence in support of this observation.

In Figure 7 we report the element growths observed during the computation of the LU factorization
of matrices as in (1), with nB = 100 and dimensions for E ranging from nE = 5 to 100 using partial,
incremental, and pairwise pivoting. The entries of the matrices are generated randomly, chosen from a
uniform distribution in the interval (0.0, 1.0). The experiment was carried out on an Intel Xeon processor
using matlab r© 7.0.4 (ieee double-precision arithmetic). The results report the average element growth for
100 different matrices for each matrix dimension. The figure shows that the growth factor of incremental
pivoting is smaller than that of pairwise pivoting and approximates that of partial pivoting.

9

For those who are not sufficiently satisfied with the element growth of incremental pivoting, we propose
to perform a few refinement iterations of the solution to Ax = b as this guarantees stability at a low
computational cost [11].

5 Performance

In this section we report results for a high-performance implementation of the SA LINPACK procedure.

5.1 Implementation

The FLAME library (Version 0.9) was used to implement a high-performance LU factorization with partial
pivoting and the SA LINPACK procedure. The benefit of this API is that the code closely resembles the
algorithms as they are presented in Figures 1–3 and 5. The performance of the FLAME LU factorization
with partial pivoting is highly competitive with LAPACK and vendor implementations of this operation.

The implementations can be examined by visiting
http://www.cs.utexas.edu/users/flame/Publications/ .

5.2 Platform

Performance experiments were performed in double-precision arithmetic on a Intel Itanium2 (1.5 GHz)
processor based workstation capable of attaining 6 GFLOPS (109 flops per second). For reference, the
algorithm for the FLAME LU factorization with partial pivoting delivered 4.8 GFLOPS for a 2000 × 2000
matrix. The implementation was linked to the GotoBLAS R1.6 Basic Linear Algebra Subprograms (BLAS)
library [7]. The BLAS routine dgemm which is used to compute C := C −AB (C ∈ Rm×n, A ∈ Rm×k, and
B ∈ Rk×n) attains the best performance when k = 128. Notice that most computation in the SA LINPACK
procedure is cast in terms of this operation, with k = b.

The performance benefits reported on this platform are representative of the benefits that can be expected
on other current architectures.

5.3 Results

In Figure 8(top) we show the speedup attained when an existing factorization of B is reused by reporting
the time required to factor (1) with the high-performance LU factorization with partial pivoting divided
by the time required to update an existing factorization of B via the SA LINPACK procedure (Steps 2-5).
In that figure, nB = 1000 and nE is varied from 0 to 1000. The results are reported when different block
sizes b are chosen. The dgemm operation, in terms of which most computation is cast, attains the best
performance when b = 128 is chosen. However, this generates enough additional flops that the speedup is
better when b is chosen to be smaller. When nE is very small, b = 8 yields the best performance. As nE

increases performance improves by choosing b = 32.
The effect of the overhead of the extra computations is demonstrated in Figure 8(bottom). There, we

report the ratio of the time required by Steps 1-5 of the SA LINPACK procedure divided by the time required
by the LU factorization with partial pivoting of (1).

6 Conclusions

We have proposed blocked algorithms for updating an LU factorization. They have been shown to attain
high performance and to greatly reduce the cost of an update to a matrix for which a partial factorization
already exists. The key insight is the synthesis of LINPACK- and LAPACK-style pivoting. While some
additional computation is required, this is more than offset by the improvement in performance that comes
from casting computation in terms of matrix-matrix multiplication.

10

0 50 100 150 200 250 300

1

2

3

4

5

6

7

8

9

10

11

12

Dimension of E

S
pe

ed
up

Reuse the factorization of B

Ref
nb = 128
nb = 32
nb = 8

300 400 500 600 700 800 900 1000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Dimension of E

S
pe

ed
up

Reuse the factorization of B

Ref
nb = 128
nb = 32
nb = 8

0 100 200 300 400 500 600 700 800 900 1000
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Dimension of E

S
lo

w
do

w
n

Refactor B

Ref
nb = 128
nb = 32
nb = 8

Figure 8: Top: Speedup attained when B is not refactored, over LU factorization with partial pivoting of
the entire matrix. Bottom: Slowdown for the first factorization (when B must also be factored).

Acknowledgments

This research was partially sponsored by NSF grants ACI-0305163, CCF-0342369 and CCF-0540926, and an
equipment donation from Hewlett-Packard. Primary support for this work came from the J. Tinsley Oden
Faculty Fellowship Research Program of the Institute for Computational Engineering and Sciences (ICES)
at UT-Austin.

For further information on FLAME visit www.cs.utexas.edu/users/flame.

References

[1] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1–26,
March 2005.

11

[2] Paolo Bientinesi and Robert van de Geijn. Representing dense linear algebra algorithms: A farewell
to indices. Technical Report FLAME Working Note 17, CS-TR-2006-10, Department of Computer
Sciences, The University of Texas at Austin, 2006.

[3] Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation to
integral equation models of electromagnetic scattering. Journal of the Optical Society of America A,
11(4):1538–1545, April 1994.

[4] Jim Demmel and Jack Dongarra. LAPACK 2005 prospectus: Reliable and scalable software for linear
algebra computations on high end computers. LAPACK Working Note 164 UT-CS-05-546, University
of Tennessee, February 2005.

[5] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for acoustical
scattering problems using boundary element methods. Journal of Sound and Vibration, 191(1):145–165,
1996.

[6] K. Goto and R. van de Geijn. Anatomy of high-performance matrix multiplication. ACM Trans. Math.
Soft., 2006. Submitted.

[7] Kazushige Goto. http://www.tacc.utexas.edu/resources/software/, 2006.

[8] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performance matrix
multiplication algorithms. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S.
Renner, and C.J. Kenneth Tan, editors, Computational Science - ICCS 2001, Part I, Lecture Notes in
Computer Science 2073, pages 51–60. Springer-Verlag, 2001.

[9] Brian Gunter and Robert van de Geijn. Parallel out-of-core computation and updating of the QR
factorization. ACM Trans. Math. Soft., 31(1):60–78, March 2005.

[10] F. Gustavson, A. Henriksson, I. Jonsson, B. K̊agström, and P. Ling. Superscalar GEMM-based level
3 BLAS – the on-going evolution of a portable and high-performance library. In B. K̊agström et al.,
editor, Applied Parallel Computing, Large Scale Scientific and Industrial Problems, Lecture Notes in
Computer Science 1541, pages 207–215. Springer-Verlag, 1998.

[11] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[12] Thierry Joffrain, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Rapid development of high-
performance out-of-core solvers. In J. Dongarra, K. Madson, and J. Wasńiewski, editors, PARA 2004,
LNCS 3732, pages 413–422. Springer-Verlag, 2005.

[13] B. K̊agström, P. Ling, and C. Van Loan. Gemm-based level 3 blas: High-performance model, imple-
mentations and performance evaluation benchmark. LAPACK Working Note #107 CS-95-315, Univ.
of Tennessee, Nov. 1995.

[14] B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance model imple-
mentations and performance evaluation benchmark. ACM Trans. Math. Soft., 24(3):268–302, 1998.

[15] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. In Proceedings
of the International Conference on Parallel Processing 1995, volume III - Algorithms and Applications,
pages 29–33, 1995.

[16] Danny C. Sorensen. Analysis of pairwise pivoting in Gaussian elimination. IEEE Trans. on Computers,
c-34(3):274–278, 1985.

[17] G. W. Stewart. Matrix Algorithms. Volume I: Basic Decompositions. SIAM, Philadelphia, 1998.

12

[18] S. Toledo and F. Gustavson. The design and implementation of SOLAR, a portable library for scalable
out-of-core linear algebra computations. In Proceedings of the fourth workshop on I/O in parallel and
distributed systems, pages 28–40, 1996.

[19] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. In James Abello and
Jeffrey Scott Vitter, editors, External Memory Algorithms and Visualization, pages 161–180. American
Mathematical Society Press, Providence, RI, 1999.

[20] Lloyd N. Trefethen and Robert S. Schreiber. Average-case stability of Gaussian elimination. SIAM J.
Matrix Anal. Appl., 11(3):335–360, 1990.

[21] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, London, 1965.

[22] E. Yip. Fortran subroutines for Out-of-Core solutions of linear systems. Technical Report CR-158142,
NASA, 1979.

13

