
Parallelizing FLAME Code with OpenMP Task QueuesTze Meng LowKent F. MilfeldRobert A. van de GeijnField G. Van ZeeThe University of Texas at AustinAustin, TX 78712FLAME Working Note #15De
. 3, 2004Abstra
tWe dis
uss the OpenMP parallelization of linear algebra algorithms that are
oded using the FormalLinear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher levelof abstra
tion, avoids the use of indi
es, and thus represents these algorithms as they are formallyderived and presented. Traditional OpenMP dire
tives require an expli
it loop index, or expli
it
riti
al-region
onstru
ts on a variable, in order to indi
ate parallelism in loops and thus the la
k of indi
espreviously posed a
hallenge. A feature, task queues, that has been proposed for adoption into OpenMP3.0 over
omes this problem. We illustrate the issues and solutions by dis
ussing the parallelization of thesymmetri
 rank-k update and report impressive performan
e on a 4 CPU Itanium2 server.1 Introdu
tionThe Formal Linear Algebra Methods Environment (FLAME) proje
t pursues a systemati
 methodologyfor deriving and implementing linear algebra libraries [2, 9℄. The methodology is goal-oriented: Given amathemati
al spe
i�
ation of the operation to be implemented, pres
ribed steps yields a family of algorithmsfor
omputing the opreation. As part of the derivation, the proof of
orre
tness of the algorithm is also given.The resulting algorithms are expressed at a high level of abstra
tion, mu
h like one would present algorithmswith pseudo-
ode in a
lassroom setting. Appli
ation Programming Interfa
es (APIs) have been developedallow the
ode to
losely resemble the formal algorithm stru
ture so that the opportunity for the introdu
tionof \bugs" in the translation from algorithm to implementation is redu
ed. APIs have been de�ned for theMatlab M-s
ript language, for the C and Fortran programming languages, and even as an extension tothe Parallel Linear Algebra Pa
kage (PLAPACK) [3, 13℄. The s
ope of FLAME in
ludes the Basi
 LinearAlgebra Subprograms (BLAS) [10, 6, 5℄, most of LAPACK [1℄, and a large number of operations en
ounteredin Control Theory [11℄.Integrating OpenMP dire
tives into the resulting
ode is a problem in that the
ode is devoid of indexing:OpenMP
onstru
ts for parallelizing loops usually require a loop-index to indi
ate how the loop is to beparallelized. Task queues, a
onstru
t that was re
ently proposed for in
lusion in OpenMP 3.0, allow tasksto be de�ned by a single
ontrol stru
ture. These tasks are then s
heduled for exe
ution on the di�erentthreads. We show in this paper how this Workqueuing Model naturally supports parallelism in C
odewritten with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The1

Workqueuing Model
an be applied to many algorithms that are systemati
ally derived via the FLAMEapproa
h for operations supported by the BLAS and LAPACK.We demonstrate the general appli
ability of the approa
h with a
on
rete example: the
omputation ofthe symmetri
 rank-k update (syrk) operation. This operation is supported by the BLAS and is importantin higher-level operations like the Cholesky fa
torization and the formation of the normal equations in linearleast-squares problems. For that example, impressive performan
e is reported on an Intel Itanium2 (R)Symmetri
 Multipro
essor (SMP).The paper is organized as follows: In Se
tion 2 we dis
uss the syrk operation, four algorithmi
 variantsfor
omputing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-sulting implementations using OpenMP and task queues is dis
ussed in Se
tion 3. An additional algorithmi
variant is presented in Se
tion 4. The parallelization of that �fth variant requires partial results,
omputedby di�erent tasks in the task queue, to be summed. Performan
e attained by the di�erent implementationsis presented in Se
tion 5. Con
luding remarks are given in the �nal se
tion.2 A Con
rete ExampleConsider the
omputation C := AAT +C where C is symmetri
 and hen
e only the lower triangular part ofC is stored and updated. This operation is known as a symmetri
 rank-k update (syrk).In the FLAME approa
h to deriving algorithms, matri
es are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB �where the thi
k lines indi
ate how far into the matri
es the
omputation has rea
hed. It is assumed thatCTL is square so that both CTL and CBR are symmetri
. Here the '?' symbol indi
ates the symmetri
 partof C that is not stored.We will let Ĉ denote the original
ontents of C so that upon
ompletion C should
ontain C = AAT + Ĉ,whi
h is
alled the post
ondition. It des
ribes the state of the variables upon
ompletion of the
omputation.Substituting the partitioned matri
es into the post
ondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR != ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (1)This shows that m(CTL) should equalm(AT) and that Ĉ should be partitioned as is C, where m(X) denotesthe row dimension of matrix X .The idea now is that (1) tells us all
omputations that must be performed in terms of the di�erentsubmatri
es of Ĉ and A. What we want to determine is the state of matrix C at the top of a loop that
omputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop
omputesthe result, not all
omputation that is required has already been performed. This suggests the states givenin Fig. 1 as states that
an be maintained as loop-invariants at the top of a loop: they are partial resultstowards the �nal result.What is important here is that for ea
h loop-invariant there is a
orresponding algorithmi
 variant: Loop-invariant k in Fig. 1 yields the algorithmi
 Variant k in Fig. 2, in whi
h so-
alled blo
ked algorithms are giventhat in the loop-body update various submatri
es of matrix C. An unblo
ked algorithm
an be
reated bytaking m(C11) = m(A1) = 1, in whi
h
ase the updates in the body of the loop be
ome simpler operations2

Loop-invariant1 � CTL ?CBL CBR � = ATATT + ĈTL ?ĈBL ĈBR !2 � CTL ?CBL CBR � = ATATT + ĈTL ?ABATT + ĈBL ĈBR !3 � CTL ?CBL CBR � = ĈTL ?ĈBL ABATB + ĈBR !4 � CTL ?CBL CBR � = ĈTL ?ABATT + ĈBL ABATB + ĈBR !Figure 1: Loop-invariants for
omputing syrk.like the matrix-ve
tor produ
t and inner-produ
t. In ea
h of the loop-bodies there is the
omputation of asyrk operation with smaller submatri
es of A and C.Having the ability to derive
orre
t algorithms solves only part of the problem sin
e translating thosealgorithms to
ode ordinarily required deli
ate indexing into arrays, whi
h exposes opportunities for theintrodu
tion of errors. We now illustrate how appropriately de�ned APIs over
ome this problem. In Fig. 3,we show an example of FLAME/C
ode
orresponding to Variant 1 in Fig. 2. To understand the
ode, itsuÆ
es to know that C and A are des
riptors for the matri
es C and A, respe
tively. The various routinesfa
ilitate the
reation of views into the data des
ribed by C and A. Think of a variable like CTL as a fan
ypointer into the array C. Furthermore, the
alls to FLA Gemm and FLA Syrk perform the same operationsas the BLAS
alls dgemm (matrix-matrix multipli
ation) and dsyrk (symmetri
 rank-k update). What ismost striking about this
ode is the absen
e of intri
ate indexing and absense of a loop
ontrol with a singlevariable.3 OpenFLAME := FLAME/C + (OpenMP + Task Queues)The strength of FLAME
ode is that it hides intri
ate indexing. For OpenMP Standard 2.0, however,this strength is a weakness: inherently
urrent OpenMP dire
tives require loop indi
es in order to expressparallelism in the exe
ution of loops and/or expli
it
riti
al-region blo
ks for atomi
ally updating a loopvariable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature thatallows a large number of algorithms to be easily parallelized when implemented with the FLAME API.3.1 Task queuesCon
eptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,taskq and task, formx a queue and units of work (tasks) for parallel exe
ution, respe
tively. A single threadexe
utes the taskq blo
k, enqueuing tasks within the task blo
k. Other threads dequeue tasks and exe
utethem in parallel.3.2 Appli
ation to syrkIn Fig. 4 we show how the while loop in Fig. 3
an be annotated with OpenMP dire
tives to
reate paralleltasks via the task queue me
hanism. In Fig. 4: 3

Algorithm: C := Syrk blk var1 2(A, C)Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 +C10 C21 := A2AT1 + C21C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileAlgorithm: C := Syrk blk var3 4(A, C)Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileFigure 2: Blo
ked algorithms for
omputing C := AAT + C. The top algorithm implements Variants 1 and2,
orresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,
orresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-leftto the bottom-right, while the bottom algorithm traverses the matrix in the opposite dire
tion.
4

1 #in
lude "FLAME.h"23 int Syrk_blk_var1(FLA_Obj C, FLA_Obj A, int nb_alg)4 {5 FLA_Obj CTL, CTR, C00, C01, C02,6 CBL, CBR, C10, C11, C12,7 C20, C21, C22;8 FLA_Obj AT, A0,9 AB, A1,10 A2;11 int b;1213 FLA_Part_2x2(C, &CTL, &CTR,14 &CBL, &CBR, 0, 0, FLA_TL);15 FLA_Part_2x1(A, &AT,16 &AB, 0, FLA_TOP);1718 while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){19 b = min(FLA_Obj_length(CBR), nb_alg);2021 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,22 /*************/ /*********************/23 &C10, /**/ &C11, &C12,24 CBL, /**/ CBR, &C20, /**/ &C21, &C22,25 b, b, FLA_BR);26 FLA_Repart_2x1_to_3x1(AT, &A0,27 /* ** */ /* ** */28 &A1,29 AB, &A2, b, FLA_BOTTOM);30 /*---*/3132 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, A0, ONE, C10);33 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11);3435 /*---*/36 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,37 C10, C11, /**/ C12,38 /**************/ /******************/39 &CBL, /**/ &CBR, C20, C21, /**/ C22,40 FLA_TL);41 FLA_Cont_with_3x1_to_2x1(&AT, A0,42 A1,43 /* ** */ /* ** */44 &AB, A2, FLA_TOP);45 }46 } Figure 3: FLAME/C
ode for a blo
ked implementation of Variant 1.
5

17 #pragma intel omp parallel taskq18 {19 while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){20 b = min(FLA_Obj_length(CBR), nb_alg);2122 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,23 /*************/ /*********************/24 &C10, /**/ &C11, &C12,25 CBL, /**/ CBR, &C20, /**/ &C21, &C22,26 b, b, FLA_BR);27 FLA_Repart_2x1_to_3x1(AT, &A0,28 /* ** */ /* ** */29 &A1,30 AB, &A2, b, FLA_BOTTOM);31 /*---*/32 #pragma intel omp task
aptureprivate(A0, A1, C10, C11)33 {34 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A0, A1, ONE, C10);35 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11);36 } /* end task */37 /*---*/38 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,39 C10, C11, /**/ C12,40 /**************/ /******************/41 &CBL, /**/ &CBR, C20, C21, /**/ C22,42 FLA_TL);43 FLA_Cont_with_3x1_to_2x1(&AT, A0,44 A1,45 /* ** */ /* ** */46 &AB, A2, FLA_TOP);47 }48 } /* end of taskq */Figure 4: FLAME/C
ode with task queuing OpenMP dire
tives for the
ode in Fig. 3.� Line 17
reates the taskq blo
k and forms a single-threaded taskqueue.� Line 32 starts a se
tion of
ode that de�nes a task to be added to the task queue. The des
riptors A0,A1, C10, and C11
hange from iteration to iteration. They need to be private (lo
al) variables and tohave value assigned (
aptured) from the taskq thread for use in the
alls to FLA Gemm and FLA Syrk.� Line 36 ends the s
ope of the task being added to the queue.� Line 48 ends the s
ope of the taskq blo
k. The threads are syn
hronized at that line.Clearly, task queues provide a simple me
hanism for dire
ting the parallel exe
ution in this
ode. Moreover,without the task queue me
hanism indi
es would have had to be reintrodu
ed into the
ode, making itsubstantially more
omplex and aestheti
ally less pleasing.Espe
ially for blo
ked algorithms, the
ost of the indexing operations (FLA Repart ... and FLA Cont with ...)is amortized over enough
omputation that the asso
iated overhead is negligible. Thus it suÆ
es to parallelizethe useful
omputation in the loop and not these indexing operations.3.3 OptionsIn Fig. 4 the
alls to FLA Gemm and FLA Syrk are independent and
an, therefore, be exe
uted in any orderand/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two6

tasks:#pragma intel omp task
aptureprivate(A0, A1, C10){ FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10);}#pragma intel omp task
aptureprivate(A1, C11){ FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11);}This
reates twi
e the number of tasks for the task queue to s
hedule.A further observation is that the
omputations C10 := A1AT0 + C10 and C11 := A1AT1 + C11 (updatingthe lower triangle only)
ost about 2bn(C10)n(A) and b2n(A)
oating point arithmeti
 operations (
ops),respe
tively. Here n(X) indi
ates the
olumn dimension of matrix X . Sin
e n(C10) grows linearly with ea
hiteration of the loop the number of
ops required to update C10 in
reases propotionally. Thus is unfortunate,sin
e
ostly tasks at the end of a s
heduling queue
an
reate a large load imbalan
e.One option to over
ome this problem is to exe
ute the loop in reverse order (in
ompiler terms: applya loop reversal transformation), sin
e this would then
reate the more
ostly tasks �rst. Variants 4 and 3in Fig. 2 exe
ute the loops in Variants 1 and 2 in reverse, respe
tively. This illustrates the value of theFLAME methodology whi
h
an systemati
ally �nd algorithmi
 variants that have di�erent strengths andweaknesses. In fa
t, Variants 1 and 3 have the property that tasks be
ome more
ostly as the loop pro
eedswhile Variants 2 and 4 generate progressively less
ostly tasks. What we will later see is that di�eren
es inperforman
e
an be observed for di�erent variants.An alternative option is to
reate two loops (in
ompiler terms: apply a loop �ssion transformation),repla
ing the single loop in Fig. 4 with two loops: the �rst for
omputing all the updates to C10 and these
ond loop for
omputing the updates to C11:#pragma intel omp parallel taskq{ while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){b = min(FLA_Obj_length(CBR), nb_alg);FLA_Repart_2x2_to_3x3([... ℄#pragma intel omp task
aptureprivate(A0, A1, C10){ FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10);} [... ℄} /* end of first while loop */

7

while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){b = min(FLA_Obj_length(CBR), nb_alg);FLA_Repart_2x2_to_3x3([... ℄#pragma intel omp task
aptureprivate(A1, C11){ FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11);} [... ℄} /* end of se
ond while loop */} /* end of taskq */The updates to C11 require less work and are all equal in
ost, allowing them to be used to balan
e theworkload among threads before the syn
hronization upon
ompletion of the tasks.3.4 An illustration of the bene�ts of di�erent optionsThe expe
ted di�eren
es in performan
e are illustrated for Variants 2 and 3 in Fig. 5. In that �gure, wereport a simulation of the s
heduling of tasks to four threads for the di�erent options des
ribed above. Thematri
es A and C are taken to be of dimension 1200�1200 and the blo
k size b in Fig. 2 is taken to equal 104(ex
ept possibly during the last iteration), whi
h is a blo
k size that we will use in our experimental se
tionas well. Ea
h of the tasks is represented by a box that has a height that is proportional to the number of
ops performed by the task. The integers in the boxes indi
ate the order in whi
h the tasks are queued inthe task queue. The tasks are s
heduled to threads as they be
ome idle. Re
all that these variants performthe same
omputations, but the loop is exe
uted in reverse for Variant 3.We see that Variant 2 in general performs better than Variant 3 sin
e the
osts of the tasks de
reasetowards the end, allowing them to be more easily balan
ed among the threads before syn
hronization.Splitting the task in the loop-body into two tasks improves the load-balan
e for Variant 2, but not forVariant 3. Both variants bene�t from splitting the loop into two loops, with the smaller tasks s
heduled bythe se
ond loop. These small tasks, generated by the se
ond loop, will be exe
uted by those threads that
omplete their share of the tasks generated by the �rst loop early.4 Summing Contributions from TasksFrom experien
e with parallelizing algorithms on distributed memory ar
hite
tures [13, 8, 12℄, we (andothers) have
on
luded that there are two types of
ommuni
ations needed to support the parallelization ofoperations like those in the BLAS and LAPACK: the �rst is data dupli
ation where data are
ommuni
atedto di�erent pro
essors and followed by the exe
ution of
ompletely independent tasks on ea
h pro
essor. These
ond involves the redu
tion of lo
ally
omputed
ontributions to a global result. Typi
ally the redu
tionis in fa
t a summation of
ontributions (partial sums) from ea
h pro
essor.The method for using OpenMP des
ribed so far supports the SMP equivalent of the �rst type of
om-muni
ation: It de�nes separate tasks that update parts of matri
es that do not overlap, using data that areshared and may be a

essed
on
urrently. In lieu of dupli
ation, ea
h separate task reads the same data, asneeded, from shared storage. In order to support independent tasks
ontributing to an update of the samedata via the task queue
onstru
t, it has to be possible to
ompute
ontributions independently using datathat are not shared, and to then redu
e the results into a shared matrix or ve
tor. We illustrate now how toa

ommodate this via task queues by dis
ussing a �fth variant for
omputing syrk.8

Variant 2 Variant 3
1 2 3 4

0

100

200

300

400

500

600

1
2

3
4

5
6

7
8

9
10

11 12

thread

m
ill

io
ns

 o
f f

lo
ps

1 2 3 4
0

100

200

300

400

500

600

1 2
3

4
5

6

7

8

9

10

11

12

thread

m
ill

io
ns

 o
f f

lo
ps

one loop/one task one loop/one task
1 2 3 4

0

100

200

300

400

500

600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18
1920 21

22 2324

thread

m
ill

io
ns

 o
f f

lo
ps

1 2 3 4
0

100

200

300

400

500

600

12 3 4
56

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

thread

m
ill

io
ns

 o
f f

lo
ps

one loop/two tasks one loop/two tasks
1 2 3 4

0

100

200

300

400

500

600

1
2

3
4

5
6

7
8

9
10

11 1213
1415 1617
1819 20
2122 23 24

thread

m
ill

io
ns

 o
f f

lo
ps

1 2 3 4
0

100

200

300

400

500

600

12
3

4
5

6

7

8

9

10

11

12

13
14
15
16
17
1819
2021 2223 24

thread

m
ill

io
ns

 o
f f

lo
ps

two loops two loopsFigure 5: S
heduling of tasks for Variants 2 and 3 (C and A both 1200� 1200).9

Algorithm: C = Syrk blk var5(A, C)Partition A! � AL AR �where AL has 0
olumnswhile n(AL) < n(A) doDetermine blo
k size bRepartition� AL AR �! � A0 A1 A2 �where A1 has b
olumnsC := C +A1AT1Continue with� AL AR � � A0 A1 A2 �endwhileFigure 6: Blo
ked algorithm for C := AAT + C (Variant 5).Be
ause all pro
esses share a

ess to the array that stores A while
omputing the syrk operation,C := AAT + C, it is also reasonable to partition A by blo
ks of
olumns: A = � A0 A1 � � � AN�1 �.Then C := A0AT0 +A1AT1 + � � �+AN�1ATN�1 + C: (2)An algorithm for
omputing syrk using this insight is given in Fig. 6 and the FLAME/C implementationis given in Fig. 7.In Fig. 8 we show how task queues
an be used to parallelize this algorithm. Clearly, it is best to
hooseN in (2) to be the number of available pro
essors, so that the
omputational work of ea
h AiATi is equal.Private updates to C are a

umulated by ea
h task in MyC, and then added to the global C matrix, in sharedarray C. We employ the routine FLA Axpy lo
al to shared in Fig. 9 to atomi
ally add the elements of MyCto C.There are several other ways to syn
hronize the updates in the FLA Axpy lo
al to shared utility routine.For instan
e, expli
it indexing with
riti
al regions
an be employed for the atomi
 updates. Sin
e it is autility routine, our usual obje
tion to indi
es does not apply, as is the
ase for our lower level
omputationalkernels, like dgemm, that also use expli
it indexing.5 ExperimentsWhile the Workqueuing Model simpli�es the parallelization of task-oriented programs, load balan
ing thetasks
an still be a
hallenge. The FLAME framework and FLAME/C API is ideal for testing and evaluatingthe impa
t that algorithmi
 variants have on load balan
ing. When there are multiple independent routine
alls in a loop and their work varies in a well-de�ned way (linearly for FLA Gemm,
onstant for FLA Syrk)the routine order within the loop and the order of separate loops be
ome another dimension in the variantspa
e that a�e
ts load balan
ing. Knowing the
hara
teristi
s of the work asso
iated with an
omputationis often enough to a

urately predi
t the optimal looping arrangement. However, memory
ontention andfalse sharing
an
ompli
ate any predi
tion. The purpose of the following experimental investigations is toillustrate how the variants and options a�e
t the algorithm performan
e for task queuing. Even though theresults readily reveal optimal variants, the experiments are not meant to be an exhaustive sear
h to a
hieve10

1 int Syrk_blk_var5(FLA_Obj C, FLA_Obj A, int nb_alg)2 {3 FLA_Obj AL, AR, A0, A1, A2;4 int b;56 FLA_Part_1x2(A, &AL, &AR, 0, FLA_LEFT);78 while (FLA_Obj_width(AL) < FLA_Obj_width(A)){9 b = min(FLA_Obj_width(AR), nb_alg);1011 FLA_Repart_1x2_to_1x3(AL, /**/ AR, &A0, /**/ &A1, &A2,12 b, FLA_RIGHT);13 /*--*/1415 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C);1617 /*--*/18 FLA_Cont_with_1x3_to_1x2(&AL, /**/ &AR, A0, A1, /**/ A2,19 FLA_LEFT);20 }21 } Figure 7: FLAME
ode for a blo
ked implementation of Variant 5.7 #pragma intel omp parallel taskq8 {9 while (FLA_Obj_width(AL) < FLA_Obj_width(A)){10 b = min(FLA_Obj_width(AR), nb_alg);1112 FLA_Repart_1x2_to_1x3(AL, /**/ AR, &A0, /**/ &A1, &A2,13 b, FLA_RIGHT);14 /*--*/15 #pragma intel omp task
aptureprivate(A1) private(MyC)16 {17 /* Create a lo
al
opy of C for this task */18 FLA_Obj_
reate_
onf_to(FLA_NO_TRANSPOSE, C, &MyC);1920 /* MyC := 0 */21 FLA_Obj_set_to_zero(MyC);2223 /* MyC := A1 * A1' */24 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, MyC);2526 /* C := C + MyC */27 FLA_Axpy_lo
al_to_shared(ONE, MyC, C);2829 FLA_Obj_free(&MyC);30 } /* end of task */31 /*--*/32 FLA_Cont_with_1x3_to_1x2(&AL, /**/ &AR, A0, A1, /**/ A2,33 FLA_LEFT);34 }35 } /* end of task queue */Figure 8: OpenFLAME
ode for the loop in Fig. 7.11

1 #in
lude "FLAME.h"23 int FLA_Axpy_lo
al_to_shared(FLA_Obj alpha, FLA_Obj X, FLA_Obj Y)4 {5 FLA_Obj XL, XR, X0, X1, X2;6 FLA_Obj YL, YR, Y0, Y1, Y2;78 int b, i, nb_alg, n_stages;910 /* Set the number of stages equal to the number of pro
esses */11 n_stages = omp_get_num_pro
s();1213 FLA_Part_1x2(X, &XL, &XR, 0, FLA_LEFT);14 FLA_Part_1x2(Y, &YL, &YR, 0, FLA_LEFT);1516 /* Compute the width of one lo
kable partition */17 if(n_stages == -1) nb_alg = FLA_Obj_width(X);18 else nb_alg = max(FLA_Obj_width(X)/n_stages + 1, 1);1920 while (FLA_Obj_width(XL) < FLA_Obj_width(X)){21 b = min(FLA_Obj_width(XR), nb_alg);2223 FLA_Repart_1x2_to_1x3(XL, /**/ XR, &X0, /**/ &X1, &X2,24 b, FLA_RIGHT);2526 FLA_Repart_1x2_to_1x3(YL, /**/ YR, &Y0, /**/ &Y1, &Y2,27 b, FLA_RIGHT);28 /*--*/2930 /* Get the index of the
urrent partition */31 i = FLA_Obj_width(XL)/nb_alg;3233 /* A
quire lo
k[i℄ (the lo
k for X1 and Y1) */34 omp_set_lo
k(&lo
k[i℄);3536 /* Y1 := alpha * X1 + Y1 */37 FLA_Axpy(alpha, X1, Y1);3839 /* Release lo
k[i℄ (the lo
k for X1 and Y1) */40 omp_unset_lo
k(&lo
k[i℄);4142 /*--*/43 FLA_Cont_with_1x3_to_1x2(&XL, /**/ &XR, X0, X1, /**/ X2,44 FLA_LEFT);4546 FLA_Cont_with_1x3_to_1x2(&YL, /**/ &YR, Y0, Y1, /**/ Y2,47 FLA_LEFT);48 }4950 return FLA_SUCCESS;51 }Figure 9: OpenFLAME
ode for adding a private matrix with des
riptor X to a shared matrix with des
riptorY. This parti
ular version uses lo
ks to
reate a pipeline.12

optimal performan
e for the syrk operation.5.1 DetailsTo demonstrate the e�e
t of algorithmi
 variants and/or parallelization options on performan
e we imple-mented all �ve variants. For ea
h of the �rst four variants we implemented three di�erent options: a simpleinsertion of the task queue me
hanism with one task in the loop-body (one loop/one task); the separationof the two updates to
reate two tasks in the loop-body (one loop/two tasks); and the separation of the twotasks into two separate loops (two loops).All
omputation are in double pre
ision (64 bit) arithmeti
. The performan
e of the di�erent implemen-tations was measured on a 4 CPU Itanium2 (1.5GHz) workstation, with a peak performan
e of 6 GFLOPS(109
ops/se
.) per pro
essor, for a total peak of 24 GFLOPS. The Intel C
ompiler was used, sin
e itsupports the proposed OpenMP task queue
onstru
t even though, at this time, that
onstru
t is not yetpart of the standard.The implementations were linked to the BLAS libraries by Kazushige Goto [7℄. The
alls to FLA Gemmand FLA Syrk in the loop-body were implemented as wrappers to sequential implementations of the BLAS
alls dgemm and dsyrk. For Goto's BLAS a blo
k size of 104 is known to yield good performan
e from thematrix-matrix produ
t routine dgemm1 and was therefore used in our experiments.For
omputing the rate of
omputation, the operation
ount is m2k
ops for C 2 Rm�m and A 2 Rm�k .The GFLOPS rate reported in the graphs was
omputed by the formulaGFLOPS attained = m2ktime (in se
.) � 10�9:5.2 ResultsThe resulting performan
e is reported in Figs. 10{12. So that the performan
es
an be visually evaluatedrelative to the theoreti
al peak performan
e of the ma
hine, the range of the y-axis of the graphs is 0{24GFLOPS. We organized the results so that Variants 2 and 3 are displayed on one page, as are Variants 1 and4. These pairs of variants perform the same updates in the loop-body, but mar
h through the matri
es inopposite dire
tions. Variants 2 and 4
reate smaller tasks later in the
omputation, whi
h explains the betterand smoother performan
e attained by these implementations. Variants 2 and 3 are ri
h in matrix-matrixprodu
ts that have the form A2AT1 while Variants 1 and 4 are ri
h in A1AT0 . The di�eren
e here is thatA2AT1 yields a matrix with a large row dimension and a small
olumn dimension, while A1AT0 yields a matrixwith a small row dimension and a large
olumn dimension. As of this writing the dgemm matrix-matrixprodu
t in the BLAS by Goto is less optimized for this se
ond
ase than for the �rst, whi
h explains thelower performan
e attained by Variants 1 and 4. Given these insights, Variant 2 should perform best overall,as is observed in these experiments.In Fig. 12 we
ompare Variant 5 only to the \two loops" version of Variant 2. In this �gure, we explorethe e�e
ts of pi
king di�erent shapes of matri
es as input to syrk. The two top graphs report performan
efor square matri
es C and A. In that
ase, Variant 2 performs best, likely due to the added syn
hronizationoverhead in
urred by Variant 5 sin
e
ontention o

urs as
ontributions are added to C by di�erent tasks.The
enter two graphs show drasti
ally di�erent results for the spe
ial
ase where C is 104 � 104 anddimension k is varied. Now no parallelism is a
hieved by Variant 2, sin
e it is exe
uted with a blo
k size of104: only one iteration of the loop is exe
uted, and therefore only one task is
reated. For this
ase, Variant5 a
hieves reasonable performan
e as k in
reases, due to the fa
t that the
ontention during the addition1Optimal performan
e of dgemm is reported to require a blo
k size of 1024. However, that is too large to a
hieve e�e
tiveparallelization. 13

Variant 2 Variant 3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 10: Performan
e of Variants 2 and 3 when C and A are square.14

Variant 1 Variant 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 11: Performan
e of Variants 1 and 4 when C and A are square.15

Variant 2 Variant 5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

m = k m = k
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

m = 104 m = 104
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

k = 104 k = 104Figure 12: Performan
e of Variants 2 and 5 for di�erent shaped matri
es.16

of the
ontributions to C is less signi�
ant sin
e C is small. When k equals 104 and m is varied, reportedin the bottom two graphs, Variant 2 again a
hieves ex
ellent performan
e. Variant 5 fails to attain goodperforman
e sin
e it is the k dimension that is split among the tasks, and relatively little
omputation isperformed relative to the overhead asso
iated with the addition of the
ontributions from di�erent tasks toC. These last two
ases, m = 104 with large k and k = 104 with large m, o

ur as subproblems in di�erentalgorithmi
 variants for operations like the Cholesky fa
torization.5.3 Simulated resultsIn Se
tion 3.4 we presented load simulations for task s
heduling on four pro
essors. We now show that thesimulator a

urately predi
ts the behavior of the implementations, ex
ept for small matri
es. We
al
ulatethe performan
e as the produ
t of a predi
ted speedup and the a
tual asymptoti
 performan
e for a serialexe
ution on a single CPU. The speedup is determined by the work of the pro
essor that has to perform themaximum s
heduled work. We assume that ea
h user thread is bound to a pro
essor. Using the s
heduledtask assignments in Se
tion 3.4, the
omputational rate (in GFLOPS) is estimated by the formulaGFLOPS = predi
ted speedup�GFLOPS by one CPU= total
ops performedmaxti=1 (
ops performed by pro
essor i) �GFLOPS by one CPU;where t is equal to the number of pro
essors (and threads under our assumptions).From the graphs in Fig. 10 we determined that a single CPU attains about 5.4 GFLOPS out of a possible6 GFLOPS for this operation. With this, the graphs in Fig. 13 were generated. In that �gure, the measuredperforman
e is depi
ted on the left, while the
orresponding simulated performan
e is predi
ted on the right.The behavior of the measured and the simulated data is quite similar, ex
ept for small matri
es.6 Con
lusion and Future Dire
tionsIn this paper, we have demonstrated how task queues, a proposed feature for OpenMP 3.0, allows
ode thatis devoid of indexing to be elegantly and e�e
tively parallelized. This allows algorithms to be
oded at amu
h higher level of abstra
tion and improves almost all stages of library development, in our experien
e.The methodology was applied to the symmetri
 rank-k update operation,
oded using the FLAME/C API.The resulting
ode was shown to be a minor modi�
ation of the FLAME/C implementation. Very goodspeedup was reported on small SMP systems.The FLAME approa
h to deriving and implementing linear algebra operations has been shown to applyto a large number of operations in linear algebra, in
luding most that are supported by the BLAS andLAPACK. We believe that the
onstru
ts dis
ussed in this paper apply broadly to algorithms derived andimplemented using the FLAME APIs. Thus, the results reported in this paper have broad impa
t on thedevelopment of libraries in the area of dense linear algebra.The real
hallenge will be to extend this approa
h to SMP systems with a large number of pro
essors.Experien
e with distributed memory ar
hite
tures tells us that, both theoreti
ally and in pra
ti
e, eventuallyit does not suÆ
e to extra
t parallelism out of the update of blo
ks of
olumns or blo
ks of rows alone. Weenvision using the presented approa
h to over
ome this problem by viewing the available threads as formingtwo dimensions. Let us assume that there are t threads available. Fa
tor t so that r � s = t. Then thepresented approa
h
an be used to obtain s-way parallelism within the presented loop. Within the
alls todgemm and/or the smaller dsyrk, r-way parallelism
an be a
hieved. This is in e�e
t similar to the two-dimensional data (and work) de
ompositions utilized by distributed memory parallel linear algebra pa
kageslike S
aLAPACK and PLAPACK [4, 13℄. We will investigate this in future resear
h.17

Measured Simulated

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 threads
2 threads
3 threads
4 thread

Variant 2, one loop/one task Variant 2, one loop/one task

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 threads
2 threads
3 threads
4 thread

Variant 2, two loops Variant 2, two loops

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m = k

G
F

LO
P

S

1 threads
2 threads
3 threads
4 thread

Variant 3, two loops Variant 3, two loopsFigure 13: Comparison of measured performan
e to simulated performan
e.18

Further informationAdditional information regarding the FLAME proje
t
an be found athttp://www.
s.utexas.edu/users/flame/ .A
knowledgmentsThe OpenMP task queue
onstru
t was brought to our attention by Dr. Timothy Mattson (Intel). This wasthe key insight that has allowed us to avoid the reintrodu
tion of indi
es.This resear
h was partially sponsored by NSF grants ACI-0305163 and CCF-0342369. The 4 CPUItanium2 (1.5 GHz) server on whi
h the experiments were
ondu
ted was generously donated to our resear
hby the Hewlett-Pa
kard and is administered by UT-Austin's Texas Advan
ed Computing Center. We alsothank Dr. Andrew Chapman and Thuan Cao (both with NEC Solutions (Ameri
a), In
.) for their te
hni
aladvise.We would like to a
knowledge input from Dr. Enrique Quintana-Ort�� and Paolo Bientinesi on an advan
eddraft of this paper.Referen
es[1℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[2℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort��, and Robert A. van deGeijn. The s
ien
e of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 2005. to appear.[3℄ Paolo Bientinesi, Enrique S. Quintana-Ort��, and Robert A. van de Geijn. Representing linear algebraalgorithms in
ode: The FLAME APIs. ACM Trans. Math. Soft., 2005. to appear.[4℄ J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. S
alapa
k: A s
alable linear algebra library fordistributed memory
on
urrent
omputers. In Pro
eedings of the Fourth Symposium on the Frontiers ofMassively Parallel Computation, pages 120{127. IEEE Comput. So
. Press, 1992.[5℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi
 linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[6℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Ri
hard J. Hanson. An extended set ofFORTRAN basi
 linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Mar
h 1988.[7℄ Kazushige Goto. http://www.
s.utexas.edu/users/kgoto, 2004.[8℄ John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A
exible
lass of parallel matrixmultipli
ation algorithms. In Pro
eedings of First Merged International Parallel Pro
essing Symposiumand Symposium on Parallel and Distributed Pro
essing (1998 IPPS/SPDP '98), pages 110{116, 1998.[9℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, De
ember 2001.[10℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[11℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms: The triangularSylvester equation. ACM Transa
tions on Mathemati
al Software, 29(2):218{243, June 2003.19

[12℄ Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
k Dongarra. MPI: TheComplete Referen
e. The MIT Press, 1996.[13℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MIT Press, 1997.

20

A Additional performan
e graphsVariant 2 Variant 3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 14: Performan
e of Variants 2 and 3 when A is m� 104.21

Variant 1 Variant 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

m

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 15: Performan
e of Variants 1 and 4 when A is m� 104.22

Variant 2 Variant 3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 16: Performan
e of Variants 2 and 3 when A is 104� k.23

Variant 1 Variant 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/one task one loop/one task
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

one loop/two tasks one loop/two tasks
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

k

G
F

LO
P

S

1 thread
2 threads
3 threads
4 threads
reference

two loops two loopsFigure 17: Performan
e of Variants 1 and 4 when A is 104� k.24

