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tWe dis
uss the OpenMP parallelization of linear algebra algorithms that are 
oded using the FormalLinear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher levelof abstra
tion, avoids the use of indi
es, and thus represents these algorithms as they are formallyderived and presented. Traditional OpenMP dire
tives require an expli
it loop index, or expli
it 
riti
al-region 
onstru
ts on a variable, in order to indi
ate parallelism in loops and thus the la
k of indi
espreviously posed a 
hallenge. A feature, task queues, that has been proposed for adoption into OpenMP3.0 over
omes this problem. We illustrate the issues and solutions by dis
ussing the parallelization of thesymmetri
 rank-k update and report impressive performan
e on a 4 CPU Itanium2 server.1 Introdu
tionThe Formal Linear Algebra Methods Environment (FLAME) proje
t pursues a systemati
 methodologyfor deriving and implementing linear algebra libraries [2, 9℄. The methodology is goal-oriented: Given amathemati
al spe
i�
ation of the operation to be implemented, pres
ribed steps yields a family of algorithmsfor 
omputing the opreation. As part of the derivation, the proof of 
orre
tness of the algorithm is also given.The resulting algorithms are expressed at a high level of abstra
tion, mu
h like one would present algorithmswith pseudo-
ode in a 
lassroom setting. Appli
ation Programming Interfa
es (APIs) have been developedallow the 
ode to 
losely resemble the formal algorithm stru
ture so that the opportunity for the introdu
tionof \bugs" in the translation from algorithm to implementation is redu
ed. APIs have been de�ned for theMatlab M-s
ript language, for the C and Fortran programming languages, and even as an extension tothe Parallel Linear Algebra Pa
kage (PLAPACK) [3, 13℄. The s
ope of FLAME in
ludes the Basi
 LinearAlgebra Subprograms (BLAS) [10, 6, 5℄, most of LAPACK [1℄, and a large number of operations en
ounteredin Control Theory [11℄.Integrating OpenMP dire
tives into the resulting 
ode is a problem in that the 
ode is devoid of indexing:OpenMP 
onstru
ts for parallelizing loops usually require a loop-index to indi
ate how the loop is to beparallelized. Task queues, a 
onstru
t that was re
ently proposed for in
lusion in OpenMP 3.0, allow tasksto be de�ned by a single 
ontrol stru
ture. These tasks are then s
heduled for exe
ution on the di�erentthreads. We show in this paper how this Workqueuing Model naturally supports parallelism in C 
odewritten with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The1



Workqueuing Model 
an be applied to many algorithms that are systemati
ally derived via the FLAMEapproa
h for operations supported by the BLAS and LAPACK.We demonstrate the general appli
ability of the approa
h with a 
on
rete example: the 
omputation ofthe symmetri
 rank-k update (syrk) operation. This operation is supported by the BLAS and is importantin higher-level operations like the Cholesky fa
torization and the formation of the normal equations in linearleast-squares problems. For that example, impressive performan
e is reported on an Intel Itanium2 (R)Symmetri
 Multipro
essor (SMP).The paper is organized as follows: In Se
tion 2 we dis
uss the syrk operation, four algorithmi
 variantsfor 
omputing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-sulting implementations using OpenMP and task queues is dis
ussed in Se
tion 3. An additional algorithmi
variant is presented in Se
tion 4. The parallelization of that �fth variant requires partial results, 
omputedby di�erent tasks in the task queue, to be summed. Performan
e attained by the di�erent implementationsis presented in Se
tion 5. Con
luding remarks are given in the �nal se
tion.2 A Con
rete ExampleConsider the 
omputation C := AAT +C where C is symmetri
 and hen
e only the lower triangular part ofC is stored and updated. This operation is known as a symmetri
 rank-k update (syrk).In the FLAME approa
h to deriving algorithms, matri
es are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB �where the thi
k lines indi
ate how far into the matri
es the 
omputation has rea
hed. It is assumed thatCTL is square so that both CTL and CBR are symmetri
. Here the '?' symbol indi
ates the symmetri
 partof C that is not stored.We will let Ĉ denote the original 
ontents of C so that upon 
ompletion C should 
ontain C = AAT + Ĉ,whi
h is 
alled the post
ondition. It des
ribes the state of the variables upon 
ompletion of the 
omputation.Substituting the partitioned matri
es into the post
ondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR !=  ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (1)This shows that m(CTL) should equalm(AT ) and that Ĉ should be partitioned as is C, where m(X) denotesthe row dimension of matrix X .The idea now is that (1) tells us all 
omputations that must be performed in terms of the di�erentsubmatri
es of Ĉ and A. What we want to determine is the state of matrix C at the top of a loop that
omputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop 
omputesthe result, not all 
omputation that is required has already been performed. This suggests the states givenin Fig. 1 as states that 
an be maintained as loop-invariants at the top of a loop: they are partial resultstowards the �nal result.What is important here is that for ea
h loop-invariant there is a 
orresponding algorithmi
 variant: Loop-invariant k in Fig. 1 yields the algorithmi
 Variant k in Fig. 2, in whi
h so-
alled blo
ked algorithms are giventhat in the loop-body update various submatri
es of matrix C. An unblo
ked algorithm 
an be 
reated bytaking m(C11) = m(A1) = 1, in whi
h 
ase the updates in the body of the loop be
ome simpler operations2



Loop-invariant1 � CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !2 � CTL ?CBL CBR � =  ATATT + ĈTL ?ABATT + ĈBL ĈBR !3 � CTL ?CBL CBR � =  ĈTL ?ĈBL ABATB + ĈBR !4 � CTL ?CBL CBR � =  ĈTL ?ABATT + ĈBL ABATB + ĈBR !Figure 1: Loop-invariants for 
omputing syrk.like the matrix-ve
tor produ
t and inner-produ
t. In ea
h of the loop-bodies there is the 
omputation of asyrk operation with smaller submatri
es of A and C.Having the ability to derive 
orre
t algorithms solves only part of the problem sin
e translating thosealgorithms to 
ode ordinarily required deli
ate indexing into arrays, whi
h exposes opportunities for theintrodu
tion of errors. We now illustrate how appropriately de�ned APIs over
ome this problem. In Fig. 3,we show an example of FLAME/C 
ode 
orresponding to Variant 1 in Fig. 2. To understand the 
ode, itsuÆ
es to know that C and A are des
riptors for the matri
es C and A, respe
tively. The various routinesfa
ilitate the 
reation of views into the data des
ribed by C and A. Think of a variable like CTL as a fan
ypointer into the array C. Furthermore, the 
alls to FLA Gemm and FLA Syrk perform the same operationsas the BLAS 
alls dgemm (matrix-matrix multipli
ation) and dsyrk (symmetri
 rank-k update). What ismost striking about this 
ode is the absen
e of intri
ate indexing and absense of a loop 
ontrol with a singlevariable.3 OpenFLAME := FLAME/C + ( OpenMP + Task Queues )The strength of FLAME 
ode is that it hides intri
ate indexing. For OpenMP Standard 2.0, however,this strength is a weakness: inherently 
urrent OpenMP dire
tives require loop indi
es in order to expressparallelism in the exe
ution of loops and/or expli
it 
riti
al-region blo
ks for atomi
ally updating a loopvariable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature thatallows a large number of algorithms to be easily parallelized when implemented with the FLAME API.3.1 Task queuesCon
eptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,taskq and task, formx a queue and units of work (tasks) for parallel exe
ution, respe
tively. A single threadexe
utes the taskq blo
k, enqueuing tasks within the task blo
k. Other threads dequeue tasks and exe
utethem in parallel.3.2 Appli
ation to syrkIn Fig. 4 we show how the while loop in Fig. 3 
an be annotated with OpenMP dire
tives to 
reate paralleltasks via the task queue me
hanism. In Fig. 4: 3



Algorithm: C := Syrk blk var1 2( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 +C10 C21 := A2AT1 + C21C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileAlgorithm: C := Syrk blk var3 4( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileFigure 2: Blo
ked algorithms for 
omputing C := AAT + C. The top algorithm implements Variants 1 and2, 
orresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,
orresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-leftto the bottom-right, while the bottom algorithm traverses the matrix in the opposite dire
tion.
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1 #in
lude "FLAME.h"23 int Syrk_blk_var1( FLA_Obj C, FLA_Obj A, int nb_alg )4 {5 FLA_Obj CTL, CTR, C00, C01, C02,6 CBL, CBR, C10, C11, C12,7 C20, C21, C22;8 FLA_Obj AT, A0,9 AB, A1,10 A2;11 int b;1213 FLA_Part_2x2( C, &CTL, &CTR,14 &CBL, &CBR, 0, 0, FLA_TL );15 FLA_Part_2x1( A, &AT,16 &AB, 0, FLA_TOP );1718 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){19 b = min( FLA_Obj_length( CBR ), nb_alg );2021 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,22 /*************/ /*********************/23 &C10, /**/ &C11, &C12,24 CBL, /**/ CBR, &C20, /**/ &C21, &C22,25 b, b, FLA_BR );26 FLA_Repart_2x1_to_3x1( AT, &A0,27 /* ** */ /* ** */28 &A1,29 AB, &A2, b, FLA_BOTTOM );30 /*-----------------------------------------------------------*/3132 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, A0, ONE, C10 );33 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );3435 /*-----------------------------------------------------------*/36 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,37 C10, C11, /**/ C12,38 /**************/ /******************/39 &CBL, /**/ &CBR, C20, C21, /**/ C22,40 FLA_TL );41 FLA_Cont_with_3x1_to_2x1( &AT, A0,42 A1,43 /* ** */ /* ** */44 &AB, A2, FLA_TOP );45 }46 } Figure 3: FLAME/C 
ode for a blo
ked implementation of Variant 1.
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17 #pragma intel omp parallel taskq18 {19 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){20 b = min( FLA_Obj_length( CBR ), nb_alg );2122 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,23 /*************/ /*********************/24 &C10, /**/ &C11, &C12,25 CBL, /**/ CBR, &C20, /**/ &C21, &C22,26 b, b, FLA_BR );27 FLA_Repart_2x1_to_3x1( AT, &A0,28 /* ** */ /* ** */29 &A1,30 AB, &A2, b, FLA_BOTTOM );31 /*-----------------------------------------------------------*/32 #pragma intel omp task 
aptureprivate( A0, A1, C10, C11 )33 {34 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A0, A1, ONE, C10 );35 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );36 } /* end task */37 /*-----------------------------------------------------------*/38 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,39 C10, C11, /**/ C12,40 /**************/ /******************/41 &CBL, /**/ &CBR, C20, C21, /**/ C22,42 FLA_TL );43 FLA_Cont_with_3x1_to_2x1( &AT, A0,44 A1,45 /* ** */ /* ** */46 &AB, A2, FLA_TOP );47 }48 } /* end of taskq */Figure 4: FLAME/C 
ode with task queuing OpenMP dire
tives for the 
ode in Fig. 3.� Line 17 
reates the taskq blo
k and forms a single-threaded taskqueue.� Line 32 starts a se
tion of 
ode that de�nes a task to be added to the task queue. The des
riptors A0,A1, C10, and C11 
hange from iteration to iteration. They need to be private (lo
al) variables and tohave value assigned (
aptured) from the taskq thread for use in the 
alls to FLA Gemm and FLA Syrk.� Line 36 ends the s
ope of the task being added to the queue.� Line 48 ends the s
ope of the taskq blo
k. The threads are syn
hronized at that line.Clearly, task queues provide a simple me
hanism for dire
ting the parallel exe
ution in this 
ode. Moreover,without the task queue me
hanism indi
es would have had to be reintrodu
ed into the 
ode, making itsubstantially more 
omplex and aestheti
ally less pleasing.Espe
ially for blo
ked algorithms, the 
ost of the indexing operations (FLA Repart ... and FLA Cont with ...)is amortized over enough 
omputation that the asso
iated overhead is negligible. Thus it suÆ
es to parallelizethe useful 
omputation in the loop and not these indexing operations.3.3 OptionsIn Fig. 4 the 
alls to FLA Gemm and FLA Syrk are independent and 
an, therefore, be exe
uted in any orderand/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two6



tasks:#pragma intel omp task 
aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );}#pragma intel omp task 
aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );}This 
reates twi
e the number of tasks for the task queue to s
hedule.A further observation is that the 
omputations C10 := A1AT0 + C10 and C11 := A1AT1 + C11 (updatingthe lower triangle only) 
ost about 2bn(C10)n(A) and b2n(A) 
oating point arithmeti
 operations (
ops),respe
tively. Here n(X) indi
ates the 
olumn dimension of matrix X . Sin
e n(C10) grows linearly with ea
hiteration of the loop the number of 
ops required to update C10 in
reases propotionally. Thus is unfortunate,sin
e 
ostly tasks at the end of a s
heduling queue 
an 
reate a large load imbalan
e.One option to over
ome this problem is to exe
ute the loop in reverse order (in 
ompiler terms: applya loop reversal transformation), sin
e this would then 
reate the more 
ostly tasks �rst. Variants 4 and 3in Fig. 2 exe
ute the loops in Variants 1 and 2 in reverse, respe
tively. This illustrates the value of theFLAME methodology whi
h 
an systemati
ally �nd algorithmi
 variants that have di�erent strengths andweaknesses. In fa
t, Variants 1 and 3 have the property that tasks be
ome more 
ostly as the loop pro
eedswhile Variants 2 and 4 generate progressively less 
ostly tasks. What we will later see is that di�eren
es inperforman
e 
an be observed for di�erent variants.An alternative option is to 
reate two loops (in 
ompiler terms: apply a loop �ssion transformation),repla
ing the single loop in Fig. 4 with two loops: the �rst for 
omputing all the updates to C10 and these
ond loop for 
omputing the updates to C11:#pragma intel omp parallel taskq{ while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task 
aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );} [ ... ℄} /* end of first while loop */
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while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task 
aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );} [ ... ℄} /* end of se
ond while loop */} /* end of taskq */The updates to C11 require less work and are all equal in 
ost, allowing them to be used to balan
e theworkload among threads before the syn
hronization upon 
ompletion of the tasks.3.4 An illustration of the bene�ts of di�erent optionsThe expe
ted di�eren
es in performan
e are illustrated for Variants 2 and 3 in Fig. 5. In that �gure, wereport a simulation of the s
heduling of tasks to four threads for the di�erent options des
ribed above. Thematri
es A and C are taken to be of dimension 1200�1200 and the blo
k size b in Fig. 2 is taken to equal 104(ex
ept possibly during the last iteration), whi
h is a blo
k size that we will use in our experimental se
tionas well. Ea
h of the tasks is represented by a box that has a height that is proportional to the number of
ops performed by the task. The integers in the boxes indi
ate the order in whi
h the tasks are queued inthe task queue. The tasks are s
heduled to threads as they be
ome idle. Re
all that these variants performthe same 
omputations, but the loop is exe
uted in reverse for Variant 3.We see that Variant 2 in general performs better than Variant 3 sin
e the 
osts of the tasks de
reasetowards the end, allowing them to be more easily balan
ed among the threads before syn
hronization.Splitting the task in the loop-body into two tasks improves the load-balan
e for Variant 2, but not forVariant 3. Both variants bene�t from splitting the loop into two loops, with the smaller tasks s
heduled bythe se
ond loop. These small tasks, generated by the se
ond loop, will be exe
uted by those threads that
omplete their share of the tasks generated by the �rst loop early.4 Summing Contributions from TasksFrom experien
e with parallelizing algorithms on distributed memory ar
hite
tures [13, 8, 12℄, we (andothers) have 
on
luded that there are two types of 
ommuni
ations needed to support the parallelization ofoperations like those in the BLAS and LAPACK: the �rst is data dupli
ation where data are 
ommuni
atedto di�erent pro
essors and followed by the exe
ution of 
ompletely independent tasks on ea
h pro
essor. These
ond involves the redu
tion of lo
ally 
omputed 
ontributions to a global result. Typi
ally the redu
tionis in fa
t a summation of 
ontributions (partial sums) from ea
h pro
essor.The method for using OpenMP des
ribed so far supports the SMP equivalent of the �rst type of 
om-muni
ation: It de�nes separate tasks that update parts of matri
es that do not overlap, using data that areshared and may be a

essed 
on
urrently. In lieu of dupli
ation, ea
h separate task reads the same data, asneeded, from shared storage. In order to support independent tasks 
ontributing to an update of the samedata via the task queue 
onstru
t, it has to be possible to 
ompute 
ontributions independently using datathat are not shared, and to then redu
e the results into a shared matrix or ve
tor. We illustrate now how toa

ommodate this via task queues by dis
ussing a �fth variant for 
omputing syrk.8
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Algorithm: C = Syrk blk var5( A, C )Partition A! � AL AR �where AL has 0 
olumnswhile n(AL) < n(A) doDetermine blo
k size bRepartition� AL AR �! � A0 A1 A2 �where A1 has b 
olumnsC := C +A1AT1Continue with� AL AR � � A0 A1 A2 �endwhileFigure 6: Blo
ked algorithm for C := AAT + C (Variant 5).Be
ause all pro
esses share a

ess to the array that stores A while 
omputing the syrk operation,C := AAT + C, it is also reasonable to partition A by blo
ks of 
olumns: A = � A0 A1 � � � AN�1 �.Then C := A0AT0 +A1AT1 + � � �+AN�1ATN�1 + C: (2)An algorithm for 
omputing syrk using this insight is given in Fig. 6 and the FLAME/C implementationis given in Fig. 7.In Fig. 8 we show how task queues 
an be used to parallelize this algorithm. Clearly, it is best to 
hooseN in (2) to be the number of available pro
essors, so that the 
omputational work of ea
h AiATi is equal.Private updates to C are a

umulated by ea
h task in MyC, and then added to the global C matrix, in sharedarray C. We employ the routine FLA Axpy lo
al to shared in Fig. 9 to atomi
ally add the elements of MyCto C.There are several other ways to syn
hronize the updates in the FLA Axpy lo
al to shared utility routine.For instan
e, expli
it indexing with 
riti
al regions 
an be employed for the atomi
 updates. Sin
e it is autility routine, our usual obje
tion to indi
es does not apply, as is the 
ase for our lower level 
omputationalkernels, like dgemm, that also use expli
it indexing.5 ExperimentsWhile the Workqueuing Model simpli�es the parallelization of task-oriented programs, load balan
ing thetasks 
an still be a 
hallenge. The FLAME framework and FLAME/C API is ideal for testing and evaluatingthe impa
t that algorithmi
 variants have on load balan
ing. When there are multiple independent routine
alls in a loop and their work varies in a well-de�ned way (linearly for FLA Gemm, 
onstant for FLA Syrk)the routine order within the loop and the order of separate loops be
ome another dimension in the variantspa
e that a�e
ts load balan
ing. Knowing the 
hara
teristi
s of the work asso
iated with an 
omputationis often enough to a

urately predi
t the optimal looping arrangement. However, memory 
ontention andfalse sharing 
an 
ompli
ate any predi
tion. The purpose of the following experimental investigations is toillustrate how the variants and options a�e
t the algorithm performan
e for task queuing. Even though theresults readily reveal optimal variants, the experiments are not meant to be an exhaustive sear
h to a
hieve10



1 int Syrk_blk_var5( FLA_Obj C, FLA_Obj A, int nb_alg )2 {3 FLA_Obj AL, AR, A0, A1, A2;4 int b;56 FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );78 while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){9 b = min( FLA_Obj_width( AR ), nb_alg );1011 FLA_Repart_1x2_to_1x3( AL, /**/ AR, &A0, /**/ &A1, &A2,12 b, FLA_RIGHT );13 /*------------------------------------------------------------*/1415 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C );1617 /*------------------------------------------------------------*/18 FLA_Cont_with_1x3_to_1x2( &AL, /**/ &AR, A0, A1, /**/ A2,19 FLA_LEFT );20 }21 } Figure 7: FLAME 
ode for a blo
ked implementation of Variant 5.7 #pragma intel omp parallel taskq8 {9 while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){10 b = min( FLA_Obj_width( AR ), nb_alg );1112 FLA_Repart_1x2_to_1x3( AL, /**/ AR, &A0, /**/ &A1, &A2,13 b, FLA_RIGHT );14 /*------------------------------------------------------------*/15 #pragma intel omp task 
aptureprivate(A1) private(MyC)16 {17 /* Create a lo
al 
opy of C for this task */18 FLA_Obj_
reate_
onf_to( FLA_NO_TRANSPOSE, C, &MyC );1920 /* MyC := 0 */21 FLA_Obj_set_to_zero( MyC );2223 /* MyC := A1 * A1' */24 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, MyC );2526 /* C := C + MyC */27 FLA_Axpy_lo
al_to_shared( ONE, MyC, C );2829 FLA_Obj_free( &MyC );30 } /* end of task */31 /*------------------------------------------------------------*/32 FLA_Cont_with_1x3_to_1x2( &AL, /**/ &AR, A0, A1, /**/ A2,33 FLA_LEFT );34 }35 } /* end of task queue */Figure 8: OpenFLAME 
ode for the loop in Fig. 7.11



1 #in
lude "FLAME.h"23 int FLA_Axpy_lo
al_to_shared( FLA_Obj alpha, FLA_Obj X, FLA_Obj Y )4 {5 FLA_Obj XL, XR, X0, X1, X2;6 FLA_Obj YL, YR, Y0, Y1, Y2;78 int b, i, nb_alg, n_stages;910 /* Set the number of stages equal to the number of pro
esses */11 n_stages = omp_get_num_pro
s();1213 FLA_Part_1x2( X, &XL, &XR, 0, FLA_LEFT );14 FLA_Part_1x2( Y, &YL, &YR, 0, FLA_LEFT );1516 /* Compute the width of one lo
kable partition */17 if( n_stages == -1 ) nb_alg = FLA_Obj_width(X);18 else nb_alg = max( FLA_Obj_width(X)/n_stages + 1, 1 );1920 while ( FLA_Obj_width( XL ) < FLA_Obj_width( X ) ){21 b = min( FLA_Obj_width( XR ), nb_alg );2223 FLA_Repart_1x2_to_1x3( XL, /**/ XR, &X0, /**/ &X1, &X2,24 b, FLA_RIGHT );2526 FLA_Repart_1x2_to_1x3( YL, /**/ YR, &Y0, /**/ &Y1, &Y2,27 b, FLA_RIGHT );28 /*------------------------------------------------------------*/2930 /* Get the index of the 
urrent partition */31 i = FLA_Obj_width(XL)/nb_alg;3233 /* A
quire lo
k[i℄ (the lo
k for X1 and Y1) */34 omp_set_lo
k( &lo
k[i℄ );3536 /* Y1 := alpha * X1 + Y1 */37 FLA_Axpy( alpha, X1, Y1 );3839 /* Release lo
k[i℄ (the lo
k for X1 and Y1) */40 omp_unset_lo
k( &lo
k[i℄ );4142 /*------------------------------------------------------------*/43 FLA_Cont_with_1x3_to_1x2( &XL, /**/ &XR, X0, X1, /**/ X2,44 FLA_LEFT );4546 FLA_Cont_with_1x3_to_1x2( &YL, /**/ &YR, Y0, Y1, /**/ Y2,47 FLA_LEFT );48 }4950 return FLA_SUCCESS;51 }Figure 9: OpenFLAME 
ode for adding a private matrix with des
riptor X to a shared matrix with des
riptorY. This parti
ular version uses lo
ks to 
reate a pipeline.12



optimal performan
e for the syrk operation.5.1 DetailsTo demonstrate the e�e
t of algorithmi
 variants and/or parallelization options on performan
e we imple-mented all �ve variants. For ea
h of the �rst four variants we implemented three di�erent options: a simpleinsertion of the task queue me
hanism with one task in the loop-body (one loop/one task); the separationof the two updates to 
reate two tasks in the loop-body (one loop/two tasks); and the separation of the twotasks into two separate loops (two loops).All 
omputation are in double pre
ision (64 bit) arithmeti
. The performan
e of the di�erent implemen-tations was measured on a 4 CPU Itanium2 (1.5GHz) workstation, with a peak performan
e of 6 GFLOPS(109 
ops/se
.) per pro
essor, for a total peak of 24 GFLOPS. The Intel C 
ompiler was used, sin
e itsupports the proposed OpenMP task queue 
onstru
t even though, at this time, that 
onstru
t is not yetpart of the standard.The implementations were linked to the BLAS libraries by Kazushige Goto [7℄. The 
alls to FLA Gemmand FLA Syrk in the loop-body were implemented as wrappers to sequential implementations of the BLAS
alls dgemm and dsyrk. For Goto's BLAS a blo
k size of 104 is known to yield good performan
e from thematrix-matrix produ
t routine dgemm1 and was therefore used in our experiments.For 
omputing the rate of 
omputation, the operation 
ount is m2k 
ops for C 2 Rm�m and A 2 Rm�k .The GFLOPS rate reported in the graphs was 
omputed by the formulaGFLOPS attained = m2ktime (in se
.) � 10�9:5.2 ResultsThe resulting performan
e is reported in Figs. 10{12. So that the performan
es 
an be visually evaluatedrelative to the theoreti
al peak performan
e of the ma
hine, the range of the y-axis of the graphs is 0{24GFLOPS. We organized the results so that Variants 2 and 3 are displayed on one page, as are Variants 1 and4. These pairs of variants perform the same updates in the loop-body, but mar
h through the matri
es inopposite dire
tions. Variants 2 and 4 
reate smaller tasks later in the 
omputation, whi
h explains the betterand smoother performan
e attained by these implementations. Variants 2 and 3 are ri
h in matrix-matrixprodu
ts that have the form A2AT1 while Variants 1 and 4 are ri
h in A1AT0 . The di�eren
e here is thatA2AT1 yields a matrix with a large row dimension and a small 
olumn dimension, while A1AT0 yields a matrixwith a small row dimension and a large 
olumn dimension. As of this writing the dgemm matrix-matrixprodu
t in the BLAS by Goto is less optimized for this se
ond 
ase than for the �rst, whi
h explains thelower performan
e attained by Variants 1 and 4. Given these insights, Variant 2 should perform best overall,as is observed in these experiments.In Fig. 12 we 
ompare Variant 5 only to the \two loops" version of Variant 2. In this �gure, we explorethe e�e
ts of pi
king di�erent shapes of matri
es as input to syrk. The two top graphs report performan
efor square matri
es C and A. In that 
ase, Variant 2 performs best, likely due to the added syn
hronizationoverhead in
urred by Variant 5 sin
e 
ontention o

urs as 
ontributions are added to C by di�erent tasks.The 
enter two graphs show drasti
ally di�erent results for the spe
ial 
ase where C is 104 � 104 anddimension k is varied. Now no parallelism is a
hieved by Variant 2, sin
e it is exe
uted with a blo
k size of104: only one iteration of the loop is exe
uted, and therefore only one task is 
reated. For this 
ase, Variant5 a
hieves reasonable performan
e as k in
reases, due to the fa
t that the 
ontention during the addition1Optimal performan
e of dgemm is reported to require a blo
k size of 1024. However, that is too large to a
hieve e�e
tiveparallelization. 13
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e of Variants 2 and 3 when C and A are square.14



Variant 1 Variant 4
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e of Variants 1 and 4 when C and A are square.15



Variant 2 Variant 5
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e of Variants 2 and 5 for di�erent shaped matri
es.16



of the 
ontributions to C is less signi�
ant sin
e C is small. When k equals 104 and m is varied, reportedin the bottom two graphs, Variant 2 again a
hieves ex
ellent performan
e. Variant 5 fails to attain goodperforman
e sin
e it is the k dimension that is split among the tasks, and relatively little 
omputation isperformed relative to the overhead asso
iated with the addition of the 
ontributions from di�erent tasks toC. These last two 
ases, m = 104 with large k and k = 104 with large m, o

ur as subproblems in di�erentalgorithmi
 variants for operations like the Cholesky fa
torization.5.3 Simulated resultsIn Se
tion 3.4 we presented load simulations for task s
heduling on four pro
essors. We now show that thesimulator a

urately predi
ts the behavior of the implementations, ex
ept for small matri
es. We 
al
ulatethe performan
e as the produ
t of a predi
ted speedup and the a
tual asymptoti
 performan
e for a serialexe
ution on a single CPU. The speedup is determined by the work of the pro
essor that has to perform themaximum s
heduled work. We assume that ea
h user thread is bound to a pro
essor. Using the s
heduledtask assignments in Se
tion 3.4, the 
omputational rate (in GFLOPS) is estimated by the formulaGFLOPS = predi
ted speedup�GFLOPS by one CPU= total 
ops performedmaxti=1 (
ops performed by pro
essor i) �GFLOPS by one CPU;where t is equal to the number of pro
essors (and threads under our assumptions).From the graphs in Fig. 10 we determined that a single CPU attains about 5.4 GFLOPS out of a possible6 GFLOPS for this operation. With this, the graphs in Fig. 13 were generated. In that �gure, the measuredperforman
e is depi
ted on the left, while the 
orresponding simulated performan
e is predi
ted on the right.The behavior of the measured and the simulated data is quite similar, ex
ept for small matri
es.6 Con
lusion and Future Dire
tionsIn this paper, we have demonstrated how task queues, a proposed feature for OpenMP 3.0, allows 
ode thatis devoid of indexing to be elegantly and e�e
tively parallelized. This allows algorithms to be 
oded at amu
h higher level of abstra
tion and improves almost all stages of library development, in our experien
e.The methodology was applied to the symmetri
 rank-k update operation, 
oded using the FLAME/C API.The resulting 
ode was shown to be a minor modi�
ation of the FLAME/C implementation. Very goodspeedup was reported on small SMP systems.The FLAME approa
h to deriving and implementing linear algebra operations has been shown to applyto a large number of operations in linear algebra, in
luding most that are supported by the BLAS andLAPACK. We believe that the 
onstru
ts dis
ussed in this paper apply broadly to algorithms derived andimplemented using the FLAME APIs. Thus, the results reported in this paper have broad impa
t on thedevelopment of libraries in the area of dense linear algebra.The real 
hallenge will be to extend this approa
h to SMP systems with a large number of pro
essors.Experien
e with distributed memory ar
hite
tures tells us that, both theoreti
ally and in pra
ti
e, eventuallyit does not suÆ
e to extra
t parallelism out of the update of blo
ks of 
olumns or blo
ks of rows alone. Weenvision using the presented approa
h to over
ome this problem by viewing the available threads as formingtwo dimensions. Let us assume that there are t threads available. Fa
tor t so that r � s = t. Then thepresented approa
h 
an be used to obtain s-way parallelism within the presented loop. Within the 
alls todgemm and/or the smaller dsyrk, r-way parallelism 
an be a
hieved. This is in e�e
t similar to the two-dimensional data (and work) de
ompositions utilized by distributed memory parallel linear algebra pa
kageslike S
aLAPACK and PLAPACK [4, 13℄. We will investigate this in future resear
h.17
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A Additional performan
e graphsVariant 2 Variant 3
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e of Variants 2 and 3 when A is m� 104.21



Variant 1 Variant 4
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e of Variants 1 and 4 when A is m� 104.22



Variant 2 Variant 3
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