
Parallelizing FLAME Code with OpenMP Task QueuesTze Meng LowKent F. MilfeldRobert A. van de GeijnField G. Van ZeeThe University of Texas at AustinAustin, TX 78712FLAME Working Note #15De. 3, 2004AbstratWe disuss the OpenMP parallelization of linear algebra algorithms that are oded using the FormalLinear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher levelof abstration, avoids the use of indies, and thus represents these algorithms as they are formallyderived and presented. Traditional OpenMP diretives require an expliit loop index, or expliit ritial-region onstruts on a variable, in order to indiate parallelism in loops and thus the lak of indiespreviously posed a hallenge. A feature, task queues, that has been proposed for adoption into OpenMP3.0 overomes this problem. We illustrate the issues and solutions by disussing the parallelization of thesymmetri rank-k update and report impressive performane on a 4 CPU Itanium2 server.1 IntrodutionThe Formal Linear Algebra Methods Environment (FLAME) projet pursues a systemati methodologyfor deriving and implementing linear algebra libraries [2, 9℄. The methodology is goal-oriented: Given amathematial spei�ation of the operation to be implemented, presribed steps yields a family of algorithmsfor omputing the opreation. As part of the derivation, the proof of orretness of the algorithm is also given.The resulting algorithms are expressed at a high level of abstration, muh like one would present algorithmswith pseudo-ode in a lassroom setting. Appliation Programming Interfaes (APIs) have been developedallow the ode to losely resemble the formal algorithm struture so that the opportunity for the introdutionof \bugs" in the translation from algorithm to implementation is redued. APIs have been de�ned for theMatlab M-sript language, for the C and Fortran programming languages, and even as an extension tothe Parallel Linear Algebra Pakage (PLAPACK) [3, 13℄. The sope of FLAME inludes the Basi LinearAlgebra Subprograms (BLAS) [10, 6, 5℄, most of LAPACK [1℄, and a large number of operations enounteredin Control Theory [11℄.Integrating OpenMP diretives into the resulting ode is a problem in that the ode is devoid of indexing:OpenMP onstruts for parallelizing loops usually require a loop-index to indiate how the loop is to beparallelized. Task queues, a onstrut that was reently proposed for inlusion in OpenMP 3.0, allow tasksto be de�ned by a single ontrol struture. These tasks are then sheduled for exeution on the di�erentthreads. We show in this paper how this Workqueuing Model naturally supports parallelism in C odewritten with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The1



Workqueuing Model an be applied to many algorithms that are systematially derived via the FLAMEapproah for operations supported by the BLAS and LAPACK.We demonstrate the general appliability of the approah with a onrete example: the omputation ofthe symmetri rank-k update (syrk) operation. This operation is supported by the BLAS and is importantin higher-level operations like the Cholesky fatorization and the formation of the normal equations in linearleast-squares problems. For that example, impressive performane is reported on an Intel Itanium2 (R)Symmetri Multiproessor (SMP).The paper is organized as follows: In Setion 2 we disuss the syrk operation, four algorithmi variantsfor omputing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-sulting implementations using OpenMP and task queues is disussed in Setion 3. An additional algorithmivariant is presented in Setion 4. The parallelization of that �fth variant requires partial results, omputedby di�erent tasks in the task queue, to be summed. Performane attained by the di�erent implementationsis presented in Setion 5. Conluding remarks are given in the �nal setion.2 A Conrete ExampleConsider the omputation C := AAT +C where C is symmetri and hene only the lower triangular part ofC is stored and updated. This operation is known as a symmetri rank-k update (syrk).In the FLAME approah to deriving algorithms, matries are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB �where the thik lines indiate how far into the matries the omputation has reahed. It is assumed thatCTL is square so that both CTL and CBR are symmetri. Here the '?' symbol indiates the symmetri partof C that is not stored.We will let Ĉ denote the original ontents of C so that upon ompletion C should ontain C = AAT + Ĉ,whih is alled the postondition. It desribes the state of the variables upon ompletion of the omputation.Substituting the partitioned matries into the postondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR !=  ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (1)This shows that m(CTL) should equalm(AT ) and that Ĉ should be partitioned as is C, where m(X) denotesthe row dimension of matrix X .The idea now is that (1) tells us all omputations that must be performed in terms of the di�erentsubmatries of Ĉ and A. What we want to determine is the state of matrix C at the top of a loop thatomputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop omputesthe result, not all omputation that is required has already been performed. This suggests the states givenin Fig. 1 as states that an be maintained as loop-invariants at the top of a loop: they are partial resultstowards the �nal result.What is important here is that for eah loop-invariant there is a orresponding algorithmi variant: Loop-invariant k in Fig. 1 yields the algorithmi Variant k in Fig. 2, in whih so-alled bloked algorithms are giventhat in the loop-body update various submatries of matrix C. An unbloked algorithm an be reated bytaking m(C11) = m(A1) = 1, in whih ase the updates in the body of the loop beome simpler operations2



Loop-invariant1 � CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !2 � CTL ?CBL CBR � =  ATATT + ĈTL ?ABATT + ĈBL ĈBR !3 � CTL ?CBL CBR � =  ĈTL ?ĈBL ABATB + ĈBR !4 � CTL ?CBL CBR � =  ĈTL ?ABATT + ĈBL ABATB + ĈBR !Figure 1: Loop-invariants for omputing syrk.like the matrix-vetor produt and inner-produt. In eah of the loop-bodies there is the omputation of asyrk operation with smaller submatries of A and C.Having the ability to derive orret algorithms solves only part of the problem sine translating thosealgorithms to ode ordinarily required deliate indexing into arrays, whih exposes opportunities for theintrodution of errors. We now illustrate how appropriately de�ned APIs overome this problem. In Fig. 3,we show an example of FLAME/C ode orresponding to Variant 1 in Fig. 2. To understand the ode, itsuÆes to know that C and A are desriptors for the matries C and A, respetively. The various routinesfailitate the reation of views into the data desribed by C and A. Think of a variable like CTL as a fanypointer into the array C. Furthermore, the alls to FLA Gemm and FLA Syrk perform the same operationsas the BLAS alls dgemm (matrix-matrix multipliation) and dsyrk (symmetri rank-k update). What ismost striking about this ode is the absene of intriate indexing and absense of a loop ontrol with a singlevariable.3 OpenFLAME := FLAME/C + ( OpenMP + Task Queues )The strength of FLAME ode is that it hides intriate indexing. For OpenMP Standard 2.0, however,this strength is a weakness: inherently urrent OpenMP diretives require loop indies in order to expressparallelism in the exeution of loops and/or expliit ritial-region bloks for atomially updating a loopvariable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature thatallows a large number of algorithms to be easily parallelized when implemented with the FLAME API.3.1 Task queuesConeptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,taskq and task, formx a queue and units of work (tasks) for parallel exeution, respetively. A single threadexeutes the taskq blok, enqueuing tasks within the task blok. Other threads dequeue tasks and exeutethem in parallel.3.2 Appliation to syrkIn Fig. 4 we show how the while loop in Fig. 3 an be annotated with OpenMP diretives to reate paralleltasks via the task queue mehanism. In Fig. 4: 3



Algorithm: C := Syrk blk var1 2( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blok size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 +C10 C21 := A2AT1 + C21C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileAlgorithm: C := Syrk blk var3 4( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blok size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileFigure 2: Bloked algorithms for omputing C := AAT + C. The top algorithm implements Variants 1 and2, orresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,orresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-leftto the bottom-right, while the bottom algorithm traverses the matrix in the opposite diretion.
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1 #inlude "FLAME.h"23 int Syrk_blk_var1( FLA_Obj C, FLA_Obj A, int nb_alg )4 {5 FLA_Obj CTL, CTR, C00, C01, C02,6 CBL, CBR, C10, C11, C12,7 C20, C21, C22;8 FLA_Obj AT, A0,9 AB, A1,10 A2;11 int b;1213 FLA_Part_2x2( C, &CTL, &CTR,14 &CBL, &CBR, 0, 0, FLA_TL );15 FLA_Part_2x1( A, &AT,16 &AB, 0, FLA_TOP );1718 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){19 b = min( FLA_Obj_length( CBR ), nb_alg );2021 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,22 /*************/ /*********************/23 &C10, /**/ &C11, &C12,24 CBL, /**/ CBR, &C20, /**/ &C21, &C22,25 b, b, FLA_BR );26 FLA_Repart_2x1_to_3x1( AT, &A0,27 /* ** */ /* ** */28 &A1,29 AB, &A2, b, FLA_BOTTOM );30 /*-----------------------------------------------------------*/3132 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, A0, ONE, C10 );33 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );3435 /*-----------------------------------------------------------*/36 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,37 C10, C11, /**/ C12,38 /**************/ /******************/39 &CBL, /**/ &CBR, C20, C21, /**/ C22,40 FLA_TL );41 FLA_Cont_with_3x1_to_2x1( &AT, A0,42 A1,43 /* ** */ /* ** */44 &AB, A2, FLA_TOP );45 }46 } Figure 3: FLAME/C ode for a bloked implementation of Variant 1.
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17 #pragma intel omp parallel taskq18 {19 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){20 b = min( FLA_Obj_length( CBR ), nb_alg );2122 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,23 /*************/ /*********************/24 &C10, /**/ &C11, &C12,25 CBL, /**/ CBR, &C20, /**/ &C21, &C22,26 b, b, FLA_BR );27 FLA_Repart_2x1_to_3x1( AT, &A0,28 /* ** */ /* ** */29 &A1,30 AB, &A2, b, FLA_BOTTOM );31 /*-----------------------------------------------------------*/32 #pragma intel omp task aptureprivate( A0, A1, C10, C11 )33 {34 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A0, A1, ONE, C10 );35 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );36 } /* end task */37 /*-----------------------------------------------------------*/38 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,39 C10, C11, /**/ C12,40 /**************/ /******************/41 &CBL, /**/ &CBR, C20, C21, /**/ C22,42 FLA_TL );43 FLA_Cont_with_3x1_to_2x1( &AT, A0,44 A1,45 /* ** */ /* ** */46 &AB, A2, FLA_TOP );47 }48 } /* end of taskq */Figure 4: FLAME/C ode with task queuing OpenMP diretives for the ode in Fig. 3.� Line 17 reates the taskq blok and forms a single-threaded taskqueue.� Line 32 starts a setion of ode that de�nes a task to be added to the task queue. The desriptors A0,A1, C10, and C11 hange from iteration to iteration. They need to be private (loal) variables and tohave value assigned (aptured) from the taskq thread for use in the alls to FLA Gemm and FLA Syrk.� Line 36 ends the sope of the task being added to the queue.� Line 48 ends the sope of the taskq blok. The threads are synhronized at that line.Clearly, task queues provide a simple mehanism for direting the parallel exeution in this ode. Moreover,without the task queue mehanism indies would have had to be reintrodued into the ode, making itsubstantially more omplex and aesthetially less pleasing.Espeially for bloked algorithms, the ost of the indexing operations (FLA Repart ... and FLA Cont with ...)is amortized over enough omputation that the assoiated overhead is negligible. Thus it suÆes to parallelizethe useful omputation in the loop and not these indexing operations.3.3 OptionsIn Fig. 4 the alls to FLA Gemm and FLA Syrk are independent and an, therefore, be exeuted in any orderand/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two6



tasks:#pragma intel omp task aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );}#pragma intel omp task aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );}This reates twie the number of tasks for the task queue to shedule.A further observation is that the omputations C10 := A1AT0 + C10 and C11 := A1AT1 + C11 (updatingthe lower triangle only) ost about 2bn(C10)n(A) and b2n(A) oating point arithmeti operations (ops),respetively. Here n(X) indiates the olumn dimension of matrix X . Sine n(C10) grows linearly with eahiteration of the loop the number of ops required to update C10 inreases propotionally. Thus is unfortunate,sine ostly tasks at the end of a sheduling queue an reate a large load imbalane.One option to overome this problem is to exeute the loop in reverse order (in ompiler terms: applya loop reversal transformation), sine this would then reate the more ostly tasks �rst. Variants 4 and 3in Fig. 2 exeute the loops in Variants 1 and 2 in reverse, respetively. This illustrates the value of theFLAME methodology whih an systematially �nd algorithmi variants that have di�erent strengths andweaknesses. In fat, Variants 1 and 3 have the property that tasks beome more ostly as the loop proeedswhile Variants 2 and 4 generate progressively less ostly tasks. What we will later see is that di�erenes inperformane an be observed for di�erent variants.An alternative option is to reate two loops (in ompiler terms: apply a loop �ssion transformation),replaing the single loop in Fig. 4 with two loops: the �rst for omputing all the updates to C10 and theseond loop for omputing the updates to C11:#pragma intel omp parallel taskq{ while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );} [ ... ℄} /* end of first while loop */
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while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );} [ ... ℄} /* end of seond while loop */} /* end of taskq */The updates to C11 require less work and are all equal in ost, allowing them to be used to balane theworkload among threads before the synhronization upon ompletion of the tasks.3.4 An illustration of the bene�ts of di�erent optionsThe expeted di�erenes in performane are illustrated for Variants 2 and 3 in Fig. 5. In that �gure, wereport a simulation of the sheduling of tasks to four threads for the di�erent options desribed above. Thematries A and C are taken to be of dimension 1200�1200 and the blok size b in Fig. 2 is taken to equal 104(exept possibly during the last iteration), whih is a blok size that we will use in our experimental setionas well. Eah of the tasks is represented by a box that has a height that is proportional to the number ofops performed by the task. The integers in the boxes indiate the order in whih the tasks are queued inthe task queue. The tasks are sheduled to threads as they beome idle. Reall that these variants performthe same omputations, but the loop is exeuted in reverse for Variant 3.We see that Variant 2 in general performs better than Variant 3 sine the osts of the tasks dereasetowards the end, allowing them to be more easily balaned among the threads before synhronization.Splitting the task in the loop-body into two tasks improves the load-balane for Variant 2, but not forVariant 3. Both variants bene�t from splitting the loop into two loops, with the smaller tasks sheduled bythe seond loop. These small tasks, generated by the seond loop, will be exeuted by those threads thatomplete their share of the tasks generated by the �rst loop early.4 Summing Contributions from TasksFrom experiene with parallelizing algorithms on distributed memory arhitetures [13, 8, 12℄, we (andothers) have onluded that there are two types of ommuniations needed to support the parallelization ofoperations like those in the BLAS and LAPACK: the �rst is data dupliation where data are ommuniatedto di�erent proessors and followed by the exeution of ompletely independent tasks on eah proessor. Theseond involves the redution of loally omputed ontributions to a global result. Typially the redutionis in fat a summation of ontributions (partial sums) from eah proessor.The method for using OpenMP desribed so far supports the SMP equivalent of the �rst type of om-muniation: It de�nes separate tasks that update parts of matries that do not overlap, using data that areshared and may be aessed onurrently. In lieu of dupliation, eah separate task reads the same data, asneeded, from shared storage. In order to support independent tasks ontributing to an update of the samedata via the task queue onstrut, it has to be possible to ompute ontributions independently using datathat are not shared, and to then redue the results into a shared matrix or vetor. We illustrate now how toaommodate this via task queues by disussing a �fth variant for omputing syrk.8
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Algorithm: C = Syrk blk var5( A, C )Partition A! � AL AR �where AL has 0 olumnswhile n(AL) < n(A) doDetermine blok size bRepartition� AL AR �! � A0 A1 A2 �where A1 has b olumnsC := C +A1AT1Continue with� AL AR � � A0 A1 A2 �endwhileFigure 6: Bloked algorithm for C := AAT + C (Variant 5).Beause all proesses share aess to the array that stores A while omputing the syrk operation,C := AAT + C, it is also reasonable to partition A by bloks of olumns: A = � A0 A1 � � � AN�1 �.Then C := A0AT0 +A1AT1 + � � �+AN�1ATN�1 + C: (2)An algorithm for omputing syrk using this insight is given in Fig. 6 and the FLAME/C implementationis given in Fig. 7.In Fig. 8 we show how task queues an be used to parallelize this algorithm. Clearly, it is best to hooseN in (2) to be the number of available proessors, so that the omputational work of eah AiATi is equal.Private updates to C are aumulated by eah task in MyC, and then added to the global C matrix, in sharedarray C. We employ the routine FLA Axpy loal to shared in Fig. 9 to atomially add the elements of MyCto C.There are several other ways to synhronize the updates in the FLA Axpy loal to shared utility routine.For instane, expliit indexing with ritial regions an be employed for the atomi updates. Sine it is autility routine, our usual objetion to indies does not apply, as is the ase for our lower level omputationalkernels, like dgemm, that also use expliit indexing.5 ExperimentsWhile the Workqueuing Model simpli�es the parallelization of task-oriented programs, load balaning thetasks an still be a hallenge. The FLAME framework and FLAME/C API is ideal for testing and evaluatingthe impat that algorithmi variants have on load balaning. When there are multiple independent routinealls in a loop and their work varies in a well-de�ned way (linearly for FLA Gemm, onstant for FLA Syrk)the routine order within the loop and the order of separate loops beome another dimension in the variantspae that a�ets load balaning. Knowing the harateristis of the work assoiated with an omputationis often enough to aurately predit the optimal looping arrangement. However, memory ontention andfalse sharing an ompliate any predition. The purpose of the following experimental investigations is toillustrate how the variants and options a�et the algorithm performane for task queuing. Even though theresults readily reveal optimal variants, the experiments are not meant to be an exhaustive searh to ahieve10



1 int Syrk_blk_var5( FLA_Obj C, FLA_Obj A, int nb_alg )2 {3 FLA_Obj AL, AR, A0, A1, A2;4 int b;56 FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );78 while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){9 b = min( FLA_Obj_width( AR ), nb_alg );1011 FLA_Repart_1x2_to_1x3( AL, /**/ AR, &A0, /**/ &A1, &A2,12 b, FLA_RIGHT );13 /*------------------------------------------------------------*/1415 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C );1617 /*------------------------------------------------------------*/18 FLA_Cont_with_1x3_to_1x2( &AL, /**/ &AR, A0, A1, /**/ A2,19 FLA_LEFT );20 }21 } Figure 7: FLAME ode for a bloked implementation of Variant 5.7 #pragma intel omp parallel taskq8 {9 while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){10 b = min( FLA_Obj_width( AR ), nb_alg );1112 FLA_Repart_1x2_to_1x3( AL, /**/ AR, &A0, /**/ &A1, &A2,13 b, FLA_RIGHT );14 /*------------------------------------------------------------*/15 #pragma intel omp task aptureprivate(A1) private(MyC)16 {17 /* Create a loal opy of C for this task */18 FLA_Obj_reate_onf_to( FLA_NO_TRANSPOSE, C, &MyC );1920 /* MyC := 0 */21 FLA_Obj_set_to_zero( MyC );2223 /* MyC := A1 * A1' */24 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, MyC );2526 /* C := C + MyC */27 FLA_Axpy_loal_to_shared( ONE, MyC, C );2829 FLA_Obj_free( &MyC );30 } /* end of task */31 /*------------------------------------------------------------*/32 FLA_Cont_with_1x3_to_1x2( &AL, /**/ &AR, A0, A1, /**/ A2,33 FLA_LEFT );34 }35 } /* end of task queue */Figure 8: OpenFLAME ode for the loop in Fig. 7.11



1 #inlude "FLAME.h"23 int FLA_Axpy_loal_to_shared( FLA_Obj alpha, FLA_Obj X, FLA_Obj Y )4 {5 FLA_Obj XL, XR, X0, X1, X2;6 FLA_Obj YL, YR, Y0, Y1, Y2;78 int b, i, nb_alg, n_stages;910 /* Set the number of stages equal to the number of proesses */11 n_stages = omp_get_num_pros();1213 FLA_Part_1x2( X, &XL, &XR, 0, FLA_LEFT );14 FLA_Part_1x2( Y, &YL, &YR, 0, FLA_LEFT );1516 /* Compute the width of one lokable partition */17 if( n_stages == -1 ) nb_alg = FLA_Obj_width(X);18 else nb_alg = max( FLA_Obj_width(X)/n_stages + 1, 1 );1920 while ( FLA_Obj_width( XL ) < FLA_Obj_width( X ) ){21 b = min( FLA_Obj_width( XR ), nb_alg );2223 FLA_Repart_1x2_to_1x3( XL, /**/ XR, &X0, /**/ &X1, &X2,24 b, FLA_RIGHT );2526 FLA_Repart_1x2_to_1x3( YL, /**/ YR, &Y0, /**/ &Y1, &Y2,27 b, FLA_RIGHT );28 /*------------------------------------------------------------*/2930 /* Get the index of the urrent partition */31 i = FLA_Obj_width(XL)/nb_alg;3233 /* Aquire lok[i℄ (the lok for X1 and Y1) */34 omp_set_lok( &lok[i℄ );3536 /* Y1 := alpha * X1 + Y1 */37 FLA_Axpy( alpha, X1, Y1 );3839 /* Release lok[i℄ (the lok for X1 and Y1) */40 omp_unset_lok( &lok[i℄ );4142 /*------------------------------------------------------------*/43 FLA_Cont_with_1x3_to_1x2( &XL, /**/ &XR, X0, X1, /**/ X2,44 FLA_LEFT );4546 FLA_Cont_with_1x3_to_1x2( &YL, /**/ &YR, Y0, Y1, /**/ Y2,47 FLA_LEFT );48 }4950 return FLA_SUCCESS;51 }Figure 9: OpenFLAME ode for adding a private matrix with desriptor X to a shared matrix with desriptorY. This partiular version uses loks to reate a pipeline.12



optimal performane for the syrk operation.5.1 DetailsTo demonstrate the e�et of algorithmi variants and/or parallelization options on performane we imple-mented all �ve variants. For eah of the �rst four variants we implemented three di�erent options: a simpleinsertion of the task queue mehanism with one task in the loop-body (one loop/one task); the separationof the two updates to reate two tasks in the loop-body (one loop/two tasks); and the separation of the twotasks into two separate loops (two loops).All omputation are in double preision (64 bit) arithmeti. The performane of the di�erent implemen-tations was measured on a 4 CPU Itanium2 (1.5GHz) workstation, with a peak performane of 6 GFLOPS(109 ops/se.) per proessor, for a total peak of 24 GFLOPS. The Intel C ompiler was used, sine itsupports the proposed OpenMP task queue onstrut even though, at this time, that onstrut is not yetpart of the standard.The implementations were linked to the BLAS libraries by Kazushige Goto [7℄. The alls to FLA Gemmand FLA Syrk in the loop-body were implemented as wrappers to sequential implementations of the BLASalls dgemm and dsyrk. For Goto's BLAS a blok size of 104 is known to yield good performane from thematrix-matrix produt routine dgemm1 and was therefore used in our experiments.For omputing the rate of omputation, the operation ount is m2k ops for C 2 Rm�m and A 2 Rm�k .The GFLOPS rate reported in the graphs was omputed by the formulaGFLOPS attained = m2ktime (in se.) � 10�9:5.2 ResultsThe resulting performane is reported in Figs. 10{12. So that the performanes an be visually evaluatedrelative to the theoretial peak performane of the mahine, the range of the y-axis of the graphs is 0{24GFLOPS. We organized the results so that Variants 2 and 3 are displayed on one page, as are Variants 1 and4. These pairs of variants perform the same updates in the loop-body, but marh through the matries inopposite diretions. Variants 2 and 4 reate smaller tasks later in the omputation, whih explains the betterand smoother performane attained by these implementations. Variants 2 and 3 are rih in matrix-matrixproduts that have the form A2AT1 while Variants 1 and 4 are rih in A1AT0 . The di�erene here is thatA2AT1 yields a matrix with a large row dimension and a small olumn dimension, while A1AT0 yields a matrixwith a small row dimension and a large olumn dimension. As of this writing the dgemm matrix-matrixprodut in the BLAS by Goto is less optimized for this seond ase than for the �rst, whih explains thelower performane attained by Variants 1 and 4. Given these insights, Variant 2 should perform best overall,as is observed in these experiments.In Fig. 12 we ompare Variant 5 only to the \two loops" version of Variant 2. In this �gure, we explorethe e�ets of piking di�erent shapes of matries as input to syrk. The two top graphs report performanefor square matries C and A. In that ase, Variant 2 performs best, likely due to the added synhronizationoverhead inurred by Variant 5 sine ontention ours as ontributions are added to C by di�erent tasks.The enter two graphs show drastially di�erent results for the speial ase where C is 104 � 104 anddimension k is varied. Now no parallelism is ahieved by Variant 2, sine it is exeuted with a blok size of104: only one iteration of the loop is exeuted, and therefore only one task is reated. For this ase, Variant5 ahieves reasonable performane as k inreases, due to the fat that the ontention during the addition1Optimal performane of dgemm is reported to require a blok size of 1024. However, that is too large to ahieve e�etiveparallelization. 13
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two loops two loopsFigure 10: Performane of Variants 2 and 3 when C and A are square.14



Variant 1 Variant 4
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Variant 2 Variant 5
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of the ontributions to C is less signi�ant sine C is small. When k equals 104 and m is varied, reportedin the bottom two graphs, Variant 2 again ahieves exellent performane. Variant 5 fails to attain goodperformane sine it is the k dimension that is split among the tasks, and relatively little omputation isperformed relative to the overhead assoiated with the addition of the ontributions from di�erent tasks toC. These last two ases, m = 104 with large k and k = 104 with large m, our as subproblems in di�erentalgorithmi variants for operations like the Cholesky fatorization.5.3 Simulated resultsIn Setion 3.4 we presented load simulations for task sheduling on four proessors. We now show that thesimulator aurately predits the behavior of the implementations, exept for small matries. We alulatethe performane as the produt of a predited speedup and the atual asymptoti performane for a serialexeution on a single CPU. The speedup is determined by the work of the proessor that has to perform themaximum sheduled work. We assume that eah user thread is bound to a proessor. Using the sheduledtask assignments in Setion 3.4, the omputational rate (in GFLOPS) is estimated by the formulaGFLOPS = predited speedup�GFLOPS by one CPU= total ops performedmaxti=1 (ops performed by proessor i) �GFLOPS by one CPU;where t is equal to the number of proessors (and threads under our assumptions).From the graphs in Fig. 10 we determined that a single CPU attains about 5.4 GFLOPS out of a possible6 GFLOPS for this operation. With this, the graphs in Fig. 13 were generated. In that �gure, the measuredperformane is depited on the left, while the orresponding simulated performane is predited on the right.The behavior of the measured and the simulated data is quite similar, exept for small matries.6 Conlusion and Future DiretionsIn this paper, we have demonstrated how task queues, a proposed feature for OpenMP 3.0, allows ode thatis devoid of indexing to be elegantly and e�etively parallelized. This allows algorithms to be oded at amuh higher level of abstration and improves almost all stages of library development, in our experiene.The methodology was applied to the symmetri rank-k update operation, oded using the FLAME/C API.The resulting ode was shown to be a minor modi�ation of the FLAME/C implementation. Very goodspeedup was reported on small SMP systems.The FLAME approah to deriving and implementing linear algebra operations has been shown to applyto a large number of operations in linear algebra, inluding most that are supported by the BLAS andLAPACK. We believe that the onstruts disussed in this paper apply broadly to algorithms derived andimplemented using the FLAME APIs. Thus, the results reported in this paper have broad impat on thedevelopment of libraries in the area of dense linear algebra.The real hallenge will be to extend this approah to SMP systems with a large number of proessors.Experiene with distributed memory arhitetures tells us that, both theoretially and in pratie, eventuallyit does not suÆe to extrat parallelism out of the update of bloks of olumns or bloks of rows alone. Weenvision using the presented approah to overome this problem by viewing the available threads as formingtwo dimensions. Let us assume that there are t threads available. Fator t so that r � s = t. Then thepresented approah an be used to obtain s-way parallelism within the presented loop. Within the alls todgemm and/or the smaller dsyrk, r-way parallelism an be ahieved. This is in e�et similar to the two-dimensional data (and work) deompositions utilized by distributed memory parallel linear algebra pakageslike SaLAPACK and PLAPACK [4, 13℄. We will investigate this in future researh.17
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A Additional performane graphsVariant 2 Variant 3
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