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Abstract

We discuss the OpenMP parallelization of linear algebra algorithms that are coded using the Formal
Linear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher level
of abstraction, avoids the use of indices, and thus represents these algorithms as they are formally
derived and presented. Traditional OpenMP directives require an explicit loop index, or explicit critical-
region constructs on a variable, in order to indicate parallelism in loops and thus the lack of indices
previously posed a challenge. A feature, task queues, that has been proposed for adoption into OpenMP
3.0 overcomes this problem. We illustrate the issues and solutions by discussing the parallelization of the
symmetric rank-k update and report impressive performance on a 4 CPU Itanium?2 server.

1 Introduction

The Formal Linear Algebra Methods Environment (FLAME) project pursues a systematic methodology
for deriving and implementing linear algebra libraries [2, 9]. The methodology is goal-oriented: Given a
mathematical specification of the operation to be implemented, prescribed steps yields a family of algorithms
for computing the opreation. As part of the derivation, the proof of correctness of the algorithm is also given.
The resulting algorithms are expressed at a high level of abstraction, much like one would present algorithms
with pseudo-code in a classroom setting. Application Programming Interfaces (APIs) have been developed
allow the code to closely resemble the formal algorithm structure so that the opportunity for the introduction
of “bugs” in the translation from algorithm to implementation is reduced. APIs have been defined for the
Matlab M-script language, for the C and Fortran programming languages, and even as an extension to
the Parallel Linear Algebra Package (PLAPACK) [3, 13]. The scope of FLAME includes the Basic Linear
Algebra Subprograms (BLAS) [10, 6, 5], most of LAPACK [1], and a large number of operations encountered
in Control Theory [11].

Integrating OpenMP directives into the resulting code is a problem in that the code is devoid of indexing;:
OpenMP constructs for parallelizing loops usually require a loop-index to indicate how the loop is to be
parallelized. Task queues, a construct that was recently proposed for inclusion in OpenMP 3.0, allow tasks
to be defined by a single control structure. These tasks are then scheduled for execution on the different
threads. We show in this paper how this Workqueuing Model naturally supports parallelism in C code
written with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The



Workqueuing Model can be applied to many algorithms that are systematically derived via the FLAME
approach for operations supported by the BLAS and LAPACK.

We demonstrate the general applicability of the approach with a concrete example: the computation of
the symmetric rank-k update (SYRK) operation. This operation is supported by the BLAS and is important
in higher-level operations like the Cholesky factorization and the formation of the normal equations in linear
least-squares problems. For that example, impressive performance is reported on an Intel Itanium2 (R)
Symmetric Multiprocessor (SMP).

The paper is organized as follows: In Section 2 we discuss the SYRK operation, four algorithmic variants
for computing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-
sulting implementations using OpenMP and task queues is discussed in Section 3. An additional algorithmic
variant is presented in Section 4. The parallelization of that fifth variant requires partial results, computed
by different tasks in the task queue, to be summed. Performance attained by the different implementations
is presented in Section 5. Concluding remarks are given in the final section.

2 A Concrete Example

Consider the computation C' := AAT 4+ C where C is symmetric and hence only the lower triangular part of
C is stored and updated. This operation is known as a symmetric rank-k update (SYRK).
In the FLAME approach to deriving algorithms, matrices are partitioned into regions:

Crr * ) ( Ar )
C— and A —
( Csr | CBr Ap
where the thick lines indicate how far into the matrices the computation has reached. It is assumed that
Crr is square so that both Crr and Cpr are symmetric. Here the 'x’ symbol indicates the symmetric part
of C that is not stored. .
We will let C' denote the original contents of C' so that upon completion C should contain C = AAT + C,

which is called the postcondition. It describes the state of the variables upon completion of the computation.
Substituting the partitioned matrices into the postcondition yields

(CTL *)_(AT>(AT>T+ Crr *
Cgr | CBr B Ap Ap Csr | Csr
_ ATA¥+CA’TL | * (1)
ApAL +Cp | ApAL +Csr )’

This shows that m(Cry) should equal m(Ar) and that C should be partitioned as is C', where m(X) denotes
the row dimension of matrix X.

The idea now is that (1) tells us all computations that must be performed in terms of the different
submatrices of ¢ and A. What we want to determine is the state of matrix C' at the top of a loop that
computes the result C = AAT + C. This state is referred to as the loop-invariant. If the loop computes
the result, not all computation that is required has already been performed. This suggests the states given
in Fig. 1 as states that can be maintained as loop-invariants at the top of a loop: they are partial results
towards the final result.

What is important here is that for each loop-invariant there is a corresponding algorithmic variant: Loop-
invariant £ in Fig. 1 yields the algorithmic Variant £ in Fig. 2, in which so-called blocked algorithms are given
that in the loop-body update various submatrices of matrix C'. An wunblocked algorithm can be created by
taking m(C11) = m(A1) = 1, in which case the updates in the body of the loop become simpler operations



Loop-invariant
( CTL * ) ATAT + OTL
1
Cgr | Csr &:33
( CTL * ) ATA +CTL
2
Csr | CBr ApAL + Cpy,
( Crr ) Crr
3
CBrL CBR Cpr | ApAL +CBR
4 ( Crr ) Crr
CL CBR ApAL + Cpyl ABAB + CBr

Figure 1: Loop-invariants for computing SYRK.

like the matrix-vector product and inner-product. In each of the loop-bodies there is the computation of a
SYRK operation with smaller submatrices of A and C.

Having the ability to derive correct algorithms solves only part of the problem since translating those
algorithms to code ordinarily required delicate indexing into arrays, which exposes opportunities for the
introduction of errors. We now illustrate how appropriately defined APIs overcome this problem. In Fig. 3,
we show an example of FLAME/C code corresponding to Variant 1 in Fig. 2. To understand the code, it
suffices to know that C and A are descriptors for the matrices C' and A, respectively. The various routines
facilitate the creation of views into the data described by C and A. Think of a variable like CTL as a fancy
pointer into the array C'. Furthermore, the calls to FLA_Gemm and FLA_Syrk perform the same operations
as the BLAS calls DGEMM (matrix-matrix multiplication) and dsyrk (symmetric rank-k update). What is
most striking about this code is the absence of intricate indexing and absense of a loop control with a single
variable.

3 OpenFLAME = FLAME/C + ( OpenMP + Task Queues )

The strength of FLAME code is that it hides intricate indexing. For OpenMP Standard 2.0, however,
this strength is a weakness: inherently current OpenMP directives require loop indices in order to express
parallelism in the execution of loops and/or explicit critical-region blocks for atomically updating a loop
variable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature that
allows a large number of algorithms to be easily parallelized when implemented with the FLAME API.

3.1 Task queues

Conceptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,
taskq and task, formx a queue and units of work (tasks) for parallel execution, respectively. A single thread
executes the taskq block, enqueuing tasks within the task block. Other threads dequeue tasks and execute
them in parallel.

3.2 Application to SYRK

In Fig. 4 we show how the while loop in Fig. 3 can be annotated with OpenMP directives to create parallel
tasks via the task queue mechanism. In Fig. 4:



Algorithm: C := SYRK_BLK_VAR1_2( A, C )

,A—
CprL | CBr ) (
where Crpp is 0 X 0, Ap has 0 rows

Crr | Crr

. ( Ar )
Partition C —
Ap

while m(Crr) < m(C) do

Determine block size b

Repartition
crr | Crr Coo | Co1 | Co2 Ap Ao
s 1 Cnn = | Cio | C11 | C12 |, s = | A
Coo | Co1 | Co2 A,

where Ci1is b x b, A; has b rows

Variant 1:
Cro 1= A1 AT + Cyo
C11 = A1AT + Cn1

Variant 2:
Coy 1= A2 AT 4 Co
C11:= A1AT + Cn1

Continue with

where C7; is bx b, A; has b rows

C C C A
Crr | Crr 00 01 02 A 0
= = — | Cio| C11 | C12 |, Y — | A
BL BR Cag | C21 | C22 B Az
endwhile
Algorithm: C := SYRK_BLK_VAR3_4( A, C)
.\ Crr | Crr ) ( Ar )
Partition C — | =————m— | A —
( Cgr | CBr Ap
where Cpp is 0 x 0, Ap has 0 rows
while m(Cggr) < m(C) do
Determine block size b
Repartition
C C C A
crp | Crr 00 01 02 A 0
= = — Ciwo | Ci1 | C12 |, Y — Ay
BL BR Cag | C21 | C22 B Az

Variant 3:
Co1 1= A2AT + Ca1
C11:= A1 AT + Oy

Variant 4:
Cio = A1AT + C1o
C11:= A1 AT + Oy

Continue with

Crr | Crr Coo | Co1 | Coz Ap Ao
= Trn “— Cio | C11 | C12 |, yys A Ay
BL Cag | Ca1 | C22 As
endwhile

Figure 2: Blocked algorithms for computing C' := AAT + C. The top algorithm implements Variants 1 and
2, corresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,
corresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-left
to the bottom-right, while the bottom algorithm traverses the matrix in the opposite direction.
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#include "FLAME.h"

int Syrk_blk_var1i( FLA_Obj C, FLA_Obj A, int nb_alg )
{

FLA_Obj CTL, CTR, coo, Co1, Co2,
CBL, CBR, ci0, C11, C12,
Cc20, C21, C22;
FLA_Obj AT, A0,
AB, At,
A2;
int b;

FLA_Part_2x2( C, &CTL, &CTR,

&CBL, &CBR, 0, 0, FLA_TL );
FLA_Part_2x1( A, &AT,
&AB, 0, FLA_TOP );

while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){
b = min( FLA_Obj_length( CBR ), nb_alg );

FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &CO1, &C02,
[Fkkkkkkkkkkkk/  [dkokkdkkkokokkkkkokokkk ok kokk /
&C10, /**/ &C11, &C12,
CBL, /**/ CBR, &C20, /**/ &C21, &C22,
b, b, FLA_BR );

FLA_Repart_2x1_to_3x1( AT, &AO,
/% *% x/ /% x%x %/
&A1,
AB, &A2, b, FLA_BOTTOM );
R et e L L L e P */

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, AO, ONE, C10 );
FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, Ci1 );

FLA_Cont_with_3x3_to_2x2( &CTL, /*x/ &CTR, €00, CO1, /**/ CO2,
C10, C11, /**/ C12,

[xEkkkkkkkkkokkk/ [kokkkkkokokkkkkokkkkkk/

&CBL, /*x/ &CBR, (€20, C21, /**x/ C22,

FLA_TL );
FLA_Cont_with_3x1_to_2x1( &AT, A0,
A1,
/% x%x %/ /% x%x %/
&AB, A2, FLA_TOP );

Figure 3: FLAME/C code for a blocked implementation of Variant 1.



17 #pragma intel omp parallel taskq

18 {

19 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){

20 b = min( FLA_Obj_length( CBR ), nb_alg );

21

22 FLA_Repart_2x2_to_3x3( CTL, /**/ CIR, &C00, /**/ &CO01, &C02,
23 [RRAkkkkkkkkkk [ [Rkkkkokkokkokkokkokkok ok kK kk /
24 &C10, /**/ &C11, &C12,
25 CBL, /**/ CBR,  &C20, /*x/ &C21, &C22,
26 b, b, FLA_BR );

27 FLA_Repart_2x1_to_3x1( AT, %AO,

28 /% %% %/ /% %% %/

29 &A1,

30 AB, &A2, b, FLA_BOTTOM );
31 J 2 R et e */
32 #pragma intel omp task captureprivate( AO, A1, C10, Ci1 )

33 {

34 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, AO, A1, ONE, C10 );
35 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, Ci1 );
36 } /* end task */

37 J e R e e e e */
38 FLA_Cont_with_3x3_to_2x2( &CTL, /*x/ &CTR, CO00, CO1, /**/ C02,
39 C10, Ci1, /#x/ C12,
40 [ARdkkkkkkkokkok ok [ [ Rkkkkkokkokkok ok ok ok okk ok k /
41 &CBL, /**/ &CBR, (20, C21, /*x/ C22,
42 FLA_TL );

43 FLA_Cont_with_3x1_to_2x1( &AT, A0,

44 At,

45 /* *xx %/ /* % *x/

46 %AB, A2, FLA_TOP );
47 }

48 } /* end of taskq */

Figure 4: FLAME/C code with task queuing OpenMP directives for the code in Fig. 3.

e Line 17 creates the taskq block and forms a single-threaded taskqueue.

e Line 32 starts a section of code that defines a task to be added to the task queue. The descriptors AO,
A1, C10, and C11 change from iteration to iteration. They need to be private (local) variables and to
have value assigned (captured) from the taskq thread for use in the calls to FLA_Gemm and FLA_Syrk.

e Line 36 ends the scope of the task being added to the queue.
e Line 48 ends the scope of the taskq block. The threads are synchronized at that line.

Clearly, task queues provide a simple mechanism for directing the parallel execution in this code. Moreover,
without the task queue mechanism indices would have had to be reintroduced into the code, making it
substantially more complex and aesthetically less pleasing.

Especially for blocked algorithms, the cost of the indexing operations (FLA_Repart_. .. and FLA Cont with_. ..

is amortized over enough computation that the associated overhead is negligible. Thus it suffices to parallelize
the useful computation in the loop and not these indexing operations.

3.3 Options

In Fig. 4 the calls to FLA_Gemm and FLA_Syrk are independent and can, therefore, be executed in any order
and/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two



tasks:
#pragma intel omp task captureprivate(AO, A1, C10)
{
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
ONE, A1, AO, ONE, C10 );
}
#pragma intel omp task captureprivate(Al, C11)
{
FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, Ci1 );
}

This creates twice the number of tasks for the task queue to schedule.

A further observation is that the computations Cyy := A; AT + Cy¢ and C1; := A1 AT + C1; (updating
the lower triangle only) cost about 2bn(Cig)n(A4) and b?n(A4) floating point arithmetic operations (flops),
respectively. Here n(X) indicates the column dimension of matrix X. Since n(C1) grows linearly with each
iteration of the loop the number of flops required to update Cy increases propotionally. Thus is unfortunate,
since costly tasks at the end of a scheduling queue can create a large load imbalance.

One option to overcome this problem is to execute the loop in reverse order (in compiler terms: apply
a loop reversal transformation), since this would then create the more costly tasks first. Variants 4 and 3
in Fig. 2 execute the loops in Variants 1 and 2 in reverse, respectively. This illustrates the value of the
FLAME methodology which can systematically find algorithmic variants that have different strengths and
weaknesses. In fact, Variants 1 and 3 have the property that tasks become more costly as the loop proceeds
while Variants 2 and 4 generate progressively less costly tasks. What we will later see is that differences in
performance can be observed for different variants.

An alternative option is to create two loops (in compiler terms: apply a loop fission transformation),
replacing the single loop in Fig. 4 with two loops: the first for computing all the updates to Ci9 and the
second loop for computing the updates to Cyy:

#pragma intel omp parallel taskq

{
while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){
b = min( FLA_Obj_length( CBR ), nb_alg );

FLA_Repart_2x2_to_3x3(

[...1
#pragma intel omp task captureprivate(A0, A1, C10)
{
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
ONE, A1, AO, ONE, C10 );
}

[...1
} /* end of first while loop */



while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){
b = min( FLA_Obj_length( CBR ), nb_alg );

FLA_Repart_2x2_to_3x3(
[...1]

#pragma intel omp task captureprivate(Al, C11)

{
FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, Ci1 );

[...1

} /* end of second while loop */
} /* end of taskq */

The updates to C11 require less work and are all equal in cost, allowing them to be used to balance the
workload among threads before the synchronization upon completion of the tasks.

3.4 An illustration of the benefits of different options

The expected differences in performance are illustrated for Variants 2 and 3 in Fig. 5. In that figure, we
report a simulation of the scheduling of tasks to four threads for the different options described above. The
matrices A and C are taken to be of dimension 1200 x 1200 and the block size b in Fig. 2 is taken to equal 104
(except possibly during the last iteration), which is a block size that we will use in our experimental section
as well. Each of the tasks is represented by a box that has a height that is proportional to the number of
flops performed by the task. The integers in the boxes indicate the order in which the tasks are queued in
the task queue. The tasks are scheduled to threads as they become idle. Recall that these variants perform
the same computations, but the loop is executed in reverse for Variant 3.

We see that Variant 2 in general performs better than Variant 3 since the costs of the tasks decrease
towards the end, allowing them to be more easily balanced among the threads before synchronization.
Splitting the task in the loop-body into two tasks improves the load-balance for Variant 2, but not for
Variant 3. Both variants benefit from splitting the loop into two loops, with the smaller tasks scheduled by
the second loop. These small tasks, generated by the second loop, will be executed by those threads that
complete their share of the tasks generated by the first loop early.

4 Summing Contributions from Tasks

From experience with parallelizing algorithms on distributed memory architectures [13, 8, 12], we (and
others) have concluded that there are two types of communications needed to support the parallelization of
operations like those in the BLAS and LAPACK: the first is data duplication where data are communicated
to different processors and followed by the execution of completely independent tasks on each processor. The
second involves the reduction of locally computed contributions to a global result. Typically the reduction
is in fact a summation of contributions (partial sums) from each processor.

The method for using OpenMP described so far supports the SMP equivalent of the first type of com-
munication: It defines separate tasks that update parts of matrices that do not overlap, using data that are
shared and may be accessed concurrently. In lieu of duplication, each separate task reads the same data, as
needed, from shared storage. In order to support independent tasks contributing to an update of the same
data via the task queue construct, it has to be possible to compute contributions independently using data
that are not shared, and to then reduce the results into a shared matrix or vector. We illustrate now how to
accommodate this via task queues by discussing a fifth variant for computing SYRK.
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Figure 5:

Scheduling of tasks for Variants 2 and 3 (C' and A both 1200 x 1200).



Algorithm: C' = SYRK_BLK_VAR5( A, C )
Partition A4 — ( Ap I Ap )
where A; has 0 columns

while n(Ar) < n(A) do
Determine block size b
Repartition
(As ] Ar) = ( A0 | A1 [ 42)
where A; has b columns

C:=C + A AT

Continue with
(AL ] Ar ) < (Ao | A ] Az)

endwhile

Figure 6: Blocked algorithm for C := AAT + C' (Variant 5).

Because all processes share access to the array that stores A while computing the SYRK operation,

C := AAT + C, it is also reasonable to partition A by blocks of columns: A = (Ao | Ay | -+ | An_1 ).
Then

C:= AgAl + A1 AT + -+ An 1 AN, +C. (2)

An algorithm for computing SYRK using this insight is given in Fig. 6 and the FLAME/C implementation
is given in Fig. 7.

In Fig. 8 we show how task queues can be used to parallelize this algorithm. Clearly, it is best to choose
N in (2) to be the number of available processors, so that the computational work of each A4; AT is equal.
Private updates to C are accumulated by each task in MyC, and then added to the global C' matrix, in shared
array C. We employ the routine FLA_Axpy_local_to_shared in Fig. 9 to atomically add the elements of MyC
to C.

There are several other ways to synchronize the updates in the FLA_Axpy_local_to_shared utility routine.
For instance, explicit indexing with critical regions can be employed for the atomic updates. Since it is a
utility routine, our usual objection to indices does not apply, as is the case for our lower level computational
kernels, like DGEMM, that also use explicit indexing.

5 Experiments

While the Workqueuing Model simplifies the parallelization of task-oriented programs, load balancing the
tasks can still be a challenge. The FLAME framework and FLAME/C API is ideal for testing and evaluating
the impact that algorithmic variants have on load balancing. When there are multiple independent routine
calls in a loop and their work varies in a well-defined way (linearly for FLA_Gemm, constant for FLA_Syrk)
the routine order within the loop and the order of separate loops become another dimension in the variant
space that affects load balancing. Knowing the characteristics of the work associated with an computation
is often enough to accurately predict the optimal looping arrangement. However, memory contention and
false sharing can complicate any prediction. The purpose of the following experimental investigations is to
illustrate how the variants and options affect the algorithm performance for task queuing. Even though the
results readily reveal optimal variants, the experiments are not meant to be an exhaustive search to achieve

10
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int Syrk_blk_var5( FLA_Obj C, FLA_Obj A, int nb_alg )

FLA_Obj AL, AR, A0, A1, A2;
int b;
FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );

while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){
b = min( FLA_Obj_width( AR ), nb_alg );

FLA_Repart_1x2_to_1x3( AL, /#*x/ AR, A0, /*
b, FLA_RIGHT );

FLA_Cont_with_1x3_to_1x2( &AL, /**/ &AR, A0
FLA_LEFT );

Figure 7: FLAME code for a blocked imp

#pragma intel omp parallel taskq

{
while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){
b = min( FLA_Obj_width( AR ), nb_alg );

FLA_Repart_1x2_to_1x3( AL, /#*x/ AR, &AO,
b, FLA_RIGHT );

#pragma intel omp task captureprivate(Al) private

{
/* Create a local copy of C for this task */
FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &M

/* MyC := 0 */
FLA_Obj_set_to_zero( MyC );

/* MyC := Al * A1’ x/

FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, MyC );

/*¥ C := C + MyC */
FLA_Axpy_local_to_shared( ONE, MyC, C );

FLA_Obj_free( &MyC );
} /* end of task */

FLA_Cont_with_1x3_to_1x2( &AL, /**x/ &AR,
FLA_LEFT );
}
} /* end of task queue */

*/ &A1, &A2,

, AL, /*x/ A2,

lementation of Variant 5.

/**/ &A1, &A2,

(MyC)

yC )3

A0, A1, /*x/ A2,

Figure 8: OpenFLAME code for the loop in Fig. 7.

11



1 #include "FLAME.h"

2

3 int FLA_Axpy_local_to_shared( FLA_Obj alpha, FLA_Obj X, FLA_Obj Y )
4 {

5 FLA_Obj XL,  XR, X0, X1, X2;

6 FLA_Obj YL, YR, Yo, Y1, Y2;

7

8 int b, i, nb_alg, n_stages;

9

10 /* Set the number of stages equal to the number of processes */
11 n_stages = omp_get_num_procs();

12

13 FLA_Part_1x2( X,  &XL, &XR, 0, FLA_LEFT );

14 FLA_Part_1x2( Y, &YL, &YR, 0, FLA_LEFT );

15

16 /* Compute the width of one lockable partition */

17 if( n_stages == -1 ) nb_alg = FLA_Obj_width(X);

18 else nb_alg = max( FLA_Obj_width(X)/n_stages + 1, 1 );
19

20 while ( FLA_Obj_width( XL ) < FLA_Obj_width( X ) ){

21 b = min( FLA_Obj_width( XR ), nb_alg );

22

23 FLA_Repart_1x2_to_1x3( XL, /**/ XR, %X0, /**/ &X1, &X2,
24 b, FLA_RIGHT );

25

26 FLA_Repart_1x2_to_1x3( YL, /*x/ YR, &YO0, /**x/ &Y1, &Y2,
27 b, FLA_RIGHT );

28 J e e */
29
30 /* Get the index of the current partition */
31 i = FLA_Obj_width(XL)/nb_alg;
32
33 /* Acquire lock[il (the lock for X1 and Y1) */
34 omp_set_lock( &lock[i] );
35
36 /* Y1 := alpha * X1 + Y1 */
37 FLA_Axpy( alpha, X1, Y1 );
38

39 /* Release lock[i] (the lock for X1 and Y1) */

40 omp_unset_lock( &lock[i] );

41

42 [ H e e */
43 FLA_Cont_with_1x3_to_1x2( &XL, /#x/ &XR, X0, X1, /#x/ X2,
44 FLA_LEFT );

45

46 FLA_Cont_with_1x3_to_1x2( &YL, /%x/ &YR, Y0, Y1, /*x/ Y2,
47 FLA_LEFT );

48 }

49

50 return FLA_SUCCESS;

51 %

Figure 9: OpenFLAME code for adding a private matrix with descriptor X to a shared matrix with descriptor
Y. This particular version uses locks to create a pipeline.
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optimal performance for the SYRK operation.

5.1 Detalils

To demonstrate the effect of algorithmic variants and/or parallelization options on performance we imple-
mented all five variants. For each of the first four variants we implemented three different options: a simple
insertion of the task queue mechanism with one task in the loop-body (one loop/one task); the separation
of the two updates to create two tasks in the loop-body (one loop/two tasks); and the separation of the two
tasks into two separate loops (two loops).

All computation are in double precision (64 bit) arithmetic. The performance of the different implemen-
tations was measured on a 4 CPU Itanium2 (1.5GHz) workstation, with a peak performance of 6 GFLOPS
(10° flops/sec.) per processor, for a total peak of 24 GFLOPS. The Intel C compiler was used, since it
supports the proposed OpenMP task queue construct even though, at this time, that construct is not yet
part of the standard.

The implementations were linked to the BLAS libraries by Kazushige Goto [7]. The calls to FLA_Gemm
and FLA_Syrk in the loop-body were implemented as wrappers to sequential implementations of the BLAS
calls DGEMM and DSYRK. For Goto’s BLAS a block size of 104 is known to yield good performance from the
matrix-matrix product routine DGEMM! and was therefore used in our experiments.

For computing the rate of computation, the operation count is m2k flops for C € R™*™ and A € R™*%
The GFLOPS rate reported in the graphs was computed by the formula

m2k

GFLOPS attained= ———— x 107°.
time (in sec.)

5.2 Results

The resulting performance is reported in Figs. 10-12. So that the performances can be visually evaluated
relative to the theoretical peak performance of the machine, the range of the y-axis of the graphs is 0-24
GFLOPS. We organized the results so that Variants 2 and 3 are displayed on one page, as are Variants 1 and
4. These pairs of variants perform the same updates in the loop-body, but march through the matrices in
opposite directions. Variants 2 and 4 create smaller tasks later in the computation, which explains the better
and smoother performance attained by these implementations. Variants 2 and 3 are rich in matrix-matrix
products that have the form A; AT while Variants 1 and 4 are rich in A; AT. The difference here is that
Ay AT yields a matrix with a large row dimension and a small column dimension, while 4; AT yields a matrix
with a small row dimension and a large column dimension. As of this writing the DGEMM matrix-matrix
product in the BLAS by Goto is less optimized for this second case than for the first, which explains the
lower performance attained by Variants 1 and 4. Given these insights, Variant 2 should perform best overall,
as is observed in these experiments.

In Fig. 12 we compare Variant 5 only to the “two loops” version of Variant 2. In this figure, we explore
the effects of picking different shapes of matrices as input to SYRK. The two top graphs report performance
for square matrices C' and A. In that case, Variant 2 performs best, likely due to the added synchronization
overhead incurred by Variant 5 since contention occurs as contributions are added to C by different tasks.
The center two graphs show drastically different results for the special case where C is 104 x 104 and
dimension k£ is varied. Now no parallelism is achieved by Variant 2, since it is executed with a block size of
104: only one iteration of the loop is executed, and therefore only one task is created. For this case, Variant
5 achieves reasonable performance as k increases, due to the fact that the contention during the addition

1Optimal performance of DGEMM is reported to require a block size of 1024. However, that is too large to achieve effective
parallelization.
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Figure 10: Performance of Variants 2 and 3 when C and A are square.
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of the contributions to C' is less significant since C' is small. When k equals 104 and m is varied, reported
in the bottom two graphs, Variant 2 again achieves excellent performance. Variant 5 fails to attain good
performance since it is the & dimension that is split among the tasks, and relatively little computation is
performed relative to the overhead associated with the addition of the contributions from different tasks to
C. These last two cases, m = 104 with large & and & = 104 with large m, occur as subproblems in different
algorithmic variants for operations like the Cholesky factorization.

5.3 Simulated results

In Section 3.4 we presented load simulations for task scheduling on four processors. We now show that the
simulator accurately predicts the behavior of the implementations, except for small matrices. We calculate
the performance as the product of a predicted speedup and the actual asymptotic performance for a serial
execution on a single CPU. The speedup is determined by the work of the processor that has to perform the
maximum scheduled work. We assume that each user thread is bound to a processor. Using the scheduled
task assignments in Section 3.4, the computational rate (in GFLOPS) is estimated by the formula

GFLOPS = predicted speedup x GFLOPS by one CPU

_ total flops performed « GFLOPS by one CPU
max’_, (flops performed by processor 7) ’

where ¢ is equal to the number of processors (and threads under our assumptions).

From the graphs in Fig. 10 we determined that a single CPU attains about 5.4 GFLOPS out of a possible
6 GFLOPS for this operation. With this, the graphs in Fig. 13 were generated. In that figure, the measured
performance is depicted on the left, while the corresponding simulated performance is predicted on the right.
The behavior of the measured and the simulated data is quite similar, except for small matrices.

6 Conclusion and Future Directions

In this paper, we have demonstrated how task queues, a proposed feature for OpenMP 3.0, allows code that
is devoid of indexing to be elegantly and effectively parallelized. This allows algorithms to be coded at a
much higher level of abstraction and improves almost all stages of library development, in our experience.
The methodology was applied to the symmetric rank-k update operation, coded using the FLAME/C APIL.
The resulting code was shown to be a minor modification of the FLAME/C implementation. Very good
speedup was reported on small SMP systems.

The FLAME approach to deriving and implementing linear algebra operations has been shown to apply
to a large number of operations in linear algebra, including most that are supported by the BLAS and
LAPACK. We believe that the constructs discussed in this paper apply broadly to algorithms derived and
implemented using the FLAME APIs. Thus, the results reported in this paper have broad impact on the
development of libraries in the area of dense linear algebra.

The real challenge will be to extend this approach to SMP systems with a large number of processors.
Experience with distributed memory architectures tells us that, both theoretically and in practice, eventually
it does not suffice to extract parallelism out of the update of blocks of columns or blocks of rows alone. We
envision using the presented approach to overcome this problem by viewing the available threads as forming
two dimensions. Let us assume that there are ¢ threads available. Factor t so that r x s = ¢t. Then the
presented approach can be used to obtain s-way parallelism within the presented loop. Within the calls to
DGEMM and/or the smaller DSYRK, r-way parallelism can be achieved. This is in effect similar to the two-
dimensional data (and work) decompositions utilized by distributed memory parallel linear algebra packages
like ScaLAPACK and PLAPACK [4, 13]. We will investigate this in future research.
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Further information

Additional information regarding the FLAME project can be found at

http://www.cs.utexas.edu/users/flame/
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A Additional performance graphs

Figure 14: Performance of Variants 2 and 3 when A is m x 104.
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Figure 15: Performance of Variants 1 and 4 when A is m x 104.
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Figure 16: Performance of Variants 2 and 3 when A is 104 x k.
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Figure 17: Performance of Variants 1 and 4 when A is 104 x k.
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