
Scalable Parallelization of FLAME Code via the

Workqueuing Model

FIELD G. VAN ZEE

The University of Texas at Austin

and

PAOLO BIENTINESI

Duke University

and

TZE MENG LOW

The University of Texas at Austin

and

ROBERT A. VAN DE GEIJN

The University of Texas at Austin

We discuss the OpenMP parallelization of linear algebra algorithms that are coded using the For-

mal Linear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a
higher level of abstraction, avoids the use loop and array indices, and represents these algorithms
as they are formally derived and presented. We report on two implementations of the workqueu-
ing model, neither of which requires the use of explicit indices to specify parallelism. The first

implementation uses the experimental taskq pragma, which may influence the adoption of a sim-
ilar construct into OpenMP 3.0. The second workqueuing implementation is domain-specific to
FLAME but allows us to illustrate the benefits of sorting tasks according to their computational
cost prior to parallel execution. In addition, we discuss how scalable parallelization of dense linear

algebra algorithms via OpenMP will require a two-dimensional partitioning of operands much like
a 2D data distribution is needed on distributed memory architectures. We illustrate the issues and
solutions by discussing the parallelization of the symmetric rank-k update and report impressive

performance on an SGI system with 14 Itanium2 processors.

Categories and Subject Descriptors: D.1 [Software - Programming Techniques - Concur-

rent Programming]: Parallel Programming—

General Terms: Algorithms, Performance

Additional Key Words and Phrases: FLAME, OpenMP, SMP, parallel, scalability, workqueuing

Authors’ addresses: Field G. Van Zee, Department of Computer Sciences, The University of Texas
at Austin, Austin, TX 78712, field@cs.utexas.edu. Paolo Bientinesi, Department of Computer
Science, Duke University, Durham, NC 27708, pauldj@cs.duke.edu. Tze Meng Low, Department

of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, ltm@cs.utexas.edu.
Robert A. van de Geijn, Department of Computer Sciences, The University of Texas at Austin,
Austin, TX 78712, rvdg@cs.utexas.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–28.

2 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

1. INTRODUCTION

FLAME. The Formal Linear Algebra Methods Environment (FLAME) project
pursues a systematic methodology for deriving and implementing linear algebra
libraries. The methodology is goal-oriented: given a mathematical specification
of the operation to be implemented, prescribed steps yield a family of algorithms
for computing the operation. A proof of correctness is also given as part of the
derivation. The resulting algorithms are expressed at a high level of abstraction,
much like one would present algorithms with pseudo-code in a classroom setting [?;
Bientinesi et al. 2005; Bientinesi 2006]. Application Programming Interfaces (APIs)
allow the code to closely resemble the formal algorithm structure, thereby reducing
the opportunity for the introduction of “bugs” in the translation from algorithm to
implementation. APIs have been defined for the Matlab M-script language, for the
C and Fortran programming languages, and even as an extension to the Parallel Lin-
ear Algebra Package (PLAPACK) [van de Geijn 1997; Bientinesi et al. 2005]. The
scope of FLAME includes the Basic Linear Algebra Subprograms (BLAS) [Lawson
et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990], many operations from
LAPACK [Anderson et al. 1992], and a large number of operations encountered in
Control Theory [Quintana-Ort́ı and van de Geijn 2003; Bientinesi 2006].

The workqueuing model. Shah et al. [1999] proposed the workqueuing model
specifically to overcome the limitations of the OpenMP for and sections con-
structs. In OpenMP, workqueuing parallelism would be derived through the use
of two new directives: taskq and task. The workqueuing model offers distinct
advantages over conventional parallel OpenMP constructs. Namely, workqueuing
provides a method of parallelizing loops that abstracts completely from array and
loop indexing; instead, the model is work-oriented, allowing the programmer to
parallelize independent units of computation created within for and while state-
ments. The virtues of workqueuing and the clean abstraction of FLAME allow
the programmer to quickly parallelize any FLAME algorithm whose subproblems
exhibit no inter-dependencies.

High performance. Contrary to conventional wisdom, elegant algorithms need
not compromise on performance. Figure 1 gives the reader a general idea of the
performance that we can attain in our algorithms with minimal effort. It is worth
noting that while FLAME well outperforms the Intel Math Kernel Library (MKL),
it is edged out by GotoBLAS for smaller problem sizes. However, this is not sur-
prising. Kazushige Goto, author of GotoBLAS [Goto 2006], frequently collaborates
with the FLAME project. Our open exchange of ideas allows him to combine our
best findings with his own at a lower, more architecture-aware level.

Contributions. This paper makes the following contributions:

—We show how algorithms written with the FLAME/C API can be naturally
parallelized for Symmetric Multi-Processor (SMP) systems by employing the
workqueuing model.

—We demonstrate the general applicability of the approach with a concrete exam-
ple: the computation of the symmetric rank-k update (syrk) operation. This
operation is supported by the BLAS and is important in higher-level operations

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 3

Absolute performance Speedup relative to GotoBLAS

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

GotoBLAS 1.07
Intel MKL 8.1
FLAME workqueuing (−24,−1)

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

problem size

S
pe

ed
up

GotoBLAS 1.07
Intel MKL 8.1
FLAME workqueuing (−24,−1)

Fig. 1. Performance of parallel syrk implementations (12 threads on 12 Itanium2 CPUs) using
GotoBLAS 1.07, Intel MKL 8.1, and FLAME Variant 2 (parallelized with FLAME workqueuing)

when m equals the problem size and k = 200. Further details of these experiments may be found
in Section 6. Bottom line: An elegantly coded FLAME algorithm delivers impressive performance
gains over a major vendor math library and quickly converges to perform on par with the cutting-
edge GotoBLAS implementation.

such as the Cholesky factorization.

—Implementations are given as a case study for the experimental OpenMP taskq

pragma and for workqueuing as a method of obtaining parallelism in general.

—A custom workqueuing mechanism is described that allows algorithms encoded
with the FLAME/C API to be parallelized via the workqueuing model without
relying on the taskq pragma, which is currently only implemented within the
Intel compilers.

—A compelling argument is made for the need to provide the programmer with
more control over task scheduling within the OpenMP workqueuing interface.

—Load-balancing issues are discussed that provide insight into the interplay be-
tween different algorithmic variants for computing the same linear algebra oper-
ations and the order in which tasks are enqueued.

—A case is made that a 2D work distribution is required for scalability on SMP sys-
tems with large numbers of processors much like a 2D data and work distribution
is required on distributed memory architectures.

—Performance results are given for an SMP system based on the Intel Itanium2
architecture.

Together, these insights further the state-of-the-art in this area.

Overview. The paper is organized as follows: In Section 2 we discuss the syrk
operation, four algorithmic variants for computing it, and the implementation of
those algorithms using FLAME/C. The parallelization of the resulting implemen-
tations using OpenMP task queues and a custom workqueuing solution (referred to
as “FLAME workqueuing”) is discussed in Sections 3 and 4. Various issues related
to load-balancing and 1D/2D partitioning are discussed in Section 5. Performance

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

C =

AT AT

T
+ ĈTL ⋆

ĈBL ĈBR

!

C =

AT AT

T
+ ĈTL ⋆

ABAT

T
+ ĈBL ĈBR

!

Loop-invariant 1 Loop-invariant 2

C =

ĈTL ⋆

ĈBL ABAT

B
+ ĈBR

!

C =

ĈTL ⋆

ABAT

T
+ ĈBL ABAT

B
+ ĈBR

!

Loop-invariant 3 Loop-invariant 4

Fig. 2. Loop-invariants for computing syrk.

experiments are discussed and analyzed in Section 6. Concluding remarks are given
in the final section.

2. A CONCRETE EXAMPLE

Consider the computation C := AAT +C where C is symmetric and only the lower
triangular part of C is stored and updated. This operation is known as a symmetric
rank-k update (syrk).

The FLAME methodology describes how to derive linear algebra algorithms from
predicates called loop-invariants, which describe intermediate states of the opera-
tion [Bientinesi et al. 2005]. Low et al. [2005] discuss how to arrive at four loop-
invariants for the syrk operation. These loop-invariants are given in Fig. 2.1

For each loop-invariant, the FLAME methodology yields a corresponding algo-
rithmic variant. Specifically, Loop-invariant i in Fig. 2 yields algorithmic Variant
i in Fig. 3.2 The loop-body of each algorithm contains two subproblems: a syrk
operation and a gemm operation, each of which operates on smaller submatrices of
A and C.

Having the ability to derive correct algorithms solves only part of the problem
since translating those algorithms to code ordinarily requires delicate indexing into
arrays, which exposes opportunities for the introduction of errors. We now illustrate
how appropriately defined APIs overcome this problem [Bientinesi et al. 2005]. In
Fig. 4, we show an example of FLAME/C code corresponding to Variant 1 in Fig. 3.
To understand the code, it suffices to know that A and C are descriptors for the
matrices A and C, respectively. The various routines facilitate the creation of views
into the data described by A and C. Think of a variable like CTL as a fancy pointer
into the array corresponding to matrix C. Furthermore, the calls to FLA Gemm and
FLA Syrk perform the same operations as the BLAS calls dgemm (matrix-matrix
multiplication) and dsyrk (symmetric rank-k update). The most attractive feature
of this code is the complete absence of loop and array indexing.

3. WORKQUEUING VIA PROPOSED OPENMP TASKQ AND TASK DIRECTIVES

OpenMP is a set of compiler directives and library routines that facilitate parallel
programming on shared memory systems by allowing a programmer to explicitly

1The sub-script notation used in Fig. 2 simply identifies subpartitions of the matrices. This

notation is shown in fuller context in Fig. 3 and is further described in [Bientinesi et al. 2005].
2A fifth loop-invariant and corresponding algorithmic variant exist for computing syrk. Early
work in this area found that the parallelization of this variant inherently requires heavy syn-
chronization, which significantly limits speedup[Low et al. 2004]. We omit this variant from our

discussion due to space constraints.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 5

Algorithm: C := Syrk blk var1 2(A, C)

Partition C →

CTL CTR

CBL CBR

!

, A →

AT

AB

!

where CTL is 0 × 0, AT has 0 rows

while m(AT) < m(A) do

Determine block size b

Repartition

CTL CTR

CBL CBR

!

→

0

@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1

A,

AT

AB

!

→

0

@

A0

A1

A2

1

A

where C11 is b × b , A1 has b rows

Variant 1: Variant 2:

C10 := A1AT

0 + C10 C21 := A2AT

1 + C21

C11 := A1AT

1 + C11 C11 := A1AT

1 + C11

Continue with

CTL CTR

CBL CBR

!

←

0

@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1

A,

AT

AB

!

←

0

@

A0

A1

A2

1

A

endwhile

Algorithm: C := Syrk blk var3 4(A, C)

Partition C →

CTL CTR

CBL CBR

!

, A →

AT

AB

!

where CBR is 0 × 0, AB has 0 rows

while m(AB) < m(A) do

Determine block size b

Repartition

CTL CTR

CBL CBR

!

→

0

@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1

A,

AT

AB

!

→

0

@

A0

A1

A2

1

A

where C11 is b × b , A1 has b rows

Variant 3: Variant 4:

C21 := A2AT

1 + C21 C10 := A1AT

0 + C10

C11 := A1AT

1 + C11 C11 := A1AT

1 + C11

Continue with

CTL CTR

CBL CBR

!

←

0

@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1

A,

AT

AB

!

←

0

@

A0

A1

A2

1

A

endwhile

Fig. 3. Blocked algorithms for computing C := AAT +C. The top algorithm implements Variants
1 and 2, corresponding to Loop-invariants 1 and 2 in Fig. 2. The bottom algorithm implements
Variants 3 and 4, corresponding to Loop-invariants 3 and 4 in Fig. 2. Variants 1 and 2 share the
same loop-body updates as Variants 4 and 3, respectively. Variants 1 and 2 sweep through C from

the top-left to the bottom-right and A from top to bottom, while Variants 3 and 4 traverse the
matrices in the opposite directions.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

1 FLA_Error Syrk_blk_var1(FLA_Obj A, FLA_Obj C, int nb_alg)

2 {

3 FLA_Obj CTL, CTR, C00, C01, C02, AT, A0,

4 CBL, CBR, C10, C11, C12, AB, A1,

5 C20, C21, C22, A2;

6 int b;

7

8 FLA_Part_2x2(C, &CTL, &CTR,

9 &CBL, &CBR, 0, 0, FLA_TL);

10 FLA_Part_2x1(A, &AT,

11 &AB, 0, FLA_TOP);

12

13 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){

14 b = min(FLA_Obj_length(AB), nb_alg);

15

16 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,

17 /*************/ /*********************/

18 &C10, /**/ &C11, &C12,

19 CBL, /**/ CBR, &C20, /**/ &C21, &C22,

20 b, b, FLA_BR);

21 FLA_Repart_2x1_to_3x1(AT, &A0,

22 /* ** */ /* ** */

23 &A1,

24 AB, &A2, b, FLA_BOTTOM);

25 /*---*/

26 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

27 FLA_ONE, A1, A0, FLA_ONE, C10);

28 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

29 FLA_ONE, A1, FLA_ONE, C11);

30 /*---*/

31 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,

32 C10, C11, /**/ C12,

33 /**************/ /******************/

34 &CBL, /**/ &CBR, C20, C21, /**/ C22,

35 FLA_TL);

36 FLA_Cont_with_3x1_to_2x1(&AT, A0,

37 A1,

38 /* ** */ /* ** */

39 &AB, A2, FLA_TOP);

40 }

41 return FLA_SUCCESS;

42 }

Fig. 4. FLAME/C code for a blocked implementation of Variant 1.

specify regions of code that can be executed by simultaneous threads of execu-
tion [OpenMP Architecture Review Board 2006].

Shah et al. [1999] point out limitations of the primary constructs for creating
OpenMP parallelism: the parallel for and sections directives. They note that
the number of iterations in OpenMP for loops must be computable upon first
entering the loop, precluding its use in many applications, such as traversing a
linked-list of unknown length. Similarly, a sections construct containing n inde-
pendent regions of computation, each marked by a section directive, is limited

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 7

to achieving n-way parallelism [Shah et al. 1999]. The workqueuing model was
proposed specifically to overcome these limitations.

3.1 The taskq and task pragmas

A proposed OpenMP instantiation of the workqueuing model consists of two new
directives: taskq and task. Conceptually, encountering a taskq directive causes
the main thread to create an empty workqueue (or task queue). The code within
the taskq scope is executed sequentially. As task directives are encountered, the
code associated with the task block is encapsulated and enqueued as a unit of work
onto the task queue. A number of other threads begin dequeuing and executing
tasks from the queue according to a first-in/first-out (FIFO) scheduling policy. The
main thread joins the others in processing tasks as soon as enqueuing is complete.
When all tasks have been completed, the threads synchronize at the end of the
taskq scope and continue through the program.

This OpenMP instantiation of the workqueuing model features two noteworthy
properties:

—Workqueuing is dynamic, unlike the sections directive which lexically encodes
the degree of parallelism into the source code at compile time.

—Workqueuing is flexible, unlike the parallel for directive which provides par-
allelism only for indexed for loops and also requires the number of instantiated
work-shared task units to be computable at runtime.

These two properties of OpenMP workqueuing enable an attractive new mecha-
nism for expressing parallelism within FLAME/C algorithm implementations.

3.2 Parallelization of syrk

In Fig. 5 we show how the while loop in Fig. 4 can be annotated with OpenMP
directives to create parallel tasks via the task queue mechanism. In Fig. 5:

—Line 13 establishes the taskq block.

—Line 28 starts a section of code that defines a task to be added to the task
queue. A single thread executes the while loop, enqueuing tasks as they are
encountered. The descriptors A0, A1, C10, and C11 change with each iteration of
the loop. The values of these descriptors must be “captured” at the time each
task is enqueued so that the thread that dequeues the task will have the correct
values to pass along to FLA Gemm and FLA Syrk.

—Line 34 ends the scope of the task being added to the queue.

—Line 46 ends the scope of the taskq block. Here, all threads are synchronized.

Clearly, task queues provide a simple mechanism for directing the parallel execution
in this code.

3.3 Options

In Fig. 5 the subproblems corresponding to the calls to FLA Gemm and FLA Syrk

are independent and therefore can be executed in any order and/or queued as
separate tasks. This is apparent by inspecting the algorithm itself. However, Low
et al. [2005] discuss how to systematically detect the presence of independent loop

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

13 #pragma intel omp parallel taskq

14 {

15 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){

16 b = min(FLA_Obj_length(AB), nb_alg);

17

18 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,

19 /*************/ /*********************/

20 &C10, /**/ &C11, &C12,

21 CBL, /**/ CBR, &C20, /**/ &C21, &C22,

22 b, b, FLA_BR);

23 FLA_Repart_2x1_to_3x1(AT, &A0,

24 /* ** */ /* ** */

25 &A1,

26 AB, &A2, b, FLA_BOTTOM);

27 /*---*/

28 #pragma intel omp task captureprivate(A0, A1, C10, C11)

29 {

30 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

31 FLA_ONE, A0, A1, FLA_ONE, C10);

32 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

33 FLA_ONE, A1, FLA_ONE, C11);

34 } /* end task */

35 /*---*/

36 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,

37 C10, C11, /**/ C12,

38 /**************/ /******************/

39 &CBL, /**/ &CBR, C20, C21, /**/ C22,

40 FLA_TL);

41 FLA_Cont_with_3x1_to_2x1(&AT, A0,

42 A1,

43 /* ** */ /* ** */

44 &AB, A2, FLA_TOP);

45 }

46 } /* end of taskq */

Fig. 5. FLAME/C code from Fig. 4 parallelized using OpenMP task queue directives.

iterations by inspecting the loop-invariants of the syrk operation. Furthermore,
we may observe that the two updates within the loop-body are independent of one
another within a single iteration. Given these two observations, we may modify our
original parallelization shown in Fig. 5 as follows.

One option is to split the single task in the loop-body of Fig. 5 into two tasks:

#pragma intel omp task captureprivate(A0, A1, C10)

{

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

ONE, A1, A0, ONE, C10);

}

#pragma intel omp task captureprivate(A1, C11)

{

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

ONE, A1, ONE, C11);

}

A further observation is that the computations C10 := A1A
T
0 + C10 and C11 :=

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 9

#pragma intel omp parallel taskq

{

while (FLA_Obj_length(CTL) < FLA_Obj_length(C))

{

[...]

#pragma intel omp task captureprivate(A0, A1, C10)

{

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

ONE, A1, A0, ONE, C10);

}

[...]

} /* end of first while loop */

while (FLA_Obj_length(CTL) < FLA_Obj_length(C))

{

[...]

#pragma intel omp task captureprivate(A1, C11)

{

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

ONE, A1, ONE, C11);

}

[...]

} /* end of second while loop */

} /* end of taskq */

Fig. 6. Outline of how the loop in Fig. 5 can be implemented as two loops.

A1A
T
1 +C11 (updating the lower triangle only) cost about 2bn(C10)n(A) and b2n(A)

floating-point arithmetic operations (FLOPs), respectively. Here n(X) indicates
the column dimension of matrix X. Notice that n(C11) remains constant across
iterations. Thus, the number of FLOPs required to compute the update to C11

is fixed. In contrast, n(C10) grows linearly with each iteration of the loop and
therefore the number of FLOPs required to update C10 increases proportionally
as the algorithm iterates. This is unfortunate since costly tasks at the end of a
scheduling queue can create a large load imbalance as we will show later in Fig. 7.

One way to overcome this problem is to execute the loop in reverse order (in
compiler terms: apply a loop reversal transformation), since this would create the
more costly tasks first. Variants 4 and 3 in Fig. 3 execute the loops in Variants 1
and 2 in reverse, respectively.3 In fact, Variants 1 and 3 have the property that
tasks become more costly as the loop proceeds while Variants 2 and 4 generate
progressively less costly tasks. We will later show that differences in performance
can be observed for different variants.

An alternative option replaces the single loop in in Fig. 5 with two loops (in
compiler terms: apply a loop fission transformation): the first loop for enqueuing
the tasks that update C10 and the second for enqueuing tasks that update C11,
as illustrated in Fig. 6. The updates to C11 incur a smaller cost and result in
fixed-sized tasks, compared to the updates of C10 which result in larger, variable-
sized tasks to be enqueued. These smaller tasks help balance the workload among

3This illustrates the value of the FLAME methodology which can systematically find algorithmic

variants that have different strengths and weaknesses.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

Variant 2 Variant 3

o
n
e

t
a
sk

p
e
r

it
e
r
a
t
io

n
t
w

o
t
a
sk

s
p
e
r

it
e
r
a
t
io

n
t
w

o
l
o
o
p
s

Fig. 7. Simulated OpenMP task queues scheduling of tasks to four threads for Variants 2 and 3
when m = 2400, k = 200, and the blocksize equals 200. The sum of the heights of the rectangles
in each x-axis column correspond to the total amount of work assigned to each thread. The y-axis

is in units of FLOPs ×106 (millions of FLOPs). Load balance is ideal when all threads receive
equal work. Bottom line: Load balance is determined by the number of tasks created, the cost of
each task, and the order in which tasks are enqueued.

threads before the threads synchronize at the end of the taskq block.

3.4 An illustration of the benefits of different options

The expected differences in performance are illustrated for Variants 2 and 3 in Fig. 7.
(Recall that Variants 2 and 3 are identical except that their loops iterate in opposite

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 11

directions.) In this figure, we simulate the scheduling of tasks to four threads for
the different options described previously, where matrix C is 2400 × 2400, A is
2400 × 200, and the algorithmic blocksize b in Fig. 3 equals 200 (except possibly
during the last iteration). Each of the tasks is represented by a box that has a
height proportional to the number of FLOPs required to complete the task. The
y-axis itself is represented in units of millions of FLOPs. The integers in the boxes
indicate the order in which the tasks are enqueued in the task queue.

The simulation results shown in Fig. 7 were built upon a simplified workqueuing
model that makes the following assumptions:

—Threads are idle when the computation begins.

—Enqueuing is instantaneous.

—When processing tasks, each thread computes at the same rate.

—Upon completing a task, the thread in question will dequeue a new task instan-
taneously. If the queue is empty, the thread becomes idle.

—The computation completes when the queue is empty and all threads are idle.

We see that Variant 2 in general performs better than Variant 3 since the cost
of each variable-sized task decreases towards later iterations, allowing work to be
more easily balanced among the threads before synchronization. Splitting the task
in the loop-body into two tasks improves the load-balance for Variant 2, but not for
Variant 3. Variant 2 achieves near-perfect load-balance by splitting the loop into
two loops, with variable-sized tasks enqueued in the first loop while the smaller
fixed-sized tasks are enqueued by the second. This change provides only a modest
improvement to Variant 3; the imbalance created by the increasing cost of variable-
sized tasks is simply too large to erase with the smaller subproblems.

4. AN ALTERNATE IMPLEMENTATION: FLAME WORKQUEUING

As of this writing, the proposed OpenMP task queuing mechanism has two short-
comings. First, task queues are an experimental implementation: to our knowledge
it is currently only supported by the Intel compiler [Su et al. 2002]. The current
official OpenMP specification (version 2.5) does not provide any workqueuing con-
structs.4 Second, our discussion in Section 3.4 suggests that the OpenMP task
scheduling does not always result in good load-balance among threads. Later in
this section, we discuss a custom implementation for FLAME that addresses these
shortcomings.

4.1 Theoretical basis for dequeuing tasks largest to smallest

The problem of scheduling tasks among a set of threads is a variation of the Bin-
Packing Problem in which a collection of objects are packed into a set of bins such
that the total weight or volume of each bin does not exceed a given threshold [Weis-
stein 2006]. In our case of workqueuing, the computational tasks correspond to ob-
jects being packed (or scheduled) while the task volumes correspond to their compu-
tational costs, which can be approximated by counting FLOPs. Threads correspond
to the bins into which the objects are packed. The target bin capacity corresponds

4It is possible that workqueuing support will be added to version 3.0 of the OpenMP specification.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

to the sum of the tasks to be executed divided by the number of threads—that
is, the ideal amount of computation per thread. J. D. Ullman [Garey et al. 1973]
proves that a naive algorithm, one that packs objects into the first available bin
with space, is suboptimal by as much as 70% [Weisstein 2006]. Johnson [1973]
shows that an algorithm that first sorts the objects from largest to smallest will be
at most 22% suboptimal [Weisstein 2006]. This suggests that, in general, an exe-
cution of tasks scheduled from largest to smallest (with respect to computational
cost) will always perform reasonably well compared to executions based upon other
task schedulings.

4.2 Motivation for sorting tasks over changing the algorithm

Ideally, an application loop will create independent subproblems of equal cost. Such
cases usually parallelize well with minimal effort. Other loops may naturally cre-
ate subproblems that decrease monotonically in cost. Given the discussion in the
previous section, this is the next best scenario if subproblems of equal cost are not
possible. If the loop creates subproblems that increase monotonically in cost, then
a simple loop reversal will cause the tasks to be enqueued in the desired order. As
we saw in Fig. 7, sometimes even more changes are needed, as the best scheduling
also required splitting the main algorithm loop into two separate loops to enqueue
variable-sized tasks first, followed by smaller fixed-sized tasks. But this method of
changing the algorithm to induce a desirable scheduling is suboptimal for two rea-
sons. First, it requires non-trivial changes to the algorithm code. Uniquely, FLAME
codes resemble the underlying algorithm so closely that changing the source code
will tend to also obscure the algorithm itself. More generally, changing the algo-
rithm code is also less than desirable from a code maintenance perspective. Second,
it is possible that there does not exist a reasonable loop or code transformation for
a given algorithm that enqueues tasks from largest to smallest. For example, it is
conceivable that some loops may create subproblems whose cost neither increases
nor decreases monotonically.

An alternate way to ensure a desirable ordering of tasks within the queue, one
that is less disruptive to the algorithm and therefore more portable, is to allow the
application loop to enqueue tasks normally and then sort the queue before parallel
execution. This solution is quite flexible and its disadvantages are minor.5

Unfortunately, the OpenMP taskq construct as specified provides no such sort-
ing mechanism [Shah et al. 1999; Su et al. 2002]. The responsibility of ensuring
load-balancing through a desirable task ordering is left to the programmer. Fur-
thermore, experience, as well as results discussed later in this paper, show that
the performance penalty for executing tasks from an unsorted queue can be quite
severe.

4.3 FLAME workqueuing

To circumvent the shortcomings of OpenMP task queues we have implemented
a custom workqueuing solution that behaves much like task queues (though it is

5Threads must wait for sorting to finish before parallel execution of the queue can begin. The
sorting itself is an O(nlog(n)) operation that will most likely not adversely affect performance for

our applications.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 13

domain-specific to FLAME), featuring the following enhancements:

—Portability. Our implementation does not use the taskq or task constructs and
thus works on any conventional implementation of OpenMP. In fact, FLAME
workqueuing abstracts all implementation details from the API, potentially al-
lowing us to replace OpenMP altogether with a more portable threading mech-
anism such as POSIX threads.

—Task sorting. FLAME workqueuing automatically sorts the task queue according
to each task’s estimated cost (FLOP count) before parallel execution begins.

A programmer enqueues a routine by replacing it with a corresponding prepro-
cessor macro. The macro inserts an invocation to FLA Queue push(), which uses
the data associated with the original function call to create a task structure. This
structure is added to the queue, which is implemented as a linked list. After en-
queuing is complete, the programmer signals that execution may begin by calling
FLA Queue exec(), the definition of which is shown in Fig. 8. The linked list of
tasks is indexed and then sorted according to approximate FLOP cost using Quick-
sort. Finally, the sorted queue’s tasks are executed in parallel using a parallel

for directive with dynamic scheduling.
The reader should note that FLAME workqueuing was not intended to replace

the functionality of OpenMP task queues. Clearly the implementors of task queues
are providing a generalized solution that leverages the privileged access that the
compiler has to the code before compilation. Our workqueuing implementation was
designed primarily to minimize disturbance to conventional algorithms implemented
with the FLAME/C API while providing a mechanism to sort the contents of the
queue prior to execution.

Though they are motivated by the same conceptual model, the FLAME workqueu-
ing API uses a different syntax than the task queue constructs. Figure 9 shows how
subproblems are enqueued as tasks under the FLAME workqueuing API. The pro-
grammer must initialize the workqueuing environment by invoking FLA Queue init

and likewise call FLA Queue finalize to free internal resources when workqueu-
ing is no longer needed. The API contains no direct analog to the taskq direc-
tive. Consequently, nested queuing is not supported and all tasks are implicitly
enqueued onto the same global queue. Also, where as OpenMP task queues auto-
matically dispatch threads as soon as the first task is enqueued, the programmer
of the FLAME workqueuing API must explicitly invoke parallel execution after
enqueuing is complete by calling FLA Queue exec.6 Presumably, this may cause
FLAME workqueuing to slightly under-perform a similar code that uses OpenMP
task queues when the algorithm happens to enqueue tasks in the desired sorted
order. However, performance results in Section 6.1 show that this penalty is negli-

6In order to guarantee a fully sorted queue, the programmer must allow enqueuing to finish. While
dispatching threads immediately may sound desirable, it denies the workqueuing implementation

the opportunity to sort the queue before execution. Figure 13 confirms that the benefits of
deferring execution to allow sorting to take place dwarf the added serialization costs. Conceivably,
there exist applications that create many small tasks for which this assertion may not hold. In
that case, sorting is probably not necessary anyway due to the fact that many small tasks tend

to inherently yield good load-balancing under a FIFO scheduling policy.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

1 void FLA_Queue_exec()

2 {

3 int i, n_tasks;

4 FLA_Task** task_array;

5 FLA_Task* t;

6

7 /* The queue is full, so we may now create an index of each task. */

8 FLA_queue_create_task_array();

9

10 /* Sort the task_array with standard C library function qsort(). */

11 FLA_queue_sort_task_array();

12

13 /* Copy the task_array pointer and n_tasks integer locally to

14 satisfy the OpenMP compiler. */

15 n_tasks = task_queue.n_tasks;

16 task_array = task_queue.task_array;

17

18 /* Iterate over the task queue using the random-access task_array.

19 Note that we iterate backwards because qsort() sorts in ascending

20 order, while we want to execute the tasks in descending order. */

21 #pragma omp parallel for shared(task_array, n_tasks) \

22 private(i, t) \

23 schedule(dynamic, 1)

24 for(i = n_tasks - 1; i >= 0; --i)

25 {

26 t = task_array[i];

27 FLA_queue_exec_task(t);

28 }

29

30 /* Flush the queue: walk the task_array and free() each element. */

31 FLA_queue_flush();

32

33 /* Free the task_array now that all tasks have been executed. */

34 FLA_queue_free_task_array();

35 }

Fig. 8. Code fragment from the FLAME workqueuing implementation: definition of
FLA Queue exec().

gible given the relatively small number of tasks enqueued when executing a parallel
syrk operation.

5. BLOCKING AND PARTITIONING

In our previous discussions of the parallel workqueuing codes shown in Figs. 5 and 9
we did not mention a subtle but important detail: how does one determine the
algorithmic blocksize b? In the workqueuing-enabled syrk implementations, this
blocksize determines the dimensions of the subproblems created, which corresponds
directly to the cost of the tasks placed onto the queue. Determining an appropriate
blocksize leads us to a somewhat more general discussion of how best to partition the
computation into tasks. In this section we describe some methods of partitioning
submatrices that may help us attain better load-balancing among the threads.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 15

13 FLA_Queue_init();

14 [...]

15 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){

16 b = min(FLA_Obj_length(AB), nb_alg);

17

18 FLA_Repart_2x1_to_3x1(AT, &A0,

19 /* ** */ /* ** */

20 &A1,

21 AB, &A2, b, FLA_BOTTOM);

22 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &C00, /**/ &C01, &C02,

23 /* ************* */ /* ******************** */

24 &C10, /**/ &C11, &C12,

25 CBL, /**/ CBR, &C20, /**/ &C21, &C22,

26 b, b, FLA_BR);

27 /*--*/

28 ENQUEUE_FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

29 FLA_ONE, A1, A0, FLA_ONE, C10);

30 ENQUEUE_FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

31 FLA_ONE, A1, FLA_ONE, C11);

32 /*--*/

33 FLA_Cont_with_3x1_to_2x1(&AT, A0,

34 A1,

35 /* ** */ /* ** */

36 &AB, A2, FLA_TOP);

37 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, C01, /**/ C02,

38 C10, C11, /**/ C12,

39 /* ************** */ /* ****************** */

40 &CBL, /**/ &CBR, C20, C21, /**/ C22,

41 FLA_TL);

42 }

43 [...]

44 FLA_Queue_exec();

45 [...]

46 FLA_Queue_finalize();

Fig. 9. FLAME/C code from Fig. 4 parallelized using FLAME workqueuing.

5.1 Proportional blocking

Notice that for Variant 2 in Fig. 3 the cost (in FLOPs) of the variable-sized FLA Gemm

task created in the ith iteration decreases linearly with i while the cost of the
FLA Syrk task remains constant (and relatively small) across all iterations. Fur-
thermore, the number of tasks generated varies with the m dimension. Naively, we
may choose a blocksize a priori without regard to the problem size. We refer to this
method of choosing b as an arbitrary fixed value as constant blocking. However,
the simulation in Fig. 10 reveals that this method results in load-imbalance and
diminished parallel performance for certain smaller matrix dimensions.

In order to circumvent this problem, let us chose the algorithmic blocksize b so
that the algorithm cycles through 2t iterations, regardless of the problem size de-
termined by the m dimension. Under this scenario, the algorithm creates 2t − 1
variable-sized tasks and 2t fixed-sized tasks, where t equals the number of processor-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

Task scheduling A (m = 600) Task scheduling B (m = 1000)

Task scheduling C (m = 1600) Simulated speedup

Fig. 10. Simulated OpenMP task queues scheduling of tasks to four threads for Variant 2 shown
for select values of m when k = 200. The “two loop” parallelization for Variant 2 was used, which
enqueues tasks in sorted order. Also, the blocksize used was 200. The axes’ units of the three task
scheduling graphs is similar to that of Fig. 7. The corresponding speedup of each task scheduling

is marked on the curve shown in the lower-right graph, in which we assume dgemm and dsyrk

consistently perform at 90% of peak efficiency. Bottom line: Given a one-dimensional constant
blocking, some threads fall idle before others due to poor distribution of work, where the largest

variable-sized gemm tasks become bottlenecks. This load-imbalance hinders parallel speedup and
thus results in limited performance for many smaller problem sizes.

bound7 threads participating in the computation. Under our simplified task schedul-
ing model, this careful choice of blocksize always yields an ideal load balance similar
to the scheduling shown in the bottom-left graph of Fig. 10. Therefore, a good value
for b may be chosen to equal m

2t
. We refer to this method of choosing b as a function

7The operating system should, either by default or at the behest of the programmer, “bind”
each thread to a single unique processor to ensure optimal performance. Under version 2.6 of
the Linux kernel, programmers may explicitly request this behavior by setting the thread’s CPU

affinity via the sched setaffinity function [Dow 2005]. Experience suggests that setting the CPU
affinity of threads in a parallel computation is typically desirable. Otherwise, the scheduler may
direct threads to migrate between processors. This situation may lead to significant performance
degradation as a recently migrated thread may experience a higher latency while accessing data

resident on the cache (or local memory) associated with its previous CPU.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 17

of the partitioned dimension m and number of threads t as proportional blocking.8

Notice, however, that dgemm executes more efficiently the larger b is chosen.
Thus, for syrk problems with small dimensions, we expect proportional blocking
will yield better load-balance but possibly at the expense of worse performance by
each thread.

5.2 Partitioning in two dimensions

So far, we have only considered a single blocksize b in the syrk algorithms shown in
Fig. 3. Recall that this blocksize determines two properties of the tasks enqueued
during each iteration. For Variant 2, these two properties are the dimension (order)
of C11, which is updated in the FLA Syrk subproblem, and the dimensions of the
C21 panel that is updated by the FLA Gemm subproblem. The C11 submatrix is
already small and creates a task of constant cost. However, the C21 submatrix
varies in size and provides us with the opportunity to further partition along its
m (row) dimension. Let us consider an alternate version of Variant 2 in which we
replace the call to FLA Gemm with a gemm variant that partitions A2 and C21 along
the m dimension with a blocksize that is independent of the value of b used thus far.
Partitioning A2 and C21 causes the the parallelized algorithm to enqueue a larger
number of somewhat smaller variable-sized tasks for each iteration of the Variant 2
while loop. Figure 11 shows the FLAME/C code that implements this variant of
gemm. This effectively allows the workqueuing analog of a two-dimensional data
decomposition. The advantages of this approach are two-fold:

—First, attaining good load-balance is easier when enqueuing smaller partitioned
FLA Gemm tasks than when the subproblems are enqueued unpartitioned. This is
simply a consequence of the fact that smaller tasks more easily allow a scheduling
that distributes work equally across all threads. This behavior holds regardless
of whether the task queue is sorted.

—Second, we may leverage proportional blocking so that the load-balance of a 2D
partitioning remains ideal under our model. By using proportional blocking to
partition A2 and C21 along their m dimensions into q subpartitions of roughly
equal size, we may choose the syrk blocksize b to equal mq

2t
(resulting in m

b
=

m
(mq

2t
) = 2t

q
iterations in the syrk algorithm). This blocksize is larger than the

value proposed in Section 5.1 and thus should allow the dgemm implementation
to perform more efficiently, especially for smaller problems. However, this will
also proportionally reduce the number of syrk subproblem tasks from 2t to 2t

q

and similarly increase their costs. This smaller number of more costly fixed-sized
tasks may be more difficult to divide equally among t threads for q > 2.

We show later in Section 6.1 that a two-dimensional partitioning with propor-
tional blocking allows us to sustain good performance per thread and good load-
balance across threads for smaller problem sizes than would be possible with a
one-dimensional partitioning.

8Given that b = m

2t
, it follows that m = 2bt. The former equation suggests how to choose, as

a function of the problem size, the largest possible b that still induces ideal load-balance. The
latter equation reveals the smallest problem size m for which constant blocking will yield peak

load-balance. The bottom-left graph in Fig. 10 illustrates both of these scenarios.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

1 FLA_Error Gemm_blk_var1(FLA_Obj A, FLA_Obj B, FLA_Obj C, int nb_alg)

2 {

3 FLA_Obj AT, A0, CT, C0,

4 AB, A1, CB, C1,

5 A2, C2;

6 int b;

7

8 FLA_Part_2x1(A, &AT,

9 &AB, 0, FLA_TOP);

10 FLA_Part_2x1(C, &CT,

11 &CB, 0, FLA_TOP);

12

13 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){

14 b = FLA_Task_compute_blocksize(A, AT, FLA_TOP, nb_alg);

15

16 FLA_Repart_2x1_to_3x1(AT, &A0,

17 /* ** */ /* ** */

18 &A1,

19 AB, &A2, b, FLA_BOTTOM);

20 FLA_Repart_2x1_to_3x1(CT, &C0,

21 /* ** */ /* ** */

22 &C1,

23 CB, &C2, b, FLA_BOTTOM);

24 /*--*/

25 ENQUEUE_FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

26 FLA_ONE, A1, B, FLA_ONE, C1);

27 /*--*/

28 FLA_Cont_with_3x1_to_2x1(&AT, A0,

29 A1,

30 /* ** */ /* ** */

31 &AB, A2, FLA_TOP);

32 FLA_Cont_with_3x1_to_2x1(&CT, C0,

33 C1,

34 /* ** */ /* ** */

35 &CB, C2, FLA_TOP);

36 }

37 return FLA_SUCCESS;

38 }

Fig. 11. FLAME/C code, ready for use with FLAME workqueuing, implementing a variant of
gemm that transposes B and partitions A and C along the m dimension. This code may be called

in our FLAME/C variant 2 of syrk instead of calling FLA Gemm directly.

6. EXPERIMENTS

Workqueuing comparison. To demonstrate the effect of algorithmic variants and
task partitioning methods on performance we parallelized each of the four variants
using OpenMP task queues and FLAME workqueuing. In the case of the variants
using OpenMP task queues, we applied the code transformation options described
in Section 3.3 to arrive at three parallelized configurations: a simple insertion of
the task queue directives with one task in the loop-body; the separation of the
two updates to create two tasks in the loop-body; and the separation of the fixed-
and variable-sized tasks into two separate loops. For FLAME workqueuing, we
implemented Variants 1 through 4 and replaced the invocation of FLA Gemm with

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 19

Simulated constant blocking Simulated proportional blocking

o
n
e
-d

im
e
n
si

o
n
a
l

pa
r
t
it

io
n
in

g

b = (200,−1) b = (−8,−1)

t
w

o
-d

im
e
n
si

o
n
a
l

pa
r
t
it

io
n
in

g

b = (200, 200) b = (−4,−2)

Fig. 12. Simulated scheduling of tasks to four threads for Variant 2 when m = 600 and k = 200 for

various blocksize and partitioning schemes. The axes’ units are similar to those of Figs. 7 and 10.
Bottom line: Depending on the problem size, tasks created with constant blocking sometimes
fail to distribute well among threads. Moving to a constant 2D partitioning helps, but remains
sub-optimal. In constrast, both 1D and 2D proportional blocking create the opportunity for ideal

load-balance regardless of problem size.

a call to a suitable gemm variant to enable further partitioning the variable-sized
tasks.

Blocking and Partitioning. Experiments were set up to accept constant or pro-
portional algorithmic blocksizes in both one- and two-dimensional partitionings.
Blocksizes are presented as follows: a blocksize pair b = (x, y) indicates that a
blocksize x is used in the overall syrk algorithm while a blocksize y is used to fur-
ther partition the gemm subproblem. We denote constant blocksizes with positive
numbers while proportional blocksizes are encoded as negative values. For nega-
tive x (or y), the algorithm completes |x| (or |y|) iterations along the partitioned
dimension where the actual blocksize value used is approximately equal for all it-
erations. If y = −1, then the algorithm does not partition the gemm subproblem,
which corresponds to an overall one-dimensional partitioning for the syrk algo-
rithm. Figure 12 conveniently illustrates the potential variations in task scheduling
induced by one- and two-dimensional partitionings when combined with constant

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

and proportional blockings. Also, we have extended the FLAME/C programming
interface to include a function, FLA Task compute blocksize, that computes the
value of b for each iteration based on the blocksize pair values provided as input.
This routine is used to compute blocksizes in all experiments. Its use is demon-
strated in Fig. 11.

Software. The Intel C compiler (version 9.0) was used to compile source code,
since it is the only major compiler to support the proposed OpenMP task queue
extensions. Calls to FLA Gemm and FLA Syrk in the loop-body were defined as
wrappers to implementations of the BLAS routines dgemm and dsyrk, respectively.
The code was linked to a sequential build of the GotoBLAS library (version 1.07)
by Kazushige Goto [Goto 2006]. Also, threads were bound to unique processors
using the SGI dplace utility. This method is easier and less intrusive (though less
portable) than using the sched setaffinity routine present in the Linux kernel.

Hardware. Performance was measured on an SGI Altix ccNUMA server consist-
ing of seven dual-processor Itanium2 compute nodes, or bricks. Each brick contains
approximately 2GB of local physical memory, but logically shares its memory with
all other nodes via SGI’s NUMAflex shared-memory architecture. Each CPU is
clocked at 1.5GHz and may execute up to four double precision floating-point oper-
ations per clock cycle, yielding a peak performance of 6 GFLOPS (109 FLOPs/sec.)
per processor. Thus, the total peak performance of the system is 84 GFLOPS. How-
ever, while 14 processors were available, we limited our tests to using 12 threads.
Therefore, the maximum attainable peak of our experiments is 72 GFLOPS.

Computations. All computations were performed in double precision (64 bit)
floating-point arithmetic. For the purposes of computing the rate of computation,
the syrk operation count is m2k FLOPs for C ∈ R

m×m and A ∈ R
m×k. The

GFLOPS rate reported in the graphs was computed by the formula

GFLOPS attained =
m2k

time (in sec.)
× 10−9.

6.1 Results

The resulting performance is reported in Figs. 13–17. For graphs reporting absolute
performance, the maximum of the y-axis is set to 72 GFLOPS to allow the reader
to visually evaluate the results relative to the theoretical peak of the experiments.

OpenMP task queues with 1D partitioning. Figure 13 shows two graphs con-
taining results for OpenMP task queue parallelizations of Variants 1 through 4.
Results are shown for only the “two loop” task partitioning option.9 The left and
right graphs illustrate using a constant blocksize of 200 (ie: b = (200,−1)) and a
proportional blocking of −24 (ie: b = (−2t,−1) = (−24,−1)), respectively. Both
graphs show results from one-dimensional partitionings, as indicated by the gemm
blocksize of −1 in the blocksize pairs. These results clearly show that a constant
blocksize of 200 is suboptimal for most problem sizes tested. Performance is greatly

9We have omitted graphs for the other two options discussed in Section 3.3, as they exhibited
performance signatures similar to those shown. The curious reader may find further discussion of

all three task partitioning options in an earlier study of the topic presented in [Low et al. 2004].

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 21

OpenMP with constant blocksize (200,-1) OpenMP with proportional blocksize (-24,-1)

t
w

o
l
o
o
p
s

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

Fig. 13. Performance of OpenMP task queue parallelizations (12 threads) of syrk Variants 1
through 4 when m equals the problem size and k = 200. The experiments on the left were

performed with a constant blocksize of 200 while those on the right were performed with a pro-
portional blocksize that partitioned the matrix equally through 24 iterations. Only results for
the “two loop” task partitioning option are shown. Bottom line: Proportional blocking enables
superior load balancing for small to medium-sized problems, allowing performance to ramp up

quickly. Variant 2 outperforms all other variants due to a combination of enqueuing variable-sized
tasks in descending order of cost and properties inherent in the dgemm implementation used to
compute the matrix products associated with these tasks.

improved by partitioning with a proportional blocksize of −24. This observation
holds regardless of how tasks are enqueued. Also of interest are the best and worst
performing variants. Variants 2 and 4 both enqueue variable-sized tasks in descend-
ing (naturally sorted) order of cost. However, Variant 2 consistently outperforms
Variant 4. This is likely due to the fact that the variable-sized gemm tasks enqueued
by Variant 2 update C21 with A2A

T
1 , where C21 and A2 are column-panel matrices.

As of this writing, the sequential dgemm routine in GotoBLAS is more optimized
for matrix multiplication on operands of this shape than the shape of operands in
Variant 4, which updates C10 with A1A

T
0 where C10 and AT

0 are row-panel matrices.

OpenMP task queues v. FLAME workqueuing. Figure 14 shows the performance
of syrk Variant 2 using FLAME workqueuing and OpenMP task queues. The two
graphs on the left show absolute performance while the graphs on the right show
the speedup of FLAME workqueuing relative to OpenMP task queues. One set of
graphs is given for each of the two blocksize pairs, b = (200,−1) and b = (−24,−1),
used in Fig. 13. These results demonstrate that FLAME workqueuing does not
incur significant overhead compared to the OpenMP task queue implementation
in the Intel compiler. In fact, for a narrow range of small problems, FLAME
workqueuing outperforms OpenMP task queues more often than not. Because the
two implementations perform so similarly, we feel justified in limiting the remaining
experiments to FLAME workqueuing.

Constant v. proportional blocking / 1D v. 2D partitioning. In Fig. 15, we high-
light the differences among the four variants when constant and proportional block-
sizes are used in one- and two-dimensional partitionings. For constant blocking, a

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

Absolute performance Speedup relative to OpenMP task queues

b
=

(2
0
0
,
−

1
)

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

OpenMP task queues
FLAME workqueuing

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

problem size

S
pe

ed
up

OpenMP task queues
FLAME workqueuing

b
=

(−
2
4
,
−

1
)

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

OpenMP task queues
FLAME workqueuing

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

problem size

S
pe

ed
up

OpenMP task queues
FLAME workqueuing

Fig. 14. Performance of OpenMP and FLAME workqueuing parallelizations (12 threads) of syrk
Variant 2 when m equals the problem size and k = 200. Absolute performance is shown in the left
column for two one-dimensional partitionings while corresponding FLAME speedup relative to

OpenMP is shown on the right. Bottom line: When compared to OpenMP task queues, FLAME
workqueueing overhead is negligible (if not nonexistent).

blocksize of 200 is used. (We will see the effect of reducing this blocksize later on.)
For proportional two-dimensional partitioning, we chose b = (−t,−2) = (−12,−2).
This blocksize pair has the special property that it partitions the syrk algorithm
into a minimal number of iterations such that enough variable-sized tasks are pro-
duced to distribute well when t = 12 while still creating an equal number of fixed-
sized tasks for all threads. The results in Fig. 15 lead us to three interesting
observations:

—Variants 1 and 4 perform nearly identically—likewise for Variants 2 and 3. The
explanation is straightforward. Variants 1 and 2 share the same loop-body up-
dates with Variants 4 and 3, respectively; the only difference within the algo-
rithm pairs is the order in which subproblems are enqueued as tasks. FLAME
workqueuing sorts the task queue automatically before threads begin dequeuing
work, rendering Variants 1 and 2 equivalent and computationally indistinguish-
able to Variants 4 and 3, respectively. In addition, constant 2D partitionings
cause variable-sized gemm subproblems to be broken almost entirely into homo-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 23

FLAME with constant blocking FLAME with proportional blocking

o
n
e
-d

im
e
n
si

o
n
a
l

pa
r
t
it

io
n
in

g

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

b = (200,−1) b = (−24,−1)

t
w

o
-d

im
e
n
si

o
n
a
l

pa
r
t
it

io
n
in

g

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

Variant 1
Variant 2
Variant 3
Variant 4

b = (200, 200) b = (−12,−2)

Fig. 15. Performance of FLAME workqueuing parallelizations (12 threads) of syrk Variants 1
through 4 when m equals the problem size and k = 200. Bottom line: Sorting the workqueue
renders Variants 1 and 2 computationally indistinguishable from Variants 4 and 3, respectively.

Constant 2D partitioning performs better for many mid-sized problems but falls short of constant
1D performance for large problems due to limited dgemm efficiency on small 200 × 200 blocks.
Proportional 2D partitioning performs similarly to that of proportional 1D for Variants 2 and 3;
benefits appear mostly limited to improving lackluster Variants 1 and 4.

geneous 200×200 tasks, rendering the performance signatures of all four variants
identical.

—The results show an overall performance advantage for 2D partitionings when a
constant blocksize is used. Similarly, moving from a constant 1D partitioning to
one that uses proportional blocking is sufficient to see a large jump in performance
for a wide range of problems. In fact, the graphs suggest that Variants 2 and 3
need not partition both proportionally and in two dimensions, but rather only
proportionally, in order to attain high performance for a wide range of problem
sizes. This observation is predicted by the simulation of proportional 1D and 2D
partitionings reported in Fig. 12.

—Lastly, it is interesting to note that a two-dimensional partitioning noticeably
improves the performance of the otherwise mediocre Variants 1 and 4. This is

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

Absolute performance Speedup relative to b = (−24,−1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S
b = (200,−1)
b = (200,200)
b = (−24,−1)
b = (−12,−2)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

problem size

S
pe

ed
up

b = (200,−1)
b = (200,200)
b = (−24,−1)
b = (−12,−2)

Fig. 16. Performance of FLAME workqueuing parallelization (12 threads) of syrk Variant 2
when m equals the problem size and k = 200. The problem size range and increments have been

reduced from Fig. 13 to show more detail for small problems. Bottom line: A proportional 2D
partitioning performs noticably better for certain smaller problems and on par with a proportional
1D partitioning for larger problems.

likely a manifestation of the efficiency of the underlying sequential GotoBLAS
dgemm in performing matrix-multiply on operands with certain shapes. As men-
tioned previously, the dgemm used tends to perform worse on the row-panel matrix
multiply found in the gemm subproblems of Variants 1 and 4.

Benefits of 2D partitioning for small problems. Figure 16 organizes the data for
Variant 2 present in Fig. 15 in order to better contrast the four methods of task
partitioning for small problems. In addition to showing absolute performance for
each of the four task partitionings, the figure includes a graph showing speedup rel-
ative to the proportional one-dimensional partitioning given by b = (−24,−1). The
x-axis range and data point increments have been decreased in order to show more
detail. The figure’s right-hand graph reveals that a two-dimensional partitioning
with proportional blocking (b = (−12,−2)) outperforms a similar one-dimensional
partitioning (b = (−24,−1)) for small problems.

More on constant blocking / 2D partitioning. Finally, Fig. 17 shows the effect of
moving from a one-dimensional to a two-dimensional partitioning, for both constant
and proportional blocking. The following observations may be made:

—In the case of moving from b = (200,−1) to b = (200, 200), we see that the
performance for the two-dimensional partitioning rises more sharply for smaller
problems but levels off lower than that of the 1D partitioning. This most likely is
due to the reduced dgemm efficiency that comes with casting most of the compu-
tations in terms of small 200 × 200 problems. By contrast, the 1D partitioning,
while suffering from poor load-balance early on, maintains higher efficiency due
to the variable-sized tasks creating gemm operations where one dimension is, on
average, still relatively large.

—Figure 17 also shows the effects of using a smaller constant blocksize. This is
shown for blocksize pairs b = (100,−1) and b = (100, 100). Not surprisingly,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 25

Absolute performance Speedup relative to 1D partitioning

c
o
n
st

a
n
t

b
l
o
c
k
in

g

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

b = (100,−1)
b = (100,100)
b = (200,−1)
b = (200,200)

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

problem size

S
pe

ed
up

b = (100,100) v. b = (100,−1)
b = (200,200) v. b = (200,−1)

p
r
o
p
o
r
t
io

n
a
l

b
l
o
c
k
in

g

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

problem size

G
F

LO
P

S

b = (−24,−1)
b = (−12,−2)
b = (−8,−3)
b = (−6,−4)

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

problem size

S
pe

ed
up

b = (−24,−1)
b = (−12,−2)
b = (−8,−3)
b = (−6,−4)

Fig. 17. Performance of FLAME workqueuing parallelizations (12 threads) of syrk Variant 2
when m equals the problem size and k = 200. Bottom line: Two-dimensional partitioning is
beneficial for smaller problems when compared to a similar 1D partitioning. A smaller constant

blocksize generates parallelism more quickly, but at the expense of lower dgemm efficiency.

both outperform their larger counterparts for certain small problems. As the
problem size increases, the blocksize pairs with smaller blocksize values create
tasks more quickly, allowing more parallelism for smaller problems. However,
these smaller blockings reach a lower peak performance due to reduced dgemm

efficiency.

—For proportional blocking, we see once again that a two-dimensional partitioning
is beneficial for small problems. Also included in these two graphs are data
for b = (−8,−3) and b = (−6,−4). The performance of these partitionings
roughly matches that of b = (−24,−1) and b = (−12,−2) for small problems
but suffers slightly for large matrices. We suspect that this effect is not due to a
loss of dgemm efficiency but rather suboptimal load-balancing. In our discussion
of Fig. 14, we pointed out that the partitioning given by b = (−12,−2) was
more desirable than other proportional 2D partitionings. In this case, neither
b = (−8,−3) nor b = (−6,−4) load-balances as well across 12 threads due to
the fact that fewer fixed-sized syrk subproblem tasks (8 and 6, respectively) are
created than threads used in the computation. Furthermore, each of these syrk

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

tasks is rather large, raising the potential for threads to become idle while some
remaining portion of the syrk computation is still in progress. Presumably, these
factors conspire to prevent a favorable scheduling for most larger problems.

7. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we discussed the high-performance parallel implementation of the
symmetric rank-k update operation, targeting SMP (and future multi-core) archi-
tectures. This operation is representative of how many level-3 BLAS and LAPACK-
like operations are implemented with the FLAME/C API. Several contributions
were reported that improve ease of implementation as well as performance.

We demonstrated how task queues, a proposed feature for OpenMP 3.0, allow
code that is devoid of indexing to be elegantly and effectively parallelized. We iden-
tified and overcame two shortcomings present in the current Intel implementation
of OpenMP task queues. First, we implemented a more portable domain-specific
workqueuing solution for FLAME/C that uses only conventional OpenMP con-
structs. Second, we demonstrated the benefits of scheduling tasks in descending
order of cost in the context of the syrk operation. In addition, we demonstrated
the merit in proportional blocking and found that a two-dimensional data parti-
tioning gives way to better performance for smaller problems.

Both OpenMP and FLAME workqueuing implementations allow algorithms to be
coded and parallelized at a much higher level of abstraction and, in our experience,
improves almost all stages of library development. The resulting parallelized code
was shown to require only minor modifications to the corresponding sequential
FLAME/C implementation. Very good speedup was reported on a medium sized
SMP system.

We believe this work provides the architects of OpenMP workqueuing with pre-
liminary evidence that more control over task scheduling would benefit end-user
performance. Specifically, these findings suggest that the workqueuing mechanism
should allow the queue to be filled and sorted according to task cost before ex-
ecution takes place. By including an optional cost clause in the task directive
specification, a programmer could provide the implementation with an estimate
for the cost of each task. This information would allow threads to dequeue tasks
from largest to smallest, thereby potentially improving load-balance when tasks
naturally vary in cost.

Future Work. After inspecting the GotoBLAS implementation of matrix-matrix
multiplication [Goto and van de Geijn 2006], we have concluded that the proposed
parallelization based on local gemm operations causes threads to duplicate internal
copying and packing of data. By exposing low-level interfaces to these underlying
operations, it should be possible to schedule data movements so that duplication
and/or memory contention can be reduced, yielding better performance yet. It
should be feasible to incorporate these insights into the methodologies discussed in
the present paper.

Further information

For additional information regarding the FLAME project, visit
http://www.cs.utexas.edu/users/flame/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Scalable Parallelization of FLAME Code · 27

Acknowledgments

The OpenMP task queue construct was brought to our attention by Dr. Timothy
Mattson (Intel). This was the key insight that has allowed us to avoid the re-
introduction of indices.

This research was partially sponsored by NSF grants CCF-0540926, CCF-0342369,
and ACI-0305163. In addition, Dr. James Truchard (National Instruments) gra-
ciously made an unrestricted donation to our research.

Access to the 14 CPU Itanium2 (1.5 GHz) system on which the experiments were
performed was provided by Dr. Gregorio Quintana-Ort́ı of Universidad Jaume I,
Spain. Some experiments were prepared and tested on a 4 CPU Itanium2 (1.5 GHz)
server which was generously donated to our research efforts by Hewlett-Packard and
is administered by UT-Austin’s Texas Advanced Computing Center.

We thank Kazushige Goto and Dr. Kent Milfeld (both with the Texas Advanced
Computing Center) for their valuable feedback throughout our research. We also
thank Dr. Andrew Chapman and Thuan Cao (both with NEC Solutions (America),
Inc.) for their technical advice. We would like to acknowledge input from Dr.
Enrique Quintana-Ort́ı on a draft of this paper.

REFERENCES

Anderson, E., Bai, Z., Demmel, J., Dongarra, J. E., DuCroz, J., Greenbaum, A., Ham-
marling, S., McKenney, A. E., Ostrouchov, S., and Sorensen, D. 1992. LAPACK Users’

Guide. SIAM, Philadelphia.

Bientinesi, P. 2006. Mechanical derivation and systematic analysis of correct linear algebra
algorithms. Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin.

Also published as UTCS Technical Report TR-06-46.

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and van de Geijn, R. A.
2005. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1
(March), 1–26.

Bientinesi, P., Quintana-Ort́ı, E. S., and van de Geijn, R. A. 2005. Representing linear
algebra algorithms in code: The FLAME APIs. ACM Trans. Math. Soft. 31, 1 (March), 27–59.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An extended set of

FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1 (March), 1–17.

Dow, E. 2005. Take charge of processor affinity. IBM developerWorks.

http://www.ibm.com/developerworks/linux/library/l-affinity.html.

Garey, M. R., Graham, R. L., and Ullman, J. D. 1973. An analysis of some packing algorithms.
In Combinatorial Algorithms, R. Rustin, Ed. New York: Algorithmics Press, 39–47.

Goto, K. 2006. http://www.cs.utexas.edu/users/kgoto.

Goto, K. and van de Geijn, R. A. 2006. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Soft.. submitted.

Johnson, D. S. 1973. Approximation algorithms for combinatorial problems. In Fifth Annual

ACM Symposium on Theory of Computing. New York: Assoc. Comput. Mach., 38–49.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft. 5, 3 (Sept.), 308–323.

Low, T. M., Milfeld, K. F., van de Geijn, R. A., and Van Zee, F. G. 2004. Parallelizing flame
code with openmp task queues. Department of Computer Sciences Technical Report TR-04-05,

The University of Texas at Austin. December.

Low, T. M., van de Geijn, R. A., and Van Zee, F. G. 2005. Extracting SMP parallelism for

dense linear algebra algorithms from high-level specifications. In PPoPP ’05: Proceedings of the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

28 · F. G. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn

tenth ACM SIGPLAN symposium on Principles and practice of parallel programming. ACM

Press, New York, NY, USA, 153–163.

OpenMP Architecture Review Board. 2006. http://www.openmp.org/.

Quintana-Ort́ı, E. S. and van de Geijn, R. A. 2003. Formal derivation of algorithms: The
triangular Sylvester equation. ACM Transactions on Mathematical Software 29, 2 (June),

218–243.

Shah, S., Haab, G., Peterson, P., and Throop, J. 1999. Flexible control structures for paral-
lelism in OpenMP. In EWOMP.

Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., and Peterson, P. 2002. Compiler support
of the workqueuing execution model for Intel SMP architectures. In EWOMP.

van de Geijn, R. A. 1997. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press.

Weisstein, E. W. 2006. Bin-Packing Problem. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/Bin-PackingProblem.html.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

