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Abstract. We introduce a methodology for obtaining inventories of error results for families of
numerical dense linear algebra algorithms. The approach for deriving the analyses is goal-oriented,
systematic, and layered. The presentation places the analysis side-by-side with the algorithm so that
it is obvious where roundoff error is introduced. The approach supports the analysis of more complex
algorithms, such as the blocked LU factorization. For this operation we derive a tighter error bound
than has been previously reported in the literature.

1. Introduction. Numerical stability analysis related to dense linear algebra
operations continues to be an important topic in numerical analysis. As part of the
FLAME project, we approach this topic from a new perspective. We are interested
in the methodology for deriving results as much as, if not more, than the results
themselves. Our goal is to identify notation and a procedure for error analyses
that can, in principle, be made mechanical (automatic). For the problem of deriving
algorithms for linear algebra operations we have already achieved these objectives:
we identified notation and exposed a systematic procedure that was reproducible by
a computer algebra system [2]. We show that the same notation and procedure can
be extended to equally systematically (although not yet mechanically) derive stability
analyses.

This paper makes the following contributions:
• The notation we use deviates from tradition. As much as possible we abstract

away from details like indices, both in the presentation of the algorithms and
in the error analyses of those algorithms.
• The derivation of error results becomes a goal-oriented: given an operation

and an algorithm that computes it, a possible error result is motivated and
is subsequently established hand-in-hand with its proof.
• The methodology is explained by applying it to a sequence of progressively

more difficult algorithms for which results were already known.
• The methodology is used to analyze a blocked algorithm for LU factorization

that is closely related to the most commonly used high-performance algorithm
for LU factorization with partial pivoting. We show that the computed Ľ and
Ǔ factors of matrix A are such that ĽǓ = A + ∆A, with |∆A| ≤ γn

b +b(|A| +
|Ľ||Ǔ |). The factor γn

b +b improves on the factor γn for unblocked algorithms,
yielding γ2

√
n for a suitable choice of the block size b.

We do not claim that the approach is different from what an expert does as he/she
analyzes an algorithm. We do claim that we provide structure so that such analyses
can be performed systematically by people with considerably less expertise.

While the paper is meant to be self-contained, full understanding will come from
first reading our paper on the systematic derivation of algorithms in this problem
domain [3]. The reason is that the derivation of the analysis of an algorithm mirrors
the derivation of the algorithm itself, as discussed in the conclusion.
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It is impossible for us to give a complete treatment of related work. We refer the
reader to Higham’s book [10], which lists no less than 1134 citations. Other classic
references are Golub and Van Loan [8], Stewart [11], and Stewart and Sun [12].

This paper targets experts in numerical stability analysis. Many results are stated
without proof when they are well-known or relatively obvious. A pedagogical version
of this paper, appropriate for graduate students with a limited or no background in
stability analysis, is available as a technical report [4].

The paper is structured as follows. In Section 2, we review notation for capturing
and analyzing error. In Section 3, we analyze error accumulated when computing
the inner (dot) product. Next, the results for the dot product are used as part of
the analysis of an algorithm for the solution of a triangular system of equations, in
Section 4. In Section 5 an (unblocked) LU factorization algorithm is analyzed. These
first sections yield only well-known results. The climax comes in Section 6 in which
an analysis for a blocked LU factorization that yields a tighter bound for the error is
given. The paper concludes with a discussion of what the new error result means for
a practical blocked LU factorization and of new opportunities that are enabled by the
proposed methodology.

2. Preliminaries.

2.1. Notation. Much of our notation related to error analysis was taken and/or
inspired by the notation in [10]. The notation δχ, where the symbol δ is touches a
scalar variable χ, indicates a perturbation associated with the variable χ. Likewise,
δx and ∆X (∆ touches X) indicate a perturbation vector and matrix associated with
vector x and matrix X, respectively. Variables indicating perturbations are called
error operands.

The letters T, B, L, R, when used as subscripts of a matrix (vector) X, indicate a
2×1 or a 1×2 partitioning of X, and denote the Top, Bottom, Left, and Right part of
X, respectively. Similarly, the 4 quadrants of a 2×2-partitioned matrix are indicated
by the subscripts TL, TR, BL and BR. The functions m(X) and n(X) return the row
and column dimension of matrix (or vector) X, respectively. We use “∧” to represent
the logical AND operator.

We differentiate between exact and computed quantities. The function
[expression] returns the result of the evaluation of expression, where every opera-
tion is executed in floating point arithmetic1. Equality between the quantities lhs and
rhs is denoted by lhs = rhs. Assignment is denoted by lhs := rhs (lhs becomes
rhs). In the context of a program, the statements lhs := rhs and lhs := [rhs] are
equivalent. Given an assignment κ := expression, the notation κ̌ to denotes the
quantity resulting from [expression], which is actually stored in the variable κ.

We denote the machine epsilon or unit roundoff by u. It is defined as the max-
imum positive floating point number which can be added to the number stored as 1
without changing the number stored as 1: [1 + u] = 1.

2.2. Floating point computation. We focus on real valued arithmetic only.
Extensions to complex arithmetic are straightforward.

The Standard Computational Model (SCM) assumes that, for any two floating
point numbers χ and ψ, the basic arithmetic operations satisfy the equality

[χ op ψ] = (χ op ψ)(1 + ε), |ε| ≤ u, and op ∈ {+,−, ∗, /}.
1Assuming that the expressions are evaluated from left to right, [x+ y + z/w] is equivalent to

[[[x] + [y]] + [[z] / [w]]].
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The quantity ε is a function of χ, ψ and op. We always assume that all the input
variables to an operation are floating point numbers.

For certain problems it is convenient to use the Alternative Computational Model
(ACM) [10] which also assumes for the basic arithmetic operations that

[χ op ψ] =
χ op ψ
1 + ε

, |ε| ≤ u, and op ∈ {+,−, ∗, /}.

As for the standard computation model, the quantity ε is a function of χ, ψ and op.

2.3. Stability of a numerical algorithm. Let f : D → R be a mapping from
the domain D to the range R and let f̌ : D → R represent the mapping that captures
the execution in floating point arithmetic of a given algorithm that computes f .

The algorithm is said to be backward stable if for all x ∈ D there exists a perturbed
input x̌ ∈ D, close to x, such that f̌(x) = f(x̌). The difference between x̌ and x,
δx = x̌− x, is the perturbation to the original input x.

When discussing error analyses, δx, the difference between x and x̌, is the back-
ward error and the difference f̌(x)− f(x) is the forward error.

2.4. Absolute value of vectors and matrices. In this paper, all bounds are
given in terms of the absolute values of the individual elements of the vectors and/or
matrices. It is easy to convert such bounds into bounds involving norms.

Definition 2.1. Let M∈ {<,≤,=,≥, >} and x, y ∈ Rn. Then |x| M |y| iff
|χi|M |ψi|, with i = 0, . . . , n − 1. Similarly, given A and B ∈ Rm×n, |A|M |B| iff
|αij |M |βij |, with i = 0, . . . ,m− 1 and j = 0, . . . , n− 1.

Lemma 2.2. Let A ∈ Rm×k and B ∈ Rk×n. Then |AB| ≤ |A||B|.
2.5. Deriving dense linear algebra algorithms. In various papers, we have

shown that for a broad class of linear algebra operations one can systematically derive
algorithms for computing them [9]. The primary vehicle in the derivation of algorithms
is a worksheet to be filled in a prescribed order [3]. We do not discuss the derivation
worksheet in this paper in order to keep the focus of on the derivation of error analyses.
However, we encourage the reader to compare the error worksheet, introduced next,
to the worksheet for deriving algorithms, as the order in which the error worksheet is
filled mirrors that of the derivation worksheet.

3. Stability of the Dot Product Operation and Introduction to the
Error Worksheet. We give an algorithm for κ := xT y and the related error results.
We also introduce the error-worksheet as a framework for presenting analyses side-
by-side with the algorithm.

3.1. An algorithm for computing Dot. We consider the algorithm given in
Fig. 3.1(left). It uses the FLAME notation [9, 3] to express the computation

κ :=
((

(χ0ψ0 + χ1ψ1) + · · · ) + χn−2ψn−2

)
+ χn−1ψn−1 (3.1)

in the indicated order.

3.2. Preparation. Under the SCM model

κ̌ =
n−1∑

i=0


χiψi(1 + ε

(i)
∗ )

n−1∏

j=i

(1 + ε
(j)
+ )


, (3.2)

3



Algorithm Dot: κ := xT y

κ := 0
Partition x→

„
xT

xB

«
, y →

„
yT

yB

«

where xT and yT are empty

While m(xT ) < m(x) do

Repartition
„
xT

xB

«
→
0
@
x0

χ1

x2

1
A ,

„
yT

yB

«
→
0
@
y0
ψ1

y2

1
A

where χ1 and ψ1 are scalars

κ := κ+ χ1ψ1

Continue with
„
xT

xB

«
←
0
@
x0

χ1

x2

1
A ,

„
yT

yB

«
←
0
@
y0
ψ1

y2

1
A

endwhile

Algorithm Ltrsv: Compute x such that Lx = b

Partition L→
„
LTL 0

LBL LBR

«
, x→

„
xT

xB

«
, b→

„
bT
bB

«

where LTL, xT , and bT are empty

While m(xT ) < m(x) do

Repartition
„
LTL 0

LBL LBR

«
→
0
@
L00 0 0

lT10 λ11 0
L20 l21 L22

1
A,

„
xT

xB

«
→
0
@
x0

χ1

x2

1
A,
„
bT
bB

«
→
0
@
b0
β1

b2

1
A

where λ11, χ1, and β1 are scalars

χ1 := (β1 − lT10x0)/λ11

Continue with
„
LTL 0

LBL LBR

«
←
0
@
L00 0 0

lT10 λ11 0

L20 l21 L22

1
A,

„
xT

xB

«
←
0
@
x0

χ1

x2

1
A,
„
bT
bB

«
←
0
@
b0
β1

b2

1
A

endwhile

Fig. 3.1. Left: Algorithm for computing κ := xT y. Right: An algorithm for solving Lx = b.

where ε(0)+ = 0 and |ε(0)∗ |, |ε(j)∗ |, |ε(j)+ | ≤ u for j = 1, . . . , n − 1. Clearly, a notation to
keep expressions from becoming unreadable is desirable.

Lemma 3.1. ([10], Lemma 3.1.) Let εi ∈ R, 0 ≤ i ≤ n− 1, nu < 1, and |εi| ≤ u.
Then ∃ θn ∈ R such that

∏n−1
i=0 (1 + εi)±1 = 1 + θn, with |θn| ≤ nu/(1− nu).

The quantity θn is not intended to be a specific number. It is an order of magni-
tude identified by the subscript n, which indicates the number of error factors of the
form (1 + εi) and/or (1 + εi)−1 that are grouped together to form (1 + θn).

Two instances of the symbol θj typically do not represent the same number.
Since the bound on |θn| occurs often, we assign it a symbol:

Definition 3.2. For all n ≥ 1 and nu < 1, define γn := nu/(1− nu).
Equality (3.2) simplifies to κ̌ = χ0ψ0(1+θn)+χ1ψ1(1+θn)+ · · ·+χn−1ψn−1(1+θ2),
where |θj | ≤ γj , j = 2, . . . , n.

The following relations will be useful to bound how error accumulates:
Lemma 3.3. If n, b ≥ 1 then γn ≤ γn+b and γn + γb + γnγb ≤ γn+b.

3.3. Target result. It is of interest to accumulate the roundoff error encoun-
tered during computation as a perturbation of input and/or output parameters:

1) κ̌ = (x+ δx)T y; 2) κ̌ = xT (y + δy); 3) κ̌ = xT y + δκ.

The first two are backward error results (error is accumulated onto input parameters)
while the last one is a forward error result (error is accumulated onto the answer).
We will see that under different circumstances, different error results may be needed
by analyses of operations that require a dot product.

Let us focus on the second result. Ideally one would show that each of the entries
4



of y is slightly perturbed relative to that entry:

δy =




σ0ψ0

...
σn−1ψn−1


 =



σ0 · · · 0
...

. . .
...

0 · · · σn−1







ψ0

...
ψn−1


 = Σy,

where each σi is “small” and Σ = diag(σ0, . . . , σn−1). The following special structure
of Σ will be used in the remainder of the paper:

Σ(n) =





0× 0 matrix if n = 0
θ1 if n = 1
diag(θn, θn, θn−1, . . . , θ2) otherwise.

(3.3)

Recall that θj represents an order of magnitude with |θj | ≤ γj .
Lemma 3.4. Let k ≥ 0 and assume that |ε1|, |ε2| ≤ u, with ε1 = 0 if k = 0. Then

(
I + Σ(k) 0

0 (1 + ε1)

)
(1 + ε2) = (I + Σ(k+1)).

We now state a theorem that captures how error is accumulated by the algorithm.
Theorem 3.5. Let x, y ∈ Rn and let κ := xT y be computed by executing the

algorithm in Fig. 3.1(left). Then κ̌ =
[
xT y

]
= xT (I + Σ(n))y.

3.4. A proof in traditional format. We purposely pick notation so that the
proof can be related to the alternative framework presented in Section 3.5.

Proof: By mathematical induction on n, the length of vectors x and y.
Base case. m(x) = m(y) = 0. Trivial.
Inductive Step. I.H.: Assume that if xT , yT ∈ Rk, k > 0, then

[
xTT yT

]
= xTT (I + ΣT )yT , where ΣT = Σ(k).

Let xT , yT ∈ Rk+1, and partition xT →
(
x0

χ1

)
and yT →

(
y0
ψ1

)
. Then

[(
x0

χ1

)T (
y0
ψ1

)]
=

[[
xT0 y0

]
+ [χ1ψ1]

]
(definition)

=
[
xT0 (I + Σ0)y0 + [χ1ψ1]

]
(I.H. with xT = x0,

yT = y0, and Σ0 = Σ(k))

=
(
xT0 (I + Σ0)y0 + χ1ψ1(1 + ε∗)

)
(1 + ε+) (SCM, twice)

=
(
x0

χ1

)T (
(I + Σ0) 0

0 (1 + ε∗)

)
(1 + ε+)

(
y0
ψ1

)
(rearrangement)

= xTT (I + ΣT )yT (renaming),

where |ε∗|, |ε+| ≤ u, ε+ = 0 if k = 0, and (I + ΣT ) =
(

(I + Σ0) 0
0 (1 + ε∗)

)
(1 + ε+)

so that ΣT = Σ(k+1).
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Error side Step

κ := 0 { Σ = 0 } 1a

Partition x→
„
xT

xB

«
, y →

„
yT

yB

«
, Σ→

„
ΣT 0

0 ΣB

«

where xT and yT are empty, and ΣT is 0× 0

4

n
κ̌ = xT

T (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k
o

2a

While m(xT ) < m(x) do 3n
κ̌ = xT

T (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k
o

2b

Repartition
„
xT

xB

«
→
0
@
x0

χ1
x2

1
A,
„
yT

yB

«
→
0
@
y0
ψ1
y2

1
A,

„
ΣT 0

0 ΣB

«
→
0
@

Σi
0 0 0

0 σi
1 0

0 0 Σ2

1
A

where χ1, ψ1, and σi
1 are scalars

5a

n
κ̌i = xT

0 (I + Σi
0)y0 ∧ Σi

0 = Σ(k) ∧m(x0) = k
o

6

κ := κ+ χ1ψ1

κ̌i+1 =
`
κ̌i + χ1ψ1(1 + ε∗)

´
(1 + ε+) SCM, twice

(ε+ = 0 if k = 0)

=
`
xT
0 (I + Σ

(k)
0 )y0 + χ1ψ1(1 + ε∗)

´
(1 + ε+) Step 6: I.H.

=

„
x0

χ1

«T
 
I + Σ

(k)
0 0

0 1 + ε∗

!
(1 + ε+)

„
y0
ψ1

«
Rearrange

=

„
x0

χ1

«T `
I + Σ(k+1)

´„ y0
ψ1

«
Lemma 3.4

8

8
>>><
>>>:

κ̌i+1 =

„
x0

χ1

«T „
I +

„
Σi+1

0 0

0 σi+1
1

««„
y0
ψ1

«

∧
„

Σi+1
0 0

0 σi+1
1

«
= Σ(k+1) ∧m

„
x0

χ1

«
= (k + 1)

9
>>>=
>>>;

7

Continue with„
xT

xB

«
←
 
x0
χ1

x2

!
,

„
yT

yB

«
←
 
y0
ψ1

y2

!
,

„
ΣT 0

0 ΣB

«
←
0
@

Σi+1
0 0 0

0 σi+1
1 0

0 0 Σ2

1
A 5b

n
κ̌ = xT

T (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k
o

2c

endwhile n
κ̌ = xT

T (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k ∧m(xT ) = m(x)
o

2dn
κ̌ = xT(I + Σ(n))y ∧m(x) = n

o
1b

Fig. 3.2. Error worksheet completed to establish the backward error result for the given algo-
rithm that computes the Dot operation.

3.5. The error worksheet. In Fig. 3.2 we present a framework, which we call
the error worksheet, for presenting the inductive proof of Theorem 3.5 side-by-side
with the algorithm for Dot. This framework, in a slightly different form, was first
introduced in [2]. The expressions enclosed by { } (in the grey boxes) are predicates
that describe the state of the variables used in the algorithms and their analysis. We
use superscripts to indicate the iteration number, thus, the symbols vi and vi+1 do
not denote two different variables, but two different states of variable v.

The proof presented in Fig. 3.2 goes hand in hand with the algorithm, as it shows
that before and after each iteration of the loop that computes κ := xT y, the variables
κ̌, xT , yT ,ΣT are such that the predicate

{κ̌ = xTT (I + ΣT )yT ∧ k = m(xT ) ∧ ΣT = Σ(k)} (3.4)
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holds true. This relation is satisfied at each iteration of the loop, so it is also satisfied
when the loop completes. Upon completion, the loop guard is m(xT ) = m(x) = n,
which implies that κ̌ = xT (I + Σ(n))y, i.e., the thesis of the theorem, is satisfied too.

The inductive proof of Theorem 3.5 is captured by the error worksheet as follows.
Base case. In Step 2a, i.e., before the execution of the loop, predicate (3.4) is
satisfied, as k = m(xT ) = 0.
Inductive step. Assume that the predicate (3.4) holds true at Step 2b, i.e., at the
top of the loop. Then Steps 6, 7, and 8 in Fig. 3.2 prove that the predicate is satisfied
again at Step 2c, i.e., the bottom of the loop. Specifically,

• Step 6 holds true by virtue of the equalities x0 = xT , y0 = yT , and Σi0 = ΣT .
• The update in Step 8-left introduces the error indicated in Step 8-right (SCM,

twice), yielding the results for Σi+1
0 and σi+1

1 , leaving the variables in the state
indicated in Step 7.

• Finally, the redefinition of ΣT in Step 5b transforms the predicate in Step 7
into that of Step 2c, completing the inductive step.

By the Principle of Mathematical Induction, the predicate (3.4) holds for all iterations.
In particular, when the loop terminates, the predicate becomes

κ̌ = xT (I + Σ(n))y ∧ n = m(xT ).

This completes the discussion of the proof as captured by Fig. 3.2.
In the derivation of algorithms, the concept of loop-invariant plays a central role.

Let L be a loop and P a predicate. If P is true before the execution of L, at the
beginning and at the end of each iteration of L, and after the completion of L, then
predicate P is a loop-invariant with respect to L. Similarly, we give the definition of
error-invariant.

Definition 3.6. We call the predicate involving the operands and error operands
in Steps 2a–d the error-invariant for the analysis. This predicate is true before and
after each iteration of the loop.
For any algorithm, the loop-invariant and the error-invariant are related in that the
former describes the status of the computation at the beginning and the end of each
iteration, while the latter captures an error result for the computation indicated by
the loop-invariant.

The reader will likely think that the error worksheet is an overkill when proving
the error result for the dot product. We agree. We use the dot product merely as a
vehicle to introduce the reader to the methodology. As the operations being analyzed
become more complex, the benefits of the structure that the error worksheet provides
will become more obvious.

3.6. Results. An inventory of consequences of Theorem 3.5 follow. We will
draw from this list when analyzing algorithms that utilize Dot.

Corollary 3.7. Under the assumptions of Theorem 3.5 the following hold:
R1-B: (Backward analysis) κ̌ = (x+ δx)T y, where |δx| ≤ γn|x|;
R2-B: (Backward analysis) κ̌ = xT (y + δy), where |δy| ≤ γn|y|;
R1-F: (Forward analysis) κ̌ = xT y + δκ, where |δκ| ≤ γn|x|T |y|.

Proof: For R1-F, let δκ = xTΣ(n)y, where Σ(n) is as in Theorem 3.5. Then

|δκ| = |xTΣ(n)y| ≤ |χ0||θn||ψ0|+ |χ1||θn||ψ1|+ · · ·+ |χn−1||θ2||ψn−1|
≤ γn|χ0||ψ0|+ γn|χ1||ψ1|+ · · ·+ γ2|χn−1||ψn−1| ≤ γn|x|T |y|.

We leave the proofs of R1-B and R2-B as an exercise to the reader.
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Lemma 3.8. Given scalars α, β and λ, consider σ := (α+ β)/λ. Then:
R1-B: σ̌ = ((α+ δα) + (β + δβ))/λ, where |δα| ≤ γ2|α| and |δβ| ≤ γ2|β|.
R1-F: λσ̌ = α+ β + δσ, with |δσ| ≤ γ2(|α|+ |β|).
R2-B: σ̌ = (α+ β)/(λ+ δλ), where |δλ| ≤ γ2|λ|.
R2-F: λσ̌ = α+ β + δσ, with |δσ| ≤ γ2|σ̌||λ|.
R3-B: σ̌ = ((α + δα) + (β + δβ))/(λ+ δλ), where |δα| ≤ γ1|α|, |δβ| ≤ γ1|β|, and

|δλ| ≤ γ1|λ|.
R3-F: λσ̌ = α+ β + δσ, with |δσ| ≤ γ1(|α|+ |β|+ |σ̌||λ|).

Also, if λ = 1, results R1-B, R2-B and R2-F hold with γ1 in place of γ2, and R3-B
holds with either δλ = 0 or both δα = 0 and δβ = 0.

Proof: R1-B follows directly from the definition of SCM. R2-B is obtained by apply-
ing the definition of ACM (twice) and Lemma 3.1:

σ̌ =
[
[α+ β]
λ

]
=

α+ β

λ(1 + ε+)(1 + ε/)
=

α+ β

λ(1 + θ2)
=
α+ β

λ+ δλ
, where δλ = λθ2.

R3-B is derived similarly, and R2-F is an immediate consequence of R2-B.
Relations R1-B, R2-B and R3-B state that the computed result σ̌ equals the exact

result of the assignment (α+ β)/λ with slightly perturbed inputs. These relations
indicate how the error generated in performing such an assignment can be “thrown
back” in different ways at the α, β, and/or λ input variables; in other words, they
establish that the computation of [(α+ β)/λ] is backward stable.

The following theorem prepares us for the analyses of algorithms that use Dot
as a suboperation.

Theorem 3.9. Let n ≥ 1, α, λ, µ, ν ∈ R, and x, y ∈ Rn. Assume that λ 6= 0 and
consider the assignments µ := α− (xT y) and ν :=

(
α− (xT y)

)
/λ; the parentheses

identify the evaluation order. Then
R1-B: µ̌ = α+ δα− (x+ δx)T y, where |δα| ≤ γ1|α| and |δx| ≤ γn+1|x|.
R1-F: µ̌ = α− xT y + δµ, where |δµ| ≤ γn+1|x|T |y|+ γ1|α| ≤ γn+1

(|x|T |y|+ |α|).
R2-F: µ̌ = α− xT y + δµ, where |δµ| ≤ γn|x|T |y|+ γ1|µ̌| ≤ γn

(|x|T |y|+ |µ̌|).
Also,
R3-B: λν̌ = α+ δα− (x+ δx)T y, where |δα| ≤ γ2|α| and |δx| ≤ γn+2|x|.
R3-F: λν̌ = α− xT y + δν, where |δν| ≤ γ2|α|+ γn+2|x|T |y| ≤ γn+2

(|α|+ |x|T |y|).
R4-B: (λ+ δλ)ν̌ = α− (x+ δx)T y, where |δλ| ≤ γ2|λ| and |δx| ≤ γn|x|.
R4-F: λν̌ = α− xT y + δν, where

|δν| ≤ γn|x|T |y|+ γ2|λ||ν̌| ≤ max(γ2, γn)
(|x|T |y|+ |λ||ν̌|).

R5-B: (λ+ δλ)ν̌ = α+ δα− (x+ δx)T y, where
|δα| ≤ γ1|α|, |δx| ≤ γn+1|x|, and |δλ| ≤ γ1|λ|.

R5-F: λν̌ = α− xT y + δν, where
|δν| ≤ γ1|α|+ γn+1|x|T |y|+ γ1|λ||ν̌| ≤ γn+1

(|α|+ |x|T |y|+ |λ||ν̌|) .
Proof: R1 follows Theorem 3.5 and SCM: µ̌ =

(
α− xT (I + Σ(n))y

)
(1 + ε1), al-

gebraic manipulation, and bounding. R2-F follows Theorem 3.5 and ACM: µ̌ =(
α− xT (I + Σ(n))y

)
/(1+ ε2), algebraic manipulation, and bounding. Results R3, R4

and R5 are obtained similarly, invoking Theorem 3.5 and Lemma 3.8.

4. Analysis of Triangular Linear Systems and Introduction to Goal-
Oriented Error Analysis. We discuss a goal-oriented methodology for analyzing
the error generated by an algorithm hand-in-hand with the analysis of an algorithm
for the solution of a triangular linear system.
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Error side Step

{ ∆L = 0 } 1a

Partition L→
„
LTL 0

LBL LBR

«
, x→

„
xT

xB

«
, b→

„
bT
bB

«
, ∆L→

„
∆LTL 0

∆LBL ∆LBR

«

where LTL, xT , bT , and ∆LTL are empty

4

n
(LTL + ∆LTL)x̌T = bT ∧ |∆LTL| ≤ max(γ2, γk−1)|LTL| ∧m(xT ) = k

o
2a

While m(xT ) < m(x) do 3n
(LTL + ∆LTL)x̌T = bT ∧ |∆LTL| ≤ max(γ2, γk−1)|LTL| ∧m(xT ) = k

o
2b

Repartition
„
LTL 0

LBL LBR

«
→
0
@
L00 0 0

lT10 λ11 0
L20 l21 L22

1
A,

„
x̌T

x̌B

«
→
0
@
x̌0

χ̌1

x̌2

1
A,
„
bT
bB

«
→
0
@
b0
β1

b2

1
A

„
∆LTL 0

∆LBL ∆LBR

«
→
0
@

∆L00 0 0

δlT10 δλ11 0
∆L20 δl21 ∆L22

1
A

where λ11, δλ11, χ1, and β1 are scalars

5a

n
(L00 + ∆L00)x̌0 = b0 ∧ |∆L00| ≤ max(γ2, γk−1)|L00| ∧m(x0) = k

o
6

χ1 :=
β1 − lT10x0

λ11

b0 = (L00 + ∆L00)x̌0

∧ |∆L00| ≤ max(γ2, γk−1)|L00|

)
Step 6: I.H.

β1 =
`
lT10 + δlT10

´
x̌0 + (λ11 + δλ11) χ̌1

∧
˛̨`
δlT10 δλ11

´˛̨ ≤ max(γ2, γk)
˛̨`
lT10 λ11

´˛̨
)

Th. 3.9 R4-B

8

8
>><
>>:

„„
L00 0

lT10 λ

«
+

„
∆L00 0

δlT10 δλ

««„
x̌0

χ̌1

«
=

„
b0
β1

«

∧
˛̨
˛̨
„

∆L00 0

δlT10 δλ

«˛̨
˛̨ ≤ max(γ2, γk)

˛̨
˛̨
„
L00 0

lT10 λ

«˛̨
˛̨ ∧m

„
x0

χ1

«
= k + 1

9
>>=
>>;

7

Continue with

L, x and b as in Fig. 3.1, and

„
∆LTL 0

∆LBL ∆LBR

«
←
0
@

∆L00 0 0

δlT10 δλ11 0

∆L20 δl21 ∆L22

1
A 5b

n
(LTL + ∆LTL)x̌T = bT ∧ |∆LTL| ≤ max(γ2, γk−1)|LTL| ∧m(xT ) = k

o
2c

endwhile 
(LTL + ∆LTL)x̌T = bT ∧ |∆LTL| ≤ max(γ2, γk−1)|LTL|

∧ m(xT ) = m(x) ∧m(xT ) = k

ff
2d

n
(L+ ∆L)x̌ = b ∧ |∆L| ≤ max(γ2, γn−1)|L| ∧m(x) = n

o
1b

Fig. 4.1. Error worksheet for deriving the backward stability error result for the algorithm in
Fig. 3.1(right).

4.1. Solving a lower triangular linear system (Ltrsv). Consider Lx = b,
where L ∈ Rn×n is a nonsingular lower triangular matrix, L and b are input operands
and x is the output operand2. In Fig. 3.1(right) we show one specific algorithm for
computing x. During the execution of this algorithm the variables satisfy the predicate
(loop-invariant) {LTLxT = bT } at the beginning and the end of each loop iteration.

4.2. Analysis. The analysis of the algorithm in Fig. 3.1(right) is in Fig. 4.1: in
the following we explain how the worksheet is constructively filled out to generate the
analysis. Pretend that all the gray-shaded boxes in Fig. 4.1 are initially empty and

2In this section we make no assumption on the diagonal entries of matrix L. In the next section
we will use the symbol L to indicate a unit lower triangular matrix.
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that only Step 8-left (the computational update) is already complete, having been
copied over from Fig. 4.1. The empty boxes will be filled out in the order indicated
in the “Steps” column.

Step 1: Error-precondition and error-postcondition. We show that the
computed solution, x̌, satisfies the backward error result (L + ∆L)x̌ = b with |∆L| ≤
max(γ2, γn−1)|L|, i.e., |∆L| ≤ γn−1|L| when n > 2.

The reasoning for the factor γn−1 is as follows. We would expect the maximal
error to be incurred during the final iteration when computing χ1 = (β1 − lT10x0)/λ.
This assignment involves a dot product with vectors of length n − 1. Thus, results
R4 from Theorem 3.9 suggest that it is reasonable to expect the indicated factor.

In practice, the analysis proceeds in two stages. In the first stage one proves,
constructively, the existence of a matrix ∆L, the error-operand, such that (L+∆L)x̌ =
b. In this stage error bounds are not considered, as the only concern is to push the
error generated by the computational updates onto the error-operands. This process
involves error results regarding the suboperations that appear in the updates. These
error results then allow one to make an educated guess of the bounds that can be
established for the error operands. In the second stage the bounds on ∆L are verified.
For space considerations, in this paper we incorporate the proof of the bounds on the
error operands into the proof of existence.

We call the predicate that describes the state of the error operands (in this case
the matrix ∆L) before the algorithm is executed, the error-precondition, and the
predicate that describes the target error result, the error-postcondition. In Fig. 4.1
these predicates are placed in Step 1a and 1b, respectively. The error-precondition is
{∆L = 0} (no error has yet accumulated), and the error-postcondition is

{(L+ ∆L)x̌ = b ∧ |∆L| ≤ max(γ2, γn−1)|L| ∧m(x) = n}.

Step 2: Error-invariant. Recall that the error-invariant for the algorithm
is the predicate that describes the state of the error operands in Steps 2a–d. The
loop-invariant is the predicate that describes the computation performed when the
algorithm reaches Steps 2a–d. The error-invariant should equal the subexpression of
the error-postcondition that corresponds to the state described by the loop-invariant.
The algorithm in Fig. 3.1(right) has the property that before and after each iteration
the contents of xT are such that {LTLxT = bT }, the loop-invariant. Thus, we expect
the accumulated error to satisfy (LTL+∆LTL)x̌T = bT . Adding also bounds on ∆LTL,
the error-invariant, which is entered in Steps 2a–d, becomes

{(LTL + ∆LTL)x̌T = bT ∧ |∆LTL| ≤ max(γ2, γk−1)|LTL| ∧m(xT ) = k}.

Step 3: Loop-guard. The loop guard is part of the algorithm to be analyzed.

Step 4: Initialization. In this step the error operands are partitioned confor-
mally to the operands in the algorithm with respect to the error-postcondition. In the
example, ∆L is partitioned so that the dimensions of the variables in the expression
(L+ ∆L)x̌ = b, with the operands partitioned as in Fig. 3.1(right), are conformal.

Step 5: Moving through the error operand. In Steps 5a and 5b, the error
operand is repartitioned conformally to those in the algorithm.

Step 6: State of the variables before the update in Step 8. Step 5a
consists of the following relabelling statements: LTL → L00, xT → x0, bT → b0,

10



and ∆LTL → ∆L00. Thus, given the state of the variables in Step 2b, the contents of
the submatrices and subvectors exposed in Step 5a are described by

(L00 + ∆L00)x̌0 = b0 ∧ |∆L00| ≤ max(γ2, γk−1)|L00| ∧m(x0) = k (4.1)

at Step 6. This predicate expresses the state of the error operands before the execution
of the computational statements listed in Step 8-left.

Step 7: State of the variables after the update in Step 8. At the bottom
of the loop, the variables must again be in a state where the loop-invariant holds, as
indicated by Step 2c. In Step 5b, the different quadrants of L and ∆L, and the subvec-

tors of x and b, are redefined so that LTL ←
„

L00 0

lT10 λ11

«
, xT ←

„
x0

χ1

«
, bT ←

„
b0

β1

«
,

and ∆LTL ←
„

∆L00 0

δlT10 δλ11

«
.Thus, given the state in which the variables must be in Step

2c, the contents of the submatrices and subvectors before Step 5b must, at Step 7,
become ((

L00 0
lT10 λ11

)
+

(
∆L00 0
δlT10 δλ11

))(
x̌0

χ̌1

)
=

(
b0
β1

)
∧m

(
x0

χ1

)
= k + 1

∧
∣∣∣∣
(

∆L00 0
δlT10 δλ11

)∣∣∣∣ ≤ max(γ2, γk)
∣∣∣∣
(
L00 0
lT10 λ11

)∣∣∣∣ . (4.2)

Step 8: Inductive step. When the computation reaches this step, the predi-
cate (4.1), described in Step 6, is satisfied. The question is whether the computational
update χ1 := (β1− lT10x0)/λ11, with m(x0) = k, generates errors for which one can
find assignments to the error variables ∆L00, δlT10, and δλ11 so that the predicate (4.2),
described in Step 7, is also satisfied. Manipulating (4.2), we find that after the com-
putational update completes, the error variables must satisfy

b0 = (L00 + ∆L00)x̌0 ∧ |∆L00| ≤ max(γ2, γk)|L00|
β1 =

(
lT10 + δlT10

)
x̌0 + (λ11 + δλ11) χ̌1 ∧

∣∣( δlT10 δλ11

)∣∣ ≤ max(γ2, γk)
∣∣( lT10 λ11

)∣∣ .
Since L00, x0, and b0 are not modified by the assignment in Step 8-left, the top
constraint is satisfied by virtue of (4.1) and γk−1 ≤ γk. In the language of an inductive
proof, this constraint is true by the I.H. For the second constraint, we consult our
inventory of error results and find Theorem 3.9 Result R4-B, which is chosen because
it matches the requirement of how error is propogated. The analysis is also given in
Step 8-right of Fig. 4.1.

4.3. Results for TRSV. Fig. 4.1, provides the proof for R1-B of the next
theorem.

Theorem 4.1. Let L ∈ Rn×n be a nonsingular lower triangular matrix and
x, b ∈ Rn. If the solution x of the linear system Lx = b is computed via the algorithm
in Fig. 4.1(left), then x̌ satisfies
R1-B: (L+ ∆L)x̌ = b, where |∆L| ≤ max(γ2, γn−1)|L|.
R1-F: Lx̌ = b+ δb where |δb| ≤ max(γ2, γn−1)|L||x̌|.

4.4. Other algorithmic variants. Theorems for other algorithmic variants can
be derived in a similar manner [2].

5. Analysis of an unblocked algorithm for LU factorization. We now
move on to a more difficult operation, the LU factorization of a square matrix. Given
a non-singular square matrix A, we seek matrices L and U such that LU = A, where
L is a lower triangular with unit diagonal and U is upper triangular.
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Algorithm LU = A

Partition A→
„
AT L AT R

ABL ABR

«
, L→

„
LT L 0

LBL LBR

«
, U →

„
UT L UT R

0 UBR

«

where ATL, LTL, UTL, are 0× 0

While m(ATL) ≤ m(A) do

Repartition
(
AT L AT R

ABL ABR

)
→

(
A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

)
,
(
LT L 0

LBL LBR

)
→

(
L00 0 0

lT10 1 0
L20 l21 L22

)
,

(
UT L UT R

0 UBR

)
→

(
U00 u01 U02

0 υ11 uT
12

0 0 U22

)

where α11, 1, υ11 are scalars

υ11 := α11 − lT10u01

uT12 := aT12 − lT10U02

l21 := (a21 − L20u01)/υ11

Continue with
(
AT L AT R

ABL ABR

)
←

(
A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

)
,
(
LT L 0

LBL LBR

)
←

(
L00 0 0

lT10 1 0

L20 l21 L22

)
, · · ·

endwhile

Fig. 5.1. The unblocked Crout variant for computing the LU factorization of a matrix.

5.1. An algorithm for computing the LU factorization. We analyze the
variant that is often called the Crout variant [7], which allows the reader to compare
and contrast our exposition with the one in [10]. The algorithm is given in Fig. 5.1.
This variant computes L and U so that before and after each iteration LTL, UTL,
LBL and UTR satisfy3

(
LTLUTL = ATL LTLUTR = ATR
LBLUTL = ABL —

)
. (5.1)

5.2. Preparation. The next theorem provides error analyses for matrix-vector
multiplications.

Theorem 5.1. Error results for matrix-vector multiplication. Let A ∈
Rm×n, x ∈ Rn, y, v, w ∈ Rm, λ ∈ R and consider the assignments v := y − Ax
and w := (y − Ax)/λ. Assume that v and w are computed one element at a time by
subtracting from y the result of an inner product, and then dividing it by λ for the
second operation. These equalities hold:
R1-F: v̌ = y −Ax+ δv, where |δv| ≤ γn+1|A||x|+ γ1|y| ≤ γn+1(|A||x|+ |y|).
R2-F: v̌ = y −Ax+ δv, where |δv| ≤ γn|A||x|+ γ1|v̌| ≤ γn(|A||x|+ |v̌|).

Also,
R3-F: λw̌ = y −Ax+ δw, where

|δw| ≤ γ2|y|+ γn+2|A||x| ≤ γn+2(|y|+ |A||x|).
R4-F: λw̌ = y −Ax+ δw, where

|δw| ≤ γn|A||x|+ γ2|λ||w̌| ≤ max(γ2, γn)(|A||x|+ |λ||w̌|).
3In Eqns. 5.1 and following, the dash indicates that no relation is specified for the contents of

this portion of the matrix.
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R5-F: λw̌ = y −Ax+ δw, where
|δw| ≤ γ1|y|+ γn+1|A||x|+ γ1|λ||w̌| ≤ γn+1(|y|+ |A||x|+ |λ||w̌|).

Proof: All these results follow from Theorem 3.9.

5.3. Analysis. In practice the approach starts with a formulation of the analysis
that does not take bounds into account. Our methodology then makes it easy to
experiment with loose analyses to gain insights that lead to a tighter formulation.
For space considerations, we start the analysis already with tight bounds. We will
show that ĽǓ = A+ ∆A with |∆A| ≤ γn|Ľ||Ǔ |. This error-postcondition is entered in
Step 1b of Fig. 5.2.

In Fig. 5.2, we show both the algorithm, on the left, and the error side of the error
worksheet, on the right. The latter is filled out in the order indicated by the Step
column, as we discussed in Sec. 4. We have already established the expressions for the
error-precondition and error-postcondition (Step 1), in which the matrix ∆A acts as
the error operand. In Step 2 one has to select a feasible error-invariant, i.e., an error
result for the computations performed up to this stage. To this end, we restrict the
error-postcondition to the computation described by the loop-invariant (5.1), yielding
the error-invariant

m(ATL) = k ∧
(
ĽTLǓTL = ATL + ∆ATL ĽTLǓTR = ATR + ∆ATR
ĽBLǓTR = ABL + ∆ABL —

)

∧
(
|∆ATL| ≤ γk|ĽTL||ǓTL| |∆ATR| ≤ γk|ĽTL||ǓTR|
|ABL| ≤ γk|ĽBL||ǓTL| —

)
,

which appears in Step 2.4 Given the error-invariant, Steps 4–7 only require symbolic
manipulation. In particular, the predicates indicated in Steps 6 and 7 follow immedi-
ately from the error-invariant by substituting the submatrices from Steps 5a and 5b,
respectively. Step 6 becomes

m(A00) = k ∧

Ľ00Ǔ00 = A00+∆A00 Ľ00ǔ01 = a01+δa01 Ľ00Ǔ02 = A02+∆A02

ľT10Ǔ00 = aT10+δaT10 — —
Ľ20Ǔ00 = A20+∆A02 — —


∧

∣∣∣∣∣∣




∆A00 δa01 ∆A02

δaT10 — —
∆A20 — —




∣∣∣∣∣∣
≤γk



|Ľ00||Ǔ00| |Ľ00||ǔ01| |Ľ00||Ǔ02|
|ľT10||Ǔ00| — —
|Ľ20||Ǔ00| — —


.

(5.2)

Step 2 tells us that this predicate is true before the execution of the computational
statements in the left box of Step 8. In other words, Step 6 represents our Inductive

4In the error worksheet of Fig. 4.1, the error-invariant appears in four different places. In order
to save space, here we list it only before the loop.
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Hypothesis (I.H.). Algebraic manipulation of Step 7 yields

m

(
A00 a01

aT10 α11

)
= k + 1 ∧ (5.3)



Ľ00Ǔ00 = A00+∆A00 Ľ00ǔ01 = a01+δa01 Ľ00Ǔ02 = A02+∆A02

ľT10Ǔ00 = aT10+δaT10 ľT10ǔ01 + υ̌11 = α11+δα11 ľT10Ǔ02 + ǔT12 = aT12+δaT12
Ľ20Ǔ00 = A20+∆A20 Ľ20ǔ01 + ľ21υ̌11 = a21+δa21 —


 ∧

∣∣∣∣∣∣




∆A00 δa01 ∆A02

δaT10 δα11 δaT12
∆A20 δa21 —




∣∣∣∣∣∣
≤γk+1



|Ľ00||Ǔ00| |Ľ00||ǔ01| |Ľ00||Ǔ02|
|ľT10||Ǔ00| |ľT10||ǔ01|+|υ̌11 | |ľT10||Ǔ02|+|ǔT12|
|Ľ20||Ǔ00| |Ľ20||ǔ01|+|ľ21||υ̌11 | —


,

which is the predicate that must be true after the execution of the statements.
The goal is to show that the computation in Step 8, when executed in a state

that satisfies predicate (5.2), generates errors that satisfy the relations in (5.3). For
simplicity, in the latter predicate we have highlighted the submatrices that are affected
by the computation. The relations in the other submatrices are satisfied “by the I.H.”,
in the terminology of an inductive proof, since γk ≤ γk+1. Thus it remains to show
that there exist δα11, δaT12, and δa21 that satisfy the constraints in the grey-shaded
boxes. To this end, we examine the error introduced by the computational updates
to determine how error is contributed to each of these variables:
Determining δα11: The assignment υ11 := α11 − lT10u01 is executed in a state where
m(A00) = k. Theorem 3.9 R2-F states that there exists δυ11 such that

lT10u01 + υ̌11 = α11 + δυ11, where |δυ11| ≤ γk+1(|lT10||u01|+ |υ̌11|),
therefore we choose δα11 := δυ11.
Determining δaT12: The assignment uT12 := aT12 − lT10U02, executed in a state where
m(A00) = k, together with Theorem 5.1 R2-F, imply that there exists δu12 such that

lT10U02 + ǔT12 = aT12 + δuT12, where |δuT12| ≤ γk+1

(∣∣lT10
∣∣ |U02|+

∣∣ǔT12
∣∣) ;

thus δaT12 := δuT12 is the desired update.
Determining δa21: The assignment l21 := (a21 − L20u01)/υ11, executed in a state
where m(A00) = k, and Theorem 5.1 R4-F, imply that there exists δl21 such that

L20u01 + υ11 ľ21 = a21 + δl21, where |δl21| ≤ γk+1

(|L20| |u01|+
∣∣ľ21

∣∣ |υ11|
)
;

therefore the desired update is δa21 := δl21.
This completes the proof of the Inductive Step. The proof is also summarized in

Step 8 of Fig. 5.2.

5.4. Results. The above discussion and Fig. 5.2 prove the following theorem.
Theorem 5.2. Let A ∈ Rn×n. Then Ľ and Ǔ , computed by the algorithm in

Fig. 5.1, satisfy ĽǓ = A+ ∆A, where |∆A| ≤ γn|Ľ||Ǔ |.
The backward stability result in this theorem agrees with the one in [10]. The

attentive reader will have noticed that the none of the bounds used to determine
δα11, δa

T
12, δa21 was tight. As a result, it can be shown that the bound for ∆A can be

improved, replacing γn by max(γ2, γn−1).

5.5. Other algorithmic variants. The approach can be similarly applied to
the other four variants for computing the LU factorization. In [2] it is shown how to
use the error worksheet to derive an error result for the so-called bordered variant.
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Error side Step

{ ∆A = 0 } 1a

Partition

A→
„
ATL ATR

ABL ABR

«
, L→

„
LTL 0

LBL LBR

«
, U→

„
UTL UTR

0 UBR

«
, ∆A→

„
∆ATL ∆ATR

∆ABL ∆ABR

«

where ATL, LTL, UTL and ∆ATL are empty

4

8
>>>><
>>>>:

m(ATL) = k ∧
 
ĽTLǓTL = ATL + ∆ATL ĽTLǓTR = ATR + ∆ATR

ĽBLǓTR = ABL + ∆ABL —

!

∧
˛̨
˛̨
„

∆ATL ∆ATR

∆ABL —

«̨̨
˛̨≤γk

 
|ĽTL||ǓTL| |ĽTL||ǓTR|
|ĽBL||ǓTL| —

!

9
>>>>=
>>>>;

2a

While m(ATL) ≤ m(A) do 3

Repartition

A,L,U partitioned as in Fig. 5.1, and

„
∆ATL ∆ATR

∆ABL ∆ABR

«
→
0
@

∆A00 δa01 ∆A02

δaT
10 δα11 δaT

12
∆A20 δa21 ∆A22

1
A

where δα11 is a scalars

5a

8
>>>>>>>>>><
>>>>>>>>>>:

m(A00) = k

∧

0
B@
Ľ00Ǔ00 = A00+∆A00 Ľ00ǔ01 = a01+δa01 Ľ00Ǔ02 = A02+∆A02

ľT10Ǔ00 = aT
10+δaT

10 — —

Ľ20Ǔ00 = A20+∆A02 — —

1
CA

∧
˛̨
˛̨
˛̨

0
@

∆A00 δa01 ∆A02

δaT
10 — —

∆A20 — —

1
A
˛̨
˛̨
˛̨≤γk

0
B@
|Ľ00||Ǔ00| |Ľ00||ǔ01| |Ľ00||Ǔ02|
|ľT10||Ǔ00| — —

|Ľ20||Ǔ00| — —

1
CA

9
>>>>>>>>>>=
>>>>>>>>>>;

6

υ11 := α11 − lT10u01

uT
12 := aT

12 − lT10U02

l21 := (a21 − L20u01)/υ11

υ̌11 + δα11 = α11 − lT10u01

∧ |δα11|≤γk+1(|lT10||u01|+|υ̌11|) Th. 3.9 R2-F

ǔT
12 + δαT

12 = aT
12 − lT10U02

∧ |δαT
12|≤γk+1(|lT10||U02|+|ǔT

12|) Th. 5.1 R2-F

ľ21υ11 + δα21 = a21 − L20u01

∧ |δα21|≤γk+1(|Ľ20||ǔ01|+|ľ21||υ11|) Th. 5.1 R4-F

8

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

m

„
A00 a01
aT
10 α11

«
= k + 1

∧

0
B@
Ľ00Ǔ00 = A00+∆A00 Ľ00ǔ01 = a01+δa01 Ľ00Ǔ02 = A02+∆A02

ľT10Ǔ00 = aT
10+δaT

10 ľT10ǔ01 + υ̌11 = α11+δα11 ľT10Ǔ02 + ǔT
12 = aT

12+δaT
12

Ľ20Ǔ00 = A20+∆A20 Ľ20ǔ01 + ľ21υ̌11 = a21+δa21 —

1
CA

∧
˛̨
˛̨
˛̨

0
@

∆A00 δa01 ∆A02

δaT
10 δα11 δaT

12

∆A20 δa21 —

1
A
˛̨
˛̨
˛̨≤γk+1

0
B@
|Ľ00||Ǔ00| |Ľ00||ǔ01| |Ľ00||Ǔ02|
|ľT10||Ǔ00| |ľT10||ǔ01|+|υ̌11| |ľT10||Ǔ02|+|ǔT

12|
|Ľ20||Ǔ00| |Ľ20||ǔ01|+|ľ21||υ̌11| —

1
CA

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

7

Continue with

A,L and U as in Fig. 5.1, and

„
∆ATL ∆ATR

∆ABL ∆ABR

«
←
0
@

∆A00 δa01 ∆A02

δaT
10 δα11 δaT

12

∆A20 δa21 ∆A22

1
A 5b

endwhile n
m(A) = n ∧ ĽǓ = (A+ ∆A) ∧ |∆A| ≤ γn|L||U |

o
1b

Fig. 5.2. LU = A. Error worksheet for proving the backward stability of the Crout variant for
the LU factorization.
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5.6. Solution of a linear system. The following theorem summarizes how the
computed solution, x̌, is the exact solution of a perturbed linear system (A+∆A)x̌ = y:

Theorem 5.3. Let A ∈ Rn×n be a nonsingular matrix with n > 2. Let Ľ
and Ǔ be the LU factorization computed by the algorithm in Fig. 5.1. Let ž be the
solution to Ľz = y computed with the algorithm in Fig. 3.1(right). Let x̌ be the
solution to Ǔx = ž computed with an algorithm for solving an upper triangular system
similar to the algorithm in Fig. 3.1(right). Then x̌ satisfies (A + ∆A)x̌ = b with
|∆A| ≤ (3γn + γ2

n)|Ľ||U |.
Proof: From previous sections we have learned that

ĽǓ = A+ E1 with |E1| ≤ γn|Ľ||Ǔ | (Th. 5.2),
(Ľ+ E2)ž = b with |E2| ≤ γn|Ľ| (Th. 4.1),
(Ǔ + E3)x̌ = ž with |E3| ≤ γn|Ǔ | (Th. 4.1).

Therefore

b = (Ľ+ E2)(Ǔ + E3)x̌ = (ĽǓ + E2Ǔ + E3Ľ+ E2E3)x̌
= (A+ E1 + E2Ǔ + E3Ľ+ E2E3︸ ︷︷ ︸

∆A

)x̌ = (A+ ∆A)x̌, where

|∆A| = |E1 + E2Ǔ + E3Ľ+ E2E3| ≤ |E1|+ |E2||Ǔ |+ |E3||Ľ|+ |E2||E3|
≤ γn|Ľ||Ǔ |+ γn|Ľ||Ǔ |+ γn|Ľ||Ǔ |+ γ2

n|Ľ||Ǔ | = (3γn + γ2
n)|Ľ||Ǔ |.

5.7. Partial pivoting. The analysis of LU factorization without partial pivoting
is related to that of LU factorization with partial pivoting. Invariably, it is argued
that LU with partial pivoting is equivalent to the LU factorization without partial
pivoting on a pre-permuted matrix PA = LU , where P is a permutation matrix.
The permutation doesn’t involve any floating point operations and therefore does not
generate error. It is then argued that, as a result, the error that is accumulated is
equivalent with or without partial pivoting.

6. Analysis of a Blocked Algorithm for LU Factorization. When tar-
geting high-performance, dense matrix computations like the LU factorization are
formulated as blocked algorithms so that the bulk of computation is cast in terms
of highly efficient matrix-matrix multiplications [1, 6]. The numerical properties of
the resulting algorithms are rarely analyzed. Rather, an informal argument is given
that the computations occur in a similar order on similar data and that therefore the
numerical properties are similar. A traditional analysis of this algorithm, yielding a
less tight bound then the one we derive, can be found in [5, 10].

In this section we apply the methodology to an algorithm that is very close to the
one used in practice, the so-called right-looking variant. How the analysis extends to
the practical algorithm is briefly discussed at the end of the section.

6.1. A blocked algorithm for computing the LU factorization. A right-
looking algorithm for computing the LU factorization of a square matrix A is given
on the left side of Fig. 6.1. While in practice A is overwritten, for the analysis we
assume that new matrices L and U are computed. The computation performed by
this algorithm is such that the predicate

(
LTLUTL = ATL LTLUTR = ATR
LBLUTL = ABL AiBR = ABR − LBLUTR

)
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Error side Step

{ ∆A = 0 } 1a

Partition X →
„
XTL XTR

XBL XBR

«
with X ∈ {A,L,U}, ∆A→

 
∆ATL ∆ATR

∆ABL ∆ABR

!

where XTL and ∆ATL are empty

4

8
>>>>>><
>>>>>>:

m(ATL) = k ∧ 
ĽTLǓTL = ATL + ∆ATL ĽTLǓTR = ATR + ∆ATR

ĽBLǓTL = ABL + ∆ABL Ǎi
BR = ABR − ĽBLǓTR + ∆ABR

!
∧

˛̨
˛̨
˛

 
∆ATL ∆ATR

∆ABL ∆Ai
BR

!̨̨
˛̨
˛≤γ k

b
+b

 
|ATL|+ |ĽTL||ǓTL| |ATR|+ |ĽTL||ǓTR|
|ATL|+ |ĽBL||ǓTL| |ABR|+ |ĽBL||ǓTR|

!

9
>>>>>>=
>>>>>>;

2a

While m(ATL) ≤ m(A) do 3

Repartition

„
XTL XTR

XBL XBR

«
→
0
@
X00 X01 X02

X10 X11 X12

X20 X21 X22

1
A,

 
∆ATL ∆ATR

∆ABL ∆ABR

!
→

0
B@

∆A00 ∆A01 ∆A02

∆A10 ∆A11 ∆A12

∆A20 ∆A21 ∆A22

1
CA

where X ∈ {A,L,U}, and X11 and ∆A11 are b× b

5a

{ See Fig. 6.2 } 6

[L11, U11] := LU(A11)

U12 := L−1
11 A12

L21 := A21U
−1
11

A22 := A22 − L21U12

See Fig. 6.2 8

{ See Fig. 6.2 } 7

Continue with
„
XTL XTR

XBL XBR

«
←
0
@
X00 X01 X02

X10 X11 X12

X20 X21 X22

1
A,

with X ∈ {A,L,U}

 
∆ATL ∆ATR

∆ABL ∆ABR

!
←

0
B@

∆A00 ∆A01 ∆A02

∆A10 ∆A11 ∆A12

∆A20 ∆A21 ∆A22

1
CA 5b

endwhile n
m(A) = n ∧ ĽǓ = (A+ ∆A) ∧ |∆A| ≤ γn

b
+b(|A|+ |Ľ||Ǔ |)

o
1b

Fig. 6.1. LU = A. Error worksheet for proving the backward stability of the blocked LU
factorization computed via the right-looking variant.

is satisfied at the beginning and at the end of each iteration. Superscripts denote the
iteration number. For simplicity, in our analysis, we assume that n is a multiple of
the block size b.

6.2. Preparation. The computation in Fig. 6.1 (left) is cast in terms of an
unblocked LU factorization, LU(A11), two triangular solves with multiple right-hand
sides, L11U12 = A12 and L21U11 = A21, and one matrix-matrix multiplication, A22 −
L21U12. An error result for the unblocked LU factorization, if the Crout variant is
used, is given in Theorem 5.2. Here we present theorems related to triangular solve
with multiple right-hand sides and matrix-matrix multiplication.

Corollary 6.1. Error results for matrix-matrix multiplication. Let C ∈
Rm×n, A ∈ Rm×k, and B ∈ Rk×n. Assume that Z := C−AB is computed one column
at a time by the matrix-vector multiplication discussed in Theorem 5.1. Partition Z,C
and B by columns as Z→ (

z0 · · · zn−1

)
, B→ (

b0 · · · bn−1

)
, and C→ (

c0 · · · cn−1

)
,

so that Z =
(
c0 −Ab0 · · · cn−1 −Abn−1

)
= C −AB. Then

R1-F: AB + Ž = C + ∆Z, where |∆Z| ≤ γk|A||B|+ γ1|Ž|.
R2-F: AB + Ž = C + ∆C, where |∆C| ≤ γk+1|A||B|+ γ1|Č|.
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Ľ
1
0
Ǔ
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1
1 ˛̨|A

2
2 |

+
˛̨Ľ
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1
2 ˛̨ 1CA

9>>>>>>>>>=>>>>>>>>>;

7

...

F
ig

.
6
.2

.
L
U

=
A

.
D

eta
ils

fo
r

S
tep

s
6
–
8

in
th

e
p
roo

f
o
f
T

h
eo

rem
6
.3

.

18



The following result follows immediately from Theorem 4.1:
Corollary 6.2. Error results for triangular solve with multiple right-

hand sides. Let L ∈ Rm×m be nonsingular lower triangular matrix and X,B ∈
Rm×n. Assume that the solution X to LX = B is computed one column at a time
via the algorithm in Fig. 4.1(left). Then X̌ satisfies LX̌ = B + ∆B where |∆B| ≤
γn|L||X̌|.

6.3. Analysis. As for the unblocked algorithm discussed in the previous sec-
tion, the right-looking LU factorization algorithm, in the presence of round-off error,
computes factors Ľ and Ǔ . This section provides the proof to the following theorem.

Theorem 6.3. Given A ∈ Rn×n, assume that the blocked right-looking algorithm
in Fig. 6.1 completes. Then the computed factors Ľ and Ǔ are such that

ĽǓ = A+ ∆A, where |∆A| ≤ γn
b +b(|A|+ |Ľ||Ǔ |).

The worksheet containing the proof of Theorem 6.3 is shown in Figs. 6.1 (right)
and 6.2. In the remainder of the section we prove that the error bounds indicated in
the worksheet hold. Consider the error-invariant

m(ATL) = k ∧(
ĽTLǓTL = ATL + ∆ATL ĽTLǓTR = ATR + ∆ATR
ĽBLǓTL = ABL + ∆ABL ǍiBR = ABR − ĽBLǓTR + ∆AiBR

)
∧

∣∣∣∣∣

(
∆ATL ∆ATR
∆ABL ∆AiBR

)∣∣∣∣∣≤γ k
b +b

(
|ATL|+ |ĽTL||ǓTL| |ATR|+ |ĽTL||ǓTR|
|ATL|+ |ĽBL||ǓTL| |ABR|+ |ĽBL||ǓTR|

) (6.1)

which results from restricting the target error result to the state of the variables at
the top of each iteration. The base case of the proof requires this predicate to be
satisfied right after the initialization of Step 4. The initialization sets ATL to be
an empty matrix; therefore predicate (6.1) reduces to ǍBR = ABR + ∆ABR with
|∆ABR| ≤ γb|ABR|, which is true as no computation has been performed yet. Thus
ǍBR equals ABR, and ∆ABR = 0.

The predicate in Step 6 of the worksheet represents the inductive hypothesis. This
predicate follows immediately by substituting the submatrices from Steps 5a into the
error-invariant. Algebraic manipulation yields

m(A00) = k ∧ (6.2)

Ľ00Ǔ00 = A00+∆A00 Ľ00Ǔ01 = A01+∆A01 Ľ00Ǔ02 = A02+∆A02

Ľ10Ǔ00 = A10+∆A10 Ǎ
i
11 = A11−Ľ10Ǔ01+∆Ai11 Ǎ

i
12 = A12−Ľ10Ǔ02+∆Ai12

Ľ20Ǔ00 = A20+∆A02 Ǎ
i
21 = A21−Ľ20Ǔ01+∆Ai21 Ǎ

i
22 = A22−Ľ20Ǔ02+∆Ai22


 ∧

∣∣∣∣∣∣




∆A00 ∆A01 ∆A02

∆A10 ∆Ai
11 ∆Ai

12

∆A20 ∆Ai
21 ∆Ai

22




∣∣∣∣∣∣
≤γ k

b +b



|A00|+|Ľ00||Ǔ00| |A01|+|Ľ00||Ǔ01| |A02|+|Ľ00||Ǔ02|
|A10 |+|Ľ10||Ǔ00| |A11|+|Ľ10||Ǔ01| |A12|+|Ľ10||Ǔ02|
|A20 |+|Ľ20||Ǔ00| |A21|+|Ľ20||Ǔ01| |A22|+|Ľ20||Ǔ02|


.

Similarly, the predicate in Step 7 represents the relations that have to be satisfied
at the end of each iteration. The predicate is obtained by substituting the submatrices
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from Steps 5b into the error-invariant. Algebraic manipulation yields

m

(
A00 A01

A10 A11

)
= k + b ∧ (6.3)



? ? ?

? Ľ10Ǔ01+Ľ11Ǔ11 = A11+∆Ai+1
11 Ľ10Ǔ02+Ľ11Ǔ12 = A12+∆Ai+1

12

? Ľ20Ǔ01+Ľ21Ǔ11 = A21+∆Ai+1
21 Ai+1

22 = A22−Ľ20Ǔ02−Ľ21Ǔ12 + ∆Ai+1
22


 ∧

∣∣∣∣∣∣




? ? ?

? ∆Ai+1
11 ∆Ai+1

12

? ∆Ai+1
21 ∆Ai+1

22




∣∣∣∣∣∣
≤γ k

b +b+1




? ? ?

? |A11 |+|Ľ10||Ǔ01|+|Ľ11||Ǔ11| |A12|+|Ľ10||Ǔ02|+|Ľ11||Ǔ12|
? |A21 |+|Ľ20||Ǔ01|+|Ľ21||Ǔ11| |A22|+|Ľ20||Ǔ02|+|Ľ21||Ǔ12|


.

where the ? indicates that the expression is identical to that in the corresponding
result in (6.2) above.

The goal is to prove that the updates in Step 8-left, when executed in a state
that satisfies predicate (6.2), generate errors that satisfy the predicate (6.3). The
constraints in (6.3) that are not highlighted are already satisfied in Step 6, and since
the computation only affects submatrices L11, L21, U11, U12 and A22, they are also
satisfied in Step 7, as γ k

b +b ≤ γ k
b +b+1.

It remains to show that there exist ∆Ai+1
11 , ∆Ai+1

12 , ∆Ai+1
21 , and ∆Ai+1

22 that satisfy
the constraints in the grey-shaded boxes. We examine the error introduced by the
computational updates to establish how error is contributed to each of these variables:
Determining ∆Ai+1

11 : The update is [L11, U11] := LU(Ǎ11), with Ǎ11 ∈ Rb×b. Theo-
rem 5.2 states that there exists a matrix ∆A(LU)

11 such that

Ľ11Ǔ11 = Ǎ11 + ∆A(LU)
11 , with |∆A(LU)

11 | ≤ γb|Ľ11||Ǔ11|. (6.4)

From Step 6 (predicate (6.2)), we know that Ǎ11 = A11 − Ľ10Ǔ01 + ∆Ai11, with
∆Ai11 ≤ γ k

b +b(|A11|+ |Ľ10||Ǔ01|), and substituting Ǎ11 into (6.4), it results:

Ľ11Ǔ11 = A11 − Ľ10Ǔ01 + ∆Ai11 + ∆A(LU)
11 .

Therefore, rearranging and setting ∆Ai+1
11 = ∆Ai11+∆A(LU)

11 , we obtain Ľ10Ǔ01+Ľ11Ǔ11

= A11 +∆Ai+1
11 , which is the expression we were looking for, as shown in (6.3). Next,

we prove that |∆Ai+1
11 | ≤ γ k

b +b+1(|A11|+|Ľ10||Ǔ01|+|Ľ11||Ǔ11|):

|∆Ai+1
11 | =

∣∣∣∆Ai11 + ∆A(LU)
11

∣∣∣ ≤ |∆Ai11|+ γb|Ľ11||Ǔ11| Def.,Tr.In.,Thrm.5.2

≤ γ k
b +b(|A11|+ |Ľ10||Ǔ01|) + γb|Ľ11||Ǔ11| I.H.

≤ γ k
b +b+1(|A11|+ |Ľ10||Ǔ01|+ |Ľ11||Ǔ11|). ¤

Determining ∆Ai+1
12 and ∆Ai+1

21 : We first analyze the update U12 := Ľ−1
11 Ǎ12, with

Ľ11 ∈ Rb×b. The same analysis is directly applicable to L12 := A21U
−1
11 too, by

transposing the operands. Corollary 6.2 states that there exists an error matrix
∆A(TRSM)

12 such that

Ľ11Ǔ12 = Ǎ12 + ∆A(TRSM)
12 , with |∆A(TRSM)

12 | ≤ γb|Ľ11||Ǔ12|. (6.5)

From Step 6 (predicate (6.2)), Ǎ12 = A12 − Ľ10Ǔ02 + ∆Ai12, with |∆Ai12| ≤
γ k

b +b(|A12|+ |Ľ10||Ǔ02|). Substituting Ǎ12 into (6.5) we obtain Ľ11Ǔ12 =
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A12−Ľ10Ǔ02+∆Ai12+∆A(TRSM)
12 . Rearranging, and setting ∆Ai+1

12 = ∆Ai12+∆A(TRSM)
12 ,

yields Ľ10Ǔ02+Ľ11Ǔ12 = A12+∆Ai+1
12 , which is the expression we were looking for, as

shown in (6.3). Next, we prove that |∆Ai+1
12 | ≤ γ k

b +b+1(|A12|+ |Ľ10||Ǔ02|+ |Ľ11||Ǔ12|):

|∆Ai+1
12 | =

∣∣∣∆Ai12 + ∆A(TRSM)
12

∣∣∣ ≤ |∆Ai12|+ γb|Ľ11||Ǔ12| Def.,Tr.In.,Cor.6.2

≤ γ k
b +b(|A12|+ |Ľ10||Ǔ02|) + γb|Ľ11||Ǔ12| I.H.

≤ γ k
b +b+1(|A12|+ |Ľ10||Ǔ02|+ |Ľ11||Ǔ12|). ¤

Determining ∆Ai+1
22 : The updateAi+1

22 := Ǎi22−Ľ21Ǔ12, wherem(U12) = n(L21) = b.
Corollary 6.1 states that there exists an error matrix ∆A(GEMM)

22 such that

Ǎi+1
22 =Ǎi22−Ľ21Ǔ12+∆A(GEMM)

22 , with |∆A(GEMM)
22 |≤γb+1|Ľ21||Ǔ12|+γ1|Ǎi22|. (6.6)

Predicate (6.2) from Step 6 tells us that Ǎi22 =A22−Ľ20Ǔ02+∆Ai22, with |∆Ai22| ≤
γ k

b +b(|A22|+|Ľ20||Ǔ02|), and substituting Ǎi22 into (6.6), yields Ǎi+1
22 = A22−Ľ20Ǔ02+

∆Ai22 − Ľ21Ǔ12 + ∆A(GEMM)
22 . Rearranging, and setting ∆Ai+1

22 = ∆Ai22 + ∆A(GEMM)
22 ,

we obtain Ǎi+1
22 = A22 − Ľ20Ǔ02 − Ľ21Ǔ12 + ∆Ai+1

22 , which is the expression we were
seeking as shown in (6.3). Next, we prove that |∆Ai+1

22 | ≤ γ k
b +b+1(|A22|+ |Ľ20||Ǔ02|+

|Ľ21||Ǔ12|):

|∆Ai+1
22 | =

∣∣∣∆Ai22 + ∆A(GEMM)
22

∣∣∣ ≤ |∆Ai22|+
∣∣∣∆A(GEMM)

22

∣∣∣ Def.,Tr.In.

≤ |∆Ai22|+ γb+1|Ľ21||Ǔ12|+ γ1|Ǎi22| Cor. 6.1
≤ |∆Ai22|+ γb+1|Ľ21||Ǔ12|+ γ1(|A22|+ |Ľ20||Ǔ02|+ |∆Ai22|) I.H.,Tr.In.
= (1 + γ1)|∆Ai22|+ γb+1|Ľ21||Ǔ12|+ γ1(|A22|+ |Ľ20||Ǔ02|)
≤ (1 + γ1)γ k

b +b(|A22|+ |Ľ20||Ǔ02|)+
γb+1|Ľ21||Ǔ12|+ γ1(|A22|+ |Ľ20||Ǔ02|) I.H.

≤ (γ1 + γ k
b +b + γ1γ k

b +b)(|A22|+ |Ľ20||Ǔ02|) + γb+1|Ľ21||Ǔ12|
≤ γ k

b +b+1(|A22|+ |Ľ20||Ǔ02|) + γb+1|Ľ21||Ǔ12| Lem. 3.3
≤ γ k

b +b+1(|A22|+ |Ľ20||Ǔ02|+ |Ľ21||Ǔ12|). ¤

This concludes the proof of the inductive step of Theorem 6.3. The proof is also
summarized in Fig. 6.2.

6.4. A comment about practical implementations. In practice, the fac-
torization of A11 and subsequent updating of A21 is accomplished by computing an

LU factorization with partial pivoting of the panel of columns
„

A11

A21

«
, after which

the row exchanges are applied to the remainder of the matrix. As we argued for the
unblocked algorithm, pivoting does not introduce error and therefore does not change
the analysis. Once pivoting is taken out of the equation, the factorization of the panel
of columns can be thought of as a simultaneous factorization of A11 and subsequent
update of A21. Thus, the analyses of these separate operations are equivalent to
the analysis of the factorization of the panel and the error result established for the
blocked algorithm holds.

7. Conclusion. In this paper, we described a systematic approach to deriv-
ing numerical stability results for linear algebra algorithms. It extends the FLAME
methodology for deriving algorithms so that numerical stability results are established
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in a goal-oriented and modular fashion. In addition, it has yielded a new bound for
the backward stability of blocked LU factorization.

While the paper was written so that later results build on earlier ones, the method-
ology is best applied by starting from the target algorithm to be analyzed and working
backwards. For example, we could have started with the blocked LU factorization.
As part of the analysis, it would have become clear that stability results were needed
for unblocked LU factorization, triangular solve with multiple right-hand sides, and
matrix-matrix multiplication. In turn, each of these operations would have exposed
other suboperations and so forth. Eventually, the analysis would have reached the
fundamental operations to which the SCM and ACM can be directly applied. The
results would have then slowly built back up to the analysis of the blocked algorithm.

Just like it has been shown that systematic derivation of algorithms can be made
mechanical [2], we believe the proposed approach can also be made mechanical by a
system that understands the rules of linear algebra. Automation and the application
of the proposed techniques to more complex operations are the topic of future research.
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