
TACC Technical Report TR-10-01

Towards Mechanical Derivation of Krylov Solver
Libraries
(submitted to ICCS 2010)

Victor Eijkhout∗, Paolo Bientinesi†, and Robert van de Geijn‡

This technical report is a preprint of a paper intended for publication in a journal or proceed-
ings. Since changes may be made before publication, this preprint is made available with the
understanding that anyone wanting to cite or reproduce it ascertains that no published version
in journal or proceedings exists.

Permission to copy this report is granted for electronic viewing and single-copy printing. Per-
missible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no war-
ranty, express or implied, nor assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed.

∗ Texas Advanced Computing Center, The University of Texas at Austin
† RWTH-Aachen, Germany
‡ Department of Computer Science, The University of Texas at Austin

Abstract

In a series of papers, it has been shown that algorithms for dense linear algebra op-
erations can be systematically and even mechanically derived from the mathematical
specification of the operation. A framework named FLAME (Formal Linear Algebra
Methods Environment) has been developed to realize this aim. The goals of this paper
are two-fold: first, we show how the approach can be used to derive a nonsymmetric
CG algorithm, which provides strong evidence that the approach applies to Krylov
subspace methods in general. Secondly, and more importantly, we show that the rea-
soning can be made sufficiently systematic that mechanical derivation is within reach.
Thus this research shows a promise for providing necessary building blocks towards
automatic generation of library software for iterative methods for solving linear sys-
tems.

Eijkhout et al Mechanical Derivation

1 Introduction

We show how the FLAME methodology [6, 10] can be extended to derive the Con-
jugate Gradients (CG) algorithm [7]. We use this example to make the case that a
FLAME-based environment for deriving, and reasoning about, new iterative methods
and implementations is a distinct, and attractive, possibility.

The paper makes a number of contributions:

• In Section 2, the reader is reminded of how a block formalism for present-
ing Krylov subspace methods, first proposed by Householder [8], casts itera-
tive methods as a set of governing conditions involving matrices that capture
vector sequences. This makes iterative computations amenable to the FLAME
approach for deriving algorithms which previous was only applied to direct ma-
trix computations. Traditional expositions of the CG method, and other Krylov
methods, posit the basic form of relations between matrices and vectors, and
compute the scalar coefficients in them by ‘lengthy induction arguments’ [9].

• Section 2 also extends the FLAME notation for representing linear algebra al-
gorithms to iterative computations.

• Section 3 shows how the FLAME methodology can be applied to a representa-
tive computation yielding a nonsymmetric CG algorithm.

• Section 4 presents a systematic framework for determining how variables must
be updated as part of the computation. This framework is necessary because the
computational updates are more difficult to determine than for previous (dense)
computations.

Together these insights support the vision, discussed in the conclusion, of system-
atic and, ultimately, mechanical derivation of Krylov subspace methods libraries; the
framework guarantees their correctness, and our search strategies hold the possibility
for optimal performance through analytical reasoning.

2 Theory and Notation

We start by presenting, in this section, the basic form of iterative methods such as the
CG method in a block formalism [1, 8]. Rather than positing the basic form of the
coupled recurrences of residuals and search directions, we derive their existence as it
were ‘from first principles’. This will give a clear separation between the basic form of
the update equations, which hold for all polynomial iterative methods, and the specific
values of the coefficients which follow from orthogonality requirements.

TR-10-01 1

Eijkhout et al Mechanical Derivation

2.1 Block formalism

This section serves to familiarize the reader with the block formalism, and to establish
the basic equations, as well the question of their essential degrees of freedom. These
dofs will then be derived in subsequent sections.

We need the basic concept of a ‘Krylov sequence’, which, given a square matrix A and
initial vector k0, is defined as the matrix with n columns K〈A,k0〉≡

(
k0 Ak0 A2k0 · · · An−1k0

)
.

In other words, the jth column of K〈A,k0〉, k j, is defined by the recurrence

k j =
{

k0 if j = 0,
Ak j−1 otherwise,

which we can write as AK = KJ where the underline means that the last column is
omitted, and J is defined as the n× (n−1) matrix with entries

Ji j =
{

1 if i = j +1,
0 otherwise.

We now state (for full details, see [5]) the coupled recurrences form of polynomial
iterative methods. In block form they are{

APD = R(I− J)
P(I +U) = R

and in scalar form

{
ri+1 = ri−Apiδii,

pi+1 = ri+1−∑ j≤i p jυ ji.
(1)

where R are residuals, P search directions, D a diagonal matrix, and U strictly upper
triangular. The expert will recognize that this form holds for any polynomial iterative
method; various iterative methods (CG, MinRes, BiCGstab) all follow from imposing
certain conditions on R, or equivalently on the coefficients of D and U . For instance,
stationary iteration and steepest descent correspond to U ≡ 0; the CG method corre-
sponds to U being single upper diagonal (upper bidiagonal), with values deriving from
the orthogonality of R. In our subsequent discussion I is the identity, D is diagonal,
and U is strictly upper triangular.

In the remainder of this paper, we will take the block form of (1) as our starting point,
and show how FLAME can be used to derive the vector recurrences as well as the
coefficients in D and U .

2.2 FLAME Notation for Representing Krylov Subspace Methods

In this section, we use the CG iteration to motivate “index-free” notation that in Sec-
tion 3 will allow us to systematically derive the algorithm.

TR-10-01 2

Eijkhout et al Mechanical Derivation

Step Annotated Algorithm: Compute R,P,D,U as given in Eqn. (1)
1a {precondition holds}

4

R→
(

RL rM RR
)
,P→

(
PL pM PR

)
,

J→

 JT L 0 0
et

r 0 0
0 e0 JBR

 ,U →

 UT L uT M UT R

0 0 uT
MR

0 0 UBR

 ,d→

 dT

δM

dB


2 {loop-invariant holds}
3 while n(RR) > 0 do

2,3 { (loop-invariant holds) ∧ (n(RR) > 0) }

5a

(
RL rM RR

)
→
(

R0 r1 r2 R3
)
,
(

PL pM PR
)
→
(

P0 p1 p2 P3
)
, JT L 0 0

jtML 0 0
0 jMR JBR

→


J00 0 0 0
et

r 0 0 0
0 1 0 0
0 0 e0 J33

 ,

 UT L uT M UT R

0 0 uT
MR

0 0 UBR

→


U00 u01 u02 U03

0 0 υ12 uT
13

0 0 0 uT
23

0 0 0 U33

 ,

 dT

δM

dB

→


d0

δ1

δ2
d3


6 {before predicate holds}

8

S0 : d1 := rt
1r1/rt

1Ap1
S1 : r2 := r1−Ap1d1
S2 : u02 := (Pt

0AP0)−1Pt
0Ar2

S3 : υ12 := (pt
1Ap1)−1(pt

1Ar2− pt
1AP0u02)

S4 : p2 := r2−P0u02 + p1υ12
7 {after predicate holds}

5b

(
RL rM RR

)
←
(

R0 r1 r2 R3
)
,
(

PL pM PR
)
←
(

P0 p1 p2 P3
)
, JT L 0 0

jtML 0 0
0 jMR JBR

←


J00 0 0 0
et

r 0 0 0
0 1 0 0
0 0 e0 J33

 ,

 UT L uT M UT R

0 0 uT
MR

0 0 UBR

←


U00 u01 u02 U03
0 0 υ12 uT

13
0 0 0 uT

23
0 0 0 U33

 ,

 dT

δM

dB

←


d0
δ1

δ2

d3


2 {loop-invariant holds}

endwhile
2,3 { (loop-invariant holds)∧¬(n(RR) > 0) }
1b {postcondition holds}

Figure 1: Algorithm the nonsymmetric Conjugate Gradients method presented as part
of a “worksheet”.

TR-10-01 3

Eijkhout et al Mechanical Derivation

Let us consider the nonsymmetric CG iteration1 given in Figure 1. In that figure, for
the moment ignore the column marked by “Step” and the gray-shaded boxes. To under-
stand the notation used to present the algorithm, it suffices to note that

(
RL rM RR

)
represents matrix R partitioned into three key components: the “old” residual vectors
(RL), the most recently computed residual vector (rM), and the residual vectors yet to
be computed (RR). At the top of the loop, the next residual vector to be computed is
exposed as r2, and at the bottom of the loop that newly computed vector becomes rM.
Thus, thick and thin lines are used to indicate movement through the matrices. Vector
d represents the diagonal of diagonal matrix D. Vectors e0 and er correspond to the
zero vector with a 1 in the first and last entry, respectively.

Careful examination reveals that the so presented algorithm exposes the relationship
between the computations of the CG algorithm and the matrices in Eqn. (1).

3 Applying the FLAME Methodology to the CG Algorithm

We will now show how the FLAME framework can be used to derive iterative methods
such as the CG algorithm. The reader should imagine the “worksheet” in Fig. 1 as being
initially empty. We will fill it out in the order indicated in the column marked “Step”.

Step 1: Precondition and postcondition The precondition and postcondition indicate
the states of the variables before and after the algorithm is executed, respectively.

The defining equations for iterates, residuals and search directions, under orthogonality
of the residuals are given by

X(I− J) = PD, APD = R(I− J), P(I +U) = R, RtR = Ω (diagonal)

We will ignore the first, since it can be argued that X can be computed almost trivially
from the residual sequence R. From the above equations we can derive other relations,
in particular

PtAP = (I +U)−tRtR(I− J)D−1 = (I +U)−t
Ω(I− J)D−1, (2)

which implies that PtAP is upper triangular (and diagonal if A is symmetric). Now, the
precondition is {Re` = Ax0− b} where x0 is an initial guess for the solution, and the
postcondition is

{APD = R(I−J)∧P(I+U)= R∧RtR = Ω∧PtAP = lower triangular∧Re` = Ax0−b.}

This information is entered in the worksheet.

1. See [5] for a similar derivation of the (symmetric) Hestenes-Stiefel CG method.

TR-10-01 4

Eijkhout et al Mechanical Derivation

Determining the Partitioned Matrix Expression (PME) We are interested in express-
ing the postcondition in terms of partitioned matrices. This yields

(
APLDL ApMdM APRDR

)
=
(

RL rM RR

)
IT L− JT L 0 0

−et
r 1 0

0 e0 IBR− JBR

 ,

(
PL pM PR

)
IT L +UT L uT M uT R

0 1 uMR

0 0 IBR +UBR

=
(

RL rM RR

)
,


Rt

L

rt
M

Rt
R

(RL rM RR

)
=


? 0 0

0 ? 0

0 0 ?

 ,


Pt

LAPL Pt
LApM Pt

LAPR

pt
MAPL pt

MApM pt
MAPR

Pt
RAPL Pt

RApM Pt
RAPR

=


? 0 0

? ? 0

? ? ?

 ,

(3)

where ? indicates that the exact value is not of interest.

Step 2: Loop-invariant The loop-invariant is a predicate on the state of the variables
that is satisfied before and after each iteration of the loop. The Fundamental Theorem
of Invariance establishes that if the loop completes, then the loop-invariant and the
negation of the loop-guard hold true after the loop. This is all captured in Fig. 1.

One of the key concepts of the FLAME methodolofy is that of selecting a loop-
invariant a priori, and then constructing an algorithm around it. In terms of program
correctness this means that we set up a proof of correctness first, and then build an
algorithm that satisfies such a proof.

To derive a loop-invariant, it is observed that while the loop executes, not all results
in the Partitioned Matrix Expression (PME) have yet been achieved. Thus, the loop-
invariant consists of subresults that are part of the PME. For space considerations we
will not go into further detail here. The point is that there is a systematic way of choos-
ing loop-invariants form the PME, and that choice is often non-unique (which then
leads to different algoritms).

We choose the loop-invariant

APLDL = RL(IT L− JT L)− rMet
r ∧
(

(IT L +UT L)PL PLuT M + pM
)

=
(

RL rM
)
∧(

Rt
LRL Rt

LrM

rt
MRL rt

MrM

)
=
(

? 0
0 ?

)
∧
(

Pt
LAPL Pt

LApM

pt
MAPL pt

MApM

)
=
(

? 0
? ?

)
.

TR-10-01 5

Eijkhout et al Mechanical Derivation

Steps 3 and 4: The loop-guard and initialization The loop-guard is the condition
under which control remains in the loop. If the loop-invariant is maintained, then it will
true after the loop completes and the loop-guard will be false. Together these predicates
must imply that the post-condition has been computed. Thus, the loop-invariant and the
postcondition dictate the choice of the loop-guard. This loop-guard is given in Fig. 1.

Similarly, the loop-invariant must be true before the loop commences. Thus, an initial-
ization, given in Step 4 of Fig. 1, is dictated by the precondition and the loop-invariant.
(We note that the initial partitionings of the operands are merely indexing operations.)

Step 5: Traversing the operands The computation must make progress through the
operands. This dictates the updates of partitionings in Steps 5a and 5b.

Step 6: The ’before predicate’ The repartitioning of the operands in Step 5a is an
indexing step. Thus, at Step 6 (before the computation in Step 8) the contents of the
different submatrices are prescribed by the loop-invariant. These contents can be de-
rived by substituting equivalent submatrices into the loop-invariant and algebraic ma-
nipulation. This process yields what we will call the ’before predicate’:

Pbefore :


AP0D0 =

(
R0 r1

)(J00

jt10

)
,

(
P0 p1

)(I +U00 u01

0 1

)
=
(

R0 r1

)
,(

Rt
0

rt
1

)(
R0 r1

)
=

(
? 0

0 ?

)
,

(
Pt

0AP0 Pt
0Ap1

pt
1AP0 pt

1Ap1

)
=

(
? 0

? ?

)
.

(4)

Step 7: The ’after predicate’ Now, at the bottom of the loop the loop-invariant must
again be true. This means that the update in Step 8 must place the submatrices in a state
were the loop-invariant is again true after the redefinition of the partitioned operands
(Step 5b). The state that the submatrices must be in can be derived by substituting
equivalent submatrices (as defined by Step 5b) into the loop-invariant after which al-

TR-10-01 6

Eijkhout et al Mechanical Derivation

gebraic manipulation yields the desired ’after predicate’ in Step 7:

Pafter :



A
(

P0 p1

)(D0 0

0 δ1

)
=
(

R0 r1

)(J00 0

jt10 1

)
+ r2

(
0 −1

)
,

(
P0 p1 p2

)
I +U00 u01 u02

0 1 υ12

0 0 1

=
(

R0 r1 r2

)
,

 Rt
0

rt
1

rt
2

(R0 r1 r2

)
=


? 0 0

0 ? 0

0 0 ?

 ,

 Pt
0AP0 Pt

0Ap1 PT
0 Ap2

pt
1AP0 pt

1Ap1 pT
1 Ap2

pt
2AP0 pt

2Ap1 pT
2 Ap2

=


? 0 0

? ? 0

? ? ?

 .

(5)

Algebraic manipulation yields

Pafter = Pbefore ∧(δ1Ap1 = r1− r2)∧ (P0u02 +υ12 p1 + p2 = r2)
∧(Rt

0r2 = 0)∧ (rt
1r2 = 0))∧ (Pt

0Ap2 = 0)∧ (pT
1 Ap2 = 0).

Step 8: The update Finally, the ’before’ and ’after’ predicates dictate the updates of
the variables in Step 8 of Fig. 1.

Final algorithm The described process constructs the algorithm by systematically
deriving predicates that indicate the state that the variables must be in, which in turn
dictates the actual computational statements. Eliminating the predicates leaves the final
algorithm.

4 Deriving the update

There are two critical steps in the above derivation that are less than straightforward
for a more complex algorithm like the CG algorithm: choosing the loop-invariant, and
identifying a set of updates of the operands that transform the ’before’ predicate into

TR-10-01 7

Eijkhout et al Mechanical Derivation

the ’after’ predicate. In this section, we focus on how the update can be systematically
derived. This derivation is much more systematic than in previous papers of ours that
focus on dense matrix computations, for the reason that in those cases the update step
was relatively obvious.

4.1 Deriving assignment statements

To understand the approach one must first understand some fundamental results from
computer science related to the derivation of algorithms. Consider the triple {Q}S{R}
where Q and R are predicates indicating the state of variables and S is a command in,
or segment of, the algorithm. This is known as a Hoare triple and is itself a predicate
that evaluates to true if the command S, when initiated with variables in a state where
Q is true, completes in a state where R is true. In this triple Q is the precondition and
R is the postcondition. In our discussion in Section 3 and Fig. 1 we have seen many
examples of Hoare triples and how they can be used to reason about the correctness of
an algorithm. A Hoare triple can be used to assert a code segment correct. For example,
{χ = η}χ := χ+1{χ = η+1} takes on the value true.

The next question becomes “Under what circumstances is the Hoare triple {Q}x :=
exp{R} true, where exp is an expression. To answer to this question the operator
wp(S,R) is introduced: this returns the weakest precondition (least restrictive predi-
cate) that describes the state of variables such that if the statement S is executed, then
this command completes in a state where R is true. Now, {Q}S{R} if and only if Q
implies wp(S,R). If we wish to find a sequence of statements S0;S1; . . . ;Sk−1 such that
{Q}S0;S1; . . . ;Sk−1{R} then Q must imply wp(S0;S1; . . . ;Sk−1,R)= wp(S0,wp(S1, . . . ,wp(Sk−1,R) . . .)).
We can summarize this by noting that the following must be true:

{Q⇒wp(S0,Q1)}S0{Q1 = wp(S1,Q2)}S1{Q2 = wp(S2,Q3)} . . .{Qk−1 = wp(Sk−1,R)}Sk−1{R}

Finally, we recall that wp(”x := exp”,R) equals the predicate R with all instances of x
replaced by the expression exp. For example, wp(”x := x+1”,x = y+4) = {(x+1) =
y+4}= {x = y+3}.

TR-10-01 8

Eijkhout et al Mechanical Derivation

4.2 Application to the CG algorithm

The above theory can be used to derive the update in Fig. 1. The idea is that we wish
to determine expressions exp0, . . . ,exp4 such that2

{Pbefore}
{Q0 = wp(”δ1 := exp0”,Q1)}
S0 : δ1 = exp0
{Q1 = wp(”r2 := exp1”,Q2)}
S1 : r2 := exp1
{Q2 = wp(”u02 := exp2”,Q3)}
S2 : u02 := exp2
{Q3 = wp(”υ12 := exp3”,Q4)}
S3 : υ12 := exp3
{Q4 = wp(”p2 := exp4”,Pafter)}
S4 : p2 := exp4{

Pafter = Pbefore ∧(δ1Ap1 = r1− r2)∧ (P0u02 +υ12 p1 + p2 = r2)
∧(Rt

0r2 = 0)∧ (rt
1r2 = 0)∧ (rt

2r2 = ω2)∧ (Pt
0Ap2 = 0)∧ (pt

1Ap2 = 0)

}
Now,

Q4 = wp(”p2 := exp4”,Pafter)
= {Pbefore ∧(δ1Ap1 = r1− r2)∧ (P0u02 +υ12 p1 + exp4 = r2)

∧(Rt
0r2 = 0)∧ (rt

1r2 = 0)∧ (Pt
0Aexp4 = 0)∧ (pt

1Aexp4 = 0)}
from which we deduce that exp4 = r2−P0u02−υ12 p1 and

Q4 = wp(”p2 := r2−P0u02−υ12 p1”,Pafter)
= {Pbefore ∧(δ1Ap1 = r1− r2)∧T ∧ (Rt

0r2 = 0)∧ (rt
1r2 = 0))

∧(Pt
0A(r2−P0u02−υ12 p1) = 0)∧ (pt

1A(r2−P0u02−υ12 p1) = 0)}
= {Pbefore ∧(δ1Ap1 = r1− r2)∧ (Rt

0r2 = 0)∧ (rt
1r2 = 0))

∧(Pt
0Ar2−Pt

0AP0u02 = 0)∧ (pt
1Ar2− pt

1AP0u02−υ12 pt
1Ap1 = 0)}

Similarly, we can determine υ12 := exp3 = (pt
1Ar2− pt

1AP0u02)/pt
1Ap1 and

Q3 = wp(”υ12 := (pt
1Ar2− pt

1AP0u02)/pt
1Ap1”,Q4)

= {Pbefore ∧(δ1Ap1 = r1− r2)∧ (Rt
0r2 = 0)∧ (rt

1r2 = 0))∧ (Pt
0Ar2−Pt

0AP0u02 = 0)∧T}
Next we can determine u02 := exp2 = (Pt

0AP0)−1Pt
0Ar2 and

Q2 = wp(”u02 := (Pt
0AP0)−1Pt

0Ar2”,Q2)
= {Pbefore∧ (δ1Ap1 = r1− r2)∧ (Rt

0r2 = 0)∧ (rt
1r2 = 0))∧T}

2. In section 5 we will address the fact that we need not lay out explicitly the sequence in which quanti-
ties are to be computed.

TR-10-01 9

Eijkhout et al Mechanical Derivation

followed by r2 := exp1 = r1−δ1Ap1 and
Q1 = wp(”r2 := r1−δ1Ap1”,Q2)

= {Pbefore ∧T ∧ (Rt
0(r1−δ1Ap1) = 0)∧ (rt

1(r1−δ1Ap1) = 0)∧T}
= {Pbefore ∧T ∧ (rt

1r1−δ1rt
1Ap1 = 0)}

(where Rt
0r1 = 0 is part of the ‘before’ equations and Rt

0Ap1 = 0 can be derived from
them) and finally δ1 := exp0 = rt

1r1/rt
1Ap1 and

Q0 = wp(”δ1 := rt
1r1/rt

1Ap1”,Q1) = {Pbefore ∧T}
so that Pbefore implies Q0, as required.

The updates of the variables can then be entered as Step 8 in Figure 1.

5 Discussion and Conclusion

At first glance, the reader may conclude that the presented extension of the FLAME
framework merely provides a ‘mental discipline’ for deriving known Krylov subspace
based algorithms. While this may become a major contribution of the project, we be-
lieve it shows a lot more promise than just that.

The reader may have already noticed that there are a number of decisions that were
made that led to the derived algorithm. Let us itemize some of these decisions and
discuss how different choices will lead to a rich family of algorithms, both differing in
mathematical respects and in performance aspects.
• The governing equation. In Section 2, we started with the governing equation{

APD = R(I− J)
P(I +U) = R

The additional equation RtR = Ω (diagonal) represents one choice of constraints
that can be enforced on the residual vectors. As mentioned, different choices
lead to different known methods, such as Steepest Descent or GMRES.
We believe the presented methodology will be able to clarify how all these meth-
ods are related, but drawing up the constraints is work still to be undertaken. Our
framework will make it far easier for a human expert to derive new algorithms,
since only the basic notion (orthogonality of the residuals in the CG case) needs
to be specified on top of the basic equations.

• PME manipulation Even within the context of a single method such as CG,
manipulation of the PME can be interesting. We already saw this mechanism in
action when equation (2), which is not strictly part of the definition of the CG
method, was added. In [5], this mechanism was used to argue that our approach
can discover variant algorithms that combine inner products [3, 4].

TR-10-01 10

Eijkhout et al Mechanical Derivation

• Choices of invariants. The governing equation leads to a PME, which is as a re-
cursive definition of the operation. The methodology systematically transforms
this recursive definition into a loop-based algorithm. But for each PME there
are multiple possible loop-invariants. Some of these may lead to uncomputable
formulations; other may lead to distinct algorithm that may or may not have
desirable properties for a given situation (see [5] for an example).

• Choices for updates of individual variables. There are often different choices
for computing variables all of which lead to correct algorithms, although possi-
bly with different computational or numerical properties. For example, manip-
ulation of the governing equation in our example yields that rt

i pi = rt
iri, which

yields a different algorithmic version for the same loop-invariant.
A related source of variant algorithms derives from the observation that in Sec-
tion 4 we started by fixing the order in which the variables were to be computed.
In practice, there may be multiple orders that lead to further versions for a given
loop-invariant. One possibility is to examine the ‘before’ and ‘after’ predicates
for inherent dependencies that determine the order. Another would be to try all
possible orderings.

• How to choose. Given that we expect a large family of algorithms to result from
the ultimate approach, we need to develop a way of determining which algorithm
is most appropriate for a given situation. Measures of “goodness” could include
computational cost, numerical stability, rate of convergence, or ability to reduce
communication cost on, for example, a distributed memory parallel architecture.
There is a distinct possibility of reasoning about such factors in our framework,
which we are undertaking in separate research.

We conclude that our framework supports a vision for exploration of Krylov subspace
methods as a coherent family of algorithms, as well as the derivation of proved cor-
rect library software. The discussion above shows that the space to be explored is
large, which is where mechanization becomes an important part of the solution. How
to achieve mechanization of derivation for dense matrix computations was the subject
of the dissertation of one of the authors [2]. His system will need to be expanded to
achieve what we propose. In other words, there is a lot of interesting research ahead of
us.

Acknowledgments

This work was sponsored by NSF through awards CCF 0917096 and OCI-0850750,
and by grant GSC 111 of the Deutsche Forschungsgemeinschaft (German Research
Association). Any opinions, findings and conclusions or recommendations expressed

TR-10-01 11

Eijkhout et al Mechanical Derivation

in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation (NSF).

References

[1] Steven F. Ashby, Thomas A. Manteuffel, and Paul E. Saylor. A taxonomy for
conjugate gradient methods. SIAM J. Numer. Anal., 27:1542–1568, 1990.

[2] Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct
Linear Algebra Algorithms. PhD thesis, The University of Texas at Austin, De-
partment of Computer Sciences, 2006.

[3] A. Chronopoulos and C.W. Gear. s-step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics, 25:153–168, 1989.

[4] E.F. D’Azevedo, V.L. Eijkhout, and C.H. Romine. A matrix framework for con-
jugate gradient methods and some variants of cg with less synchronization over-
head. In Proceedings of the Sixth SIAM Conference on Parallel Procesing for
Scientific Computing, pages 644–646, Philadelphia, 1993. SIAM.

[5] Victor Eijkhout, Paolo Bientinesi, and Robert van de Geijn. Formal derivation
of Krylov methods. Technical Report TR-08-03, Texas Advanced Computing
Center, The University of Texas at Austin, 2008.

[6] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de
Geijn. Flame: Formal linear algebra methods environment. ACM Transactions
on Mathematical Software, 27(4):422–455, December 2001.

[7] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Nat. Bur. Stand. J. Res., 49:409–436, 1952.

[8] Alston S. Householder. The theory of matrices in numerical analysis. Blaisdell
Publishing Company, New York, 1964. republished by Dover Publications, New
York, 1975.

[9] John Gregg Lewis and Ronald G. Rehm. The numerical solution of a nonsepera-
ble elliptic partial differential equation by preconditioned conjugate gradients. J.
Res. Nat. Bureau of Standards, 85:367–390, 1980.

[10] Robert A. van de Geijn and Enrique S. Quintana-Ortı́. The Science of Program-
ming Matrix Computations. www.lulu.com, 2008.

TR-10-01 12

	Introduction
	Theory and Notation
	Block formalism
	FLAME Notation for Representing Krylov Subspace Methods

	Applying the FLAME Methodology to the CG Algorithm
	Deriving the update
	Deriving assignment statements
	Application to the CG algorithm

	Discussion and Conclusion

