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We study the high-performance implementation of the inversion of a Symmetric Positive Definite
(SPD) matrix on architectures ranging from sequential processors to Symmetric MultiProcessors
to distributed memory parallel computers. This inversion is traditionally accomplished in three
“sweeps”: a Cholesky factorization of the SPD matrix, the inversion of the resulting triangular
matrix, and finally the multiplication of the inverted triangular matrix by its own transpose. We
state different algorithms for each of these sweeps as well as algorithms that compute the result
in a single sweep. One algorithm outperforms the current ScaLAPACK implementation by 20-30
percent due to improved load-balance on a distributed memory architecture.
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1. INTRODUCTION

We discuss the need for the inclusion of families of algorithms and implementations
in dense linear algebra libraries in order to more effectively address situation specific
requirements. Special situations may be due to architectural features of a target
platform or to application requirements. While this observation is not new, the
general consensus in the community has been that traditional libraries are already
too complex to develop when only one or two algorithms are supported, making it
impractical to consider including all algorithms for all operations [Demmel and Don-
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garra 2005]. Obstacles include the effort required to identify candidate algorithms,
backward compatibility with traditional development techniques, establishing the
formal correctness1 through extensive testing, numerical stability analyses2, and
the time required for empirical tuning. Recent developments towards the system-
atic and mechanical development of libraries, as part of the Formal Linear Algebra
Methods Environment (FLAME) project, suggest that many of these obstacles can
be overcome if new software engineering approaches and tools are embraced. A
departure from traditional development methods has the potential for greatly re-
ducing the effort and expense of upgrading libraries as new architectures become
available and new situations arise.

The FLAME project encompasses a large number of theoretical and practical
tools. At the core is a new notation for expressing dense linear algebra algo-
rithms [Quintana et al. 2001; Bientinesi and van de Geijn 2006]. This notation
has a number of attractive features: (1) it avoids the intricate indexing into the
arrays that store the matrices that often obscures the algorithm; (2) it raises the
level of abstraction at which the algorithm is represented; (3) it allows different
algorithms for the same operation and similar algorithms for different operations
to be easily compared and contrasted; and (4) it allows the state of the matrix at
the beginning and end of each loop (the loop-invariant)3 to be concisely expressed.
The notation supports a step-by-step process for deriving formally correct families
of loop-based algorithms requiring as input only a mathematical specification of
the operation [Bientinesi et al. 005a]. As part of the project, Application Program
Interfaces (APIs) for representing algorithms in code have been defined for a num-
ber of programming languages [Bientinesi et al. 005b]. These APIs allow the code
to closely resemble the formally correct algorithms so that (1) the implementation
requires little effort and (2) the formal correctness of the algorithms implies the for-
mal correctness of the implementations. The methodology is sufficiently systematic
that it has been made mechanical using Mathematica [Bientinesi 2006]. The project
is also working towards making numerical stability analysis [Bientinesi 2006] and
performance analysis similarly systematic and mechanical [Gunnels 2001].

The breadth of the methodology has been shown to include all of the Basic
Linear Algebra Subprograms (BLAS) [Dongarra et al. 1988; Dongarra et al. 1990],
many of the higher level dense linear algebra operations supported by the Linear
Algebra Package (LAPACK) [Anderson et al. 1999] and all the operations in the
RECSY library [Jonsson and Kågström 2002a; 2002b]. The primary contribution
of this paper is to highlight that multiple algorithms for a single operation must
be supported by a complete library. This way the user, or, better yet, an expert
system can select the best performing or the most appropriate algorithm for a given
situation.

This paper uses the inversion of a Symmetric Positive Definite (SPD) matrix

1Formal correctness in computer science refers to correctness in the absence of round-off errors.
2In the presence of finite precision arithmetic a numerically stable algorithm will yield an answer
that equals the exact answer to a nearby problem.
3A formal definition of “loop-invariant” can be found in the book A logical Approach to Dis-
crete Math [Gries and Schneider 1992]. We caution that this term is often used by the compiler
community with a different (almost opposite) meaning.
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Fig. 1. Comparison of the performance of the ScaLAPACK routine for inverting a SPD matrix
and our best one-sweep algorithm implemented with PLAPACK, as a function of the number of
processing nodes, p. The problem size is chosen to equal 5000

√
p so that the memory use per

processing node is constant. Total performance and performance per node are reported in the left
and right graph, respectively. Details on the cluster on which the experiment was performed are
given in Section 5.

operation as a case study. Such an operation is used to compute the covariance
matrix. While the algorithms presented here can be applied to a number of prob-
lems, their development was motivated by specific applications within the Earth,
aerospace and medical sciences. For example, the determination of the Earth’s
gravity field from satellite and terrestrial data is a computationally intensive pro-
cess that involves the dense linear least squares solution of hundreds of thousands of
model parameters from millions of observations [Gunter 2004; Tapley et al. 2004;
Sanso and Rummel 1989]. The statistics of these solutions are often desired to
aid in determining the accuracy and behavior of the resulting models, so the co-
variance matrix is typically computed. Another application involves the analysis
of nuclear imaging in medicine, where the investigation of noise propagation in
Positron Emission Tomography (PET), as well as Single Photon Emission Com-
puted Tomography (SPECT), can involve the inversion of large dense covariance
matrices [Gullberg et al. 2003; Huesman et al. 1999].

The inverse of a SPD matrix A is typically obtained by first computing the up-
per triangular Cholesky factor R of A, A = RT R, after which A−1 = (RT R)−1 =
R−1R−T can be computed by first inverting the matrix R (U = R−1) and then
multiplying the result by its transpose (A−1 = UUT ). We will show that there are
multiple loop-based algorithms for each of these three operations, all of which can
be orchestrated so that the result overwrites the input without requiring temporary
space. Also presented will be two algorithms that overwrite A by its inverse without
the explicit computation of these intermediate results, requiring only a single sweep
through the matrix, as was already briefly mentioned in [Quintana et al. 2001]. The
performance benefit of the single-sweep algorithm for a distributed memory archi-
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tecture is illustrated in Fig. 1 in which the best algorithm for inverting a SPD
matrix proposed in this paper and implemented with PLAPACK [van de Geijn
1997] is compared with the current three-sweep algorithm supported by ScaLA-
PACK [Choi et al. 1992]. A secondary contribution of this paper lies with the
thorough treatment of loop-based algorithms, implementations, and performance
for these operations. Many references to classic inversion methods can be found in
[Householder 1964] and [Higham 2002]. An in-place procedure for inverting positive
definite matrices by the Gauss-Jordan method is given by Bauer and Reinsch [Bauer
and Reinsch 1970]. Recent advances in data formats are applied to matrix inversion
in [Andersen et al. 2002] and [Georgieva et al. 2000].

The organization of the paper is as follows: Section 2 introduces multiple algo-
rithms for each of the three sweeps: the computation of the Cholesky factorization,
the inversion of the resulting triangular matrix, and the multiplication of a triangu-
lar matrix by its transpose. Section 3 discusses one-sweep algorithms for computing
the inversion of a SPD matrix. Different scenarios when different algorithms should
be used are discussed in Section 4 followed by performance results in Section 5.
Conclusions are given in Section 6.

2. ALGORITHMS FOR THE INDIVIDUAL SWEEPS

In this section we present algorithms for the three separate operations that, when
executed in order, will compute the inverse of a SPD matrix. Each algorithm is
annotated with the names, in parenthesis, of the basic operations being performed,
specifying the shape of the operands. A detailed list of basic operations is pro-
vided in Fig. 2. In Section 4 we discuss how performance depends not only on
the operation performed, but also on the shape of the operands involved in the
computation.

2.1 Cholesky Factorization: A := Chol(A)

Given a SPD matrix A, its Cholesky factor is defined as the unique upper triangular
matrix R such that R has positive diagonal elements and A = RT R (the Cholesky
factorization of A). We will denote the function that computes the Cholesky factor
of A by Chol(A). We assume that only the upper triangular part of A is stored
and A := Chol(A) overwrites this upper triangular part with the Cholesky factor
R. A recursive definition of A := Chol(A) is

(

ATL ATR

⋆ ABR

)

:=

(

RTL RTR

⋆ RBR

)

, where















RTL = Chol
(

ÂTL

)

RTR = R−T

TL
ÂTR

RBR = Chol
(

ÂBR − RT

TR
RTR

)

,

where the base case for a 1× 1 matrix A = α is Chol(A) =
√

α. In this definition,
Â represents the original contents of A,4 the quadrants ATL, RTL, and ÂTL are all
square and of equal dimensions, and ⋆ indicates the symmetric part of the matrix
that is not stored. It is this recursive definition, the Partitioned Matrix Expression

4Throughout this paper, Â, R̂, and Û will denote the original contents of the matrices A, R, and
U , respectively.
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Name Operation Shape Used in
Chol R−1 UUT A−1

Dot Dot product
+=

1,2 2,3 1

Scal Scaling of vector
=

2,3 1,2,3 1,2 1,2

Gemv General matrix-vector multiply
+=

2 2

Symv Symmetric matrix-vector multiply
+=@@⋆ 1

Ger General rank-1 update
+=

3 2

Syr Symmetric rank-1 update @@⋆
+=

3 1 1,2

Trmv Triangular matrix-vector multiply
= @@0 1 3

Trsv Triangular solve
= @@0

−1

1 2

Gemm

Gepp Panel-panel (rank-k) update
+=

3 2

Gemp Matrix-panel multiply
+=

2

Gepm Panel-matrix multiply
+=

Gebp Block-panel multiply +=

Gepb Panel-block multiply
+=

Gepdot Panel dot product
+=

1

Symm

Symp Matrix-panel multiply
+=@@⋆ 1

Sypm Panel-matrix multiply
+= @@⋆

Not shown: Sybp and Sypb, similar to Gebp and Gepb.

Syrk

Sypp Panel-panel update @@⋆
+=

3 1 1,2

Not shown: Sypdot, similar to Gepdot. 2,3

Trmm

Trmp Matrix-panel multiply
= @

@0 1

Trpm Panel-matrix multiply
= @@0 3

Not shown: Trbp and Trpb, similar to Gebp and Gepb. 1,2 2

Trsm

Trsmp Solve with matrix and panel
= @

@0
−1

1

Trspm Solve with panel and matrix
= @

@0
−1

2

Not shown: Trsbp and Trspb, similar to Gebp and Gepb. 2,3 1,2,3 1,2

Fig. 2. Basic operations used to implement the different algorithms.
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Variant State maintained (loop-invariant) where

1

 

ATL ATR

⋆ ABR

!

=

 

RTL ÂTR

⋆ ÂBR

!

2

 

ATL ATR

⋆ ABR

!

=

 

RTL RTR

⋆ ÂBR

!

RTL = Chol(ÂTL)

RTR = R−T

TL
ÂTR

3

 

ATL ATR

⋆ ABR

!

=

 

RTL RTR

⋆ ÂBR −RT

TR
RTR

!

Fig. 3. Loop-invariants (states of matrix A maintained at the beginning and the end of each
iteration) corresponding to the algorithms given in Fig. 4 below.

Algorithm: A := Chol unb(A)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 a01 A02

⋆ α11 aT

12

⋆ ⋆ A22

1

A

where α11 is 1× 1

Variant 1:

a01 := A−T

00 a01 (Trsv)

α11 := α11 − aT

01a01 (Dot)

α11 :=
√

α11

Variant 2:

α11 := α11 − aT

01a01 (Dot)

α11 :=
√

α11

aT

12 := aT

12 − aT

01A02 (Gemv)

aT

12 := aT

12/α11 (Scal)

Variant 3:

α11 :=
√

α11

aT

12 := aT

12/α11 (Scal)

A22 := A22 − a12aT

12 (Syr)

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 a01 A02

⋆ α11 aT

12

⋆ ⋆ A22

1

A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

Variant 1:

A01 := A−T

00 A01 (Trsmp)

A11 := A11 −AT

01A01 (Sypdot)

A11 := Chol(A11)

Variant 2:

A11 := A11 −AT

01A01 (Sypdot)

A11 := Chol(A11)

A12 := A12 −AT

01A02 (Gepm)

A12 := A−T

11 A12 (Trsbp)

Variant 3:

A11 := Chol(A11)

A12 := A−T

11 A12 (Trsbp)

A22 := A22 −AT

12A12 (Sypp)

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Fig. 4. Unblocked and blocked algorithms for computing the Cholesky factorization. We indicate
within parenthesis the name of the operation being performed. A complete list of basic operations,
with emphasis on the shape of the operands is given in Fig. 2.
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(PME) in FLAME terminology, that is the input to the FLAME methodology for
generating loop-based algorithms.

Three pairs of algorithmic variants for computing the Cholesky factorization are
presented in Fig. 4. The function m(X) returns the number or rows of matrix
X . For details on the notation used, see [Bientinesi et al. 005a; Bientinesi et al.
005b; Bientinesi and van de Geijn 2006]. The algorithms on the left are unblocked

algorithms, meaning that each iteration moves the computation along by one row
and column. Casting the algorithm in terms of matrix-matrix operations (level-3
BLAS [Dongarra et al. 1990]) allows high performance to be attained [Dongarra
et al. 1991]. This is achieved by the blocked algorithms on the right, which move
through the matrix by blocks of b rows and columns.

In Fig. 3 we present the contents (state) of the matrix before and after each
iteration of the loop. In computer science, the predicate that defines this state is
known as the loop-invariant. This state should be a partial result toward computing
the PME since until the loop terminates not all of the result is yet computed. Once
a loop-invariant is determined, the algorithm is prescribed: the update in the body
of the loop must be such that this state is maintained from one iteration to the
next. See [Bientinesi et al. 2006] for details on the FLAME methodology as applied
to this operation.

The experienced reader will recognize Variant 1 as the “bordered” algorithm,
Variant 2 as the “left-looking” algorithm, and Variant 3 as the “right-looking”
algorithm.5 All algorithms are known to be numerically stable.

2.2 Inversion of an Upper Triangular Matrix: R := R−1

In this section we discuss the “in-place” inversion of a triangular matrix, overwriting
the original matrix with the result. By in-place it is meant that no work space is
required. The PME for this operation is

(

RTL RTR

⋆ RBR

)

:=

(

R̂−1
TL

−R̂−1
TL

R̂TRR̂−1
BR

⋆ R̂−1
BR

)

.

Derivations of the algorithms can be found in [Bientinesi et al. 2006].
Three blocked algorithms are given in Fig. 6(left). They, respectively, maintain

the loop-invariants in Fig. 5(left). (Note again how the loop-invariants relate to the
PME.) For each blocked algorithm there is a corresponding unblocked algorithm,
which is not presented. Also, three more pairs of unblocked and blocked algorithms
exist that sweep through the matrix from the bottom-right to the top-left. Finally,
two more blocked and unblocked pairs of algorithms that are correct in the absense
of round-off error but numerical unstable can be derived. We will only consider the
three numerically stable algorithms in Fig. 6(left) [Bientinesi et al. 2006; Higham
2002].

5This terminology comes from the case where L = RT is computed instead.
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Variant State maintained
R := R−1 U := UUT

1

 

R̂−1
TL

R̂TR

0 R̂BR

!  

ÛTLÛT

TL
ÛTR

0 ÛBR

!

2

 

R̂−1
TL

−R̂−1
TL

R̂TRR̂−1
BR

0 R̂BR

!  

ÛTLÛT

TL
+ ÛTRÛT

TR
ÛTR

0 ÛBR

!

3

 

R̂−1
TL

−R̂−1
TL

R̂TR

0 R̂BR

!  

ÛTLÛT

TL
+ ÛTRÛT

TR
ÛTRÛT

BR

0 ÛBR

!

Fig. 5. States maintained in matrix R and U , respectively, by the algorithms given in Fig. 6 below.

Algorithm: R := R−1

Partition R→
 

RTL RTR

0 RBR

!

where RTL is 0× 0
while m(RTL) 6= m(R) do

Determine block size b
Repartition
 

RTL RTR

0 RBR

!

→

0

@

R00 R01 R02

0 R11 R12

0 0 R22

1

A

where R11 is b× b

Variant 1

R01 := −R00R01 (Trmp)

R01 := R01R−1
11 (Trspb)

R11 := R−1
11

Variant 2

R12 := −R12R−1
22 (Trspm)

R12 := R−1
11 R12 (Trsbp)

R11 := R−1
11

Variant 3

R12 := −R−1
11 R12 (Trsbp)

R02 := R02 + R01R12 (Gepp)

R01 := R01R−1
11 (Trspb)

R11 := R−1
11

Continue with
 

RTL RTR

0 RBR

!

←

0

@

R00 R01 R02

0 R11 R12

0 0 R22

1

A

endwhile

Algorithm: U := UUT

Partition U →
 

UTL UTR

⋆ UBR

!

where UTL is 0× 0
while m(UTL) 6= m(U) do

Determine block size b
Repartition
 

UTL UTR

⋆ UBR

!

→

0

@

U00 U01 U02

⋆ U11 U12

⋆ ⋆ U22

1

A

where U11 is b× b

Variant 1:

U00 := U00 + U01UT

01 (Sypp)

U01 := U01UT

11 (Trpb)

U11 := U11UT

11

Variant 2:

U01 := U01UT

11 (Trpb)

U01 := U01 + U02UT

12 (Gemp)

U11 := U11UT

11

U11 := U11 + U12UT

12 (Sypdot)

Variant 3:

U11 := U11UT

11

U11 := U11 + U12UT

12 (Sypdot)

U12 := U12UT

22 (Trpm)

Continue with
 

UTL UTR

⋆ UBR

!

←

0

@

U00 U01 U02

⋆ U11 U12

⋆ ⋆ U22

1

A

endwhile

Fig. 6. Blocked algorithms for inverting a triangular matrix and for multiplying a triangular
matrix by its transpose.
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2.3 Triangular matrix multiplication by its transpose: C = UUT

The PME for this operation is

(

UTL UTR

⋆ UBR

)

:=

(

ÛTLÛT

TL
+ ÛTRÛT

TR
ÛTRÛT

BR

⋆ ÛBRÛT

BR

)

.

Three loop-invariants are given in Fig. 5(right) that correspond to the algorithms in
Fig. 6(right). As for the computation of R−1 there are three more algorithms that
sweep in the opposite direction. We do not present the corresponding unblocked
algorithms.

All algorithms are known to be numerically stable, since they are special cases
of matrix-matrix multiplication.

2.4 Three-sweep algorithms

Application of the three operations in the order in which they were presented yields
the inversion of a SPD matrix: UUT = R−1R−T = (RT R)−1 = A−1. We refer to
any algorithm that executes three algorithms, one for each operation, a three-sweep
algorithm. The current implementations of LAPACK and ScaLAPACK use a three-
sweep algorithm, consisting of Variant 2 for the Cholesky factorization, Variant 1
for R := R−1, and Variant 2 for U := UUT .

3. ONE-SWEEP ALGORITHMS

We now present two algorithms that compute the inverse of a SPD matrix by
sweeping through the matrix once rather than three times. We show how one of
these algorithms can also be obtained by merging carefully chosen algorithms from
Sections 2.1–2.3 into a one-sweep algorithm. The numerical stability of the three-
sweep algorithm is known [Higham 2002; Bientinesi et al. 2006] and therefore the
merged one-sweep algorithm inherits the same stability properties6.

The PME for computing A := A−1 can be stated as
(

ATL ATR

⋆ ABR

)

:=

(

Â−1
TL

+ Â−1
TL

ÂTRBBRÂT

TR
Â−1

TL
−Â−1

TL
ÂTRBBR

⋆ BBR

)

,

where we introduce BBR =
(

ÂBR − ÂT

TR
Â−1

TL
ÂTR

)

−1

, the inverse of the Schur

complement. From this PME two loop-invariants can be identified, given in Fig. 7,
and the application of the FLAME derivation techniques with these loop-invariants
yields the algorithms in Fig. 8.

It is possible to identify more loop-invariants other than the two shown in Fig. 7,
but the corresponding algorithms perform redundant computations and/or are nu-
merically instable. More loop-invariants yet can be devised by considering the
alternative PME

(

ATL ATR

ABL ABR

)

=

(

BTL −BTLÂTLÂ−1
BR

⋆ Â−1
BR

+ Â−1
BR

ÂT

TR
B

TL
ÂTRÂ−1

BR

)

6The order in which the merged one-sweep algorithm updates each entry is the same as the
three-sweep algorithm.
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Variant 1: Variant 2:
 

Â−1
TL

ÂTR

⋆ ÂBR

!  

Â−1
TL

−Â−1
TL

ÂTR

⋆ Â
BR
− ÂT

TR
Â−1

TL
ÂTR

!

Fig. 7. States maintained in matrix A corresponding to the algorithms given in Fig. 8.

Algorithm: A := A−1 (Variant 1)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

Aux := −A00A01 (Symp)

A11 := A11 + AT

01Aux (Gepdot)

A11 := Chol(A11)

Aux := Aux A−1
11 (Trspb)

A01 := Aux A−T

11 (Trspb)

A00 := A00 + Aux AuxT (Sypp)

A11 := A−1
11

A11 := A11AT

11

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Algorithm: A := A−1 (Variant 2)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trspb)

A00 := A00 + A01AT

01 (Sypp)

A12 := A−T

11 A12 (Trsbp)

A02 := A02 − A01A12 (Gepp)

A22 := A22 − AT

12A12 (Sypp)

A01 := A01A−T

11 (Trspb)

A12 := −A−1
11 A12 (Trsbp)

A11 := A−1
11

A11 := A11AT

11

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Fig. 8. One-sweep algorithms for inverting a SPD matrix.

where BTL =
(

ÂTL − ÂTRÂ−1
BR

ÂT

TR

)

−1

. The corresponding algorithms compute

the solution by sweeping the matrix from the bottom right corner as opposed to
the two algorithms that we present that sweep the matrix from the top left corner.

A one-sweep algorithm can also be obtained by merging carefully chosen algo-
rithmic variants for each of the three sweeps discussed in Sections 2.1–2.3. The
result, in Fig. 9, is identical to Fig. 8 (right), which was obtained by applying the
FLAME approach. The conditions under which algorithms can be merged is a topic
of current research and goes beyond the scope of this paper.

The real benefit of the one-sweep algorithm in Fig. 9 (left) comes from the fol-
lowing observation: The order of the updates in that variant can be changed as
in Fig. 9 (right), so that the most time consuming computations (A22 − AT

12A12,
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Algorithm: A := A−1 (Variant 2)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

A11 := Chol(A11)

A12 := A−T

11 A12

A22 := A22 − AT

12A12

9

>

=

>

;

Chol

Var. 3

A12 := −A−1
11 A12

A02 := A02 + A01A12

A01 := A01A−1
11

A11 := A−1
11

9

>

>

>

=

>

>

>

;

R := R−1

Var. 3

A00 := A00 + A01AT

01

A01 := A01AT

11

A11 := A11AT

11

9

>

=

>

;

U := UUT

Var. 1

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Algorithm: A := A−1 (Variant 2, reordered)

Partition A→
 

ATL ATR

⋆ ABR

!

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
 

ATL ATR

⋆ ABR

!

→

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trspb)

A12 := A−T

11 A12 (Trsbp)

A00 := A00 + A01AT

01 (Sypp)

A02 := A02 − A01A12 (Gepp)

A22 := A22 − AT

12A12 (Sypp)

A01 := A01A−T

11 (Trspb)

A12 := −A−1
11 A12 (Trsbp)

A11 := A−1
11 (Triang. inv.)

A11 := A11AT

11

Continue with
 

ATL ATR

⋆ ABR

!

←

0

@

A00 A01 A02

⋆ A11 A12

⋆ ⋆ A22

1

A

endwhile

Fig. 9. One-sweep algorithm for inverting a SPD matrix as a merging of three sweeps. As a side
effect of the reordering of the updates, the sign of the operands in the right column might be the
opposite with respect to the corresponding update in the left column.

A00 +A01A
T
01, and A02 +A01A12) can be scheduled to be computed simultaneously:

A00 + A01A
T
01 A02 + A01A12

⋆

⋆ ⋆ A22 − AT
12A12

.

On a distributed memory architecture, where the matrix is physically distributed
among memories, there is the opportunity to: 1) consolidate the communication
among processors by first performing the collective communications for the three
updates followed by the actual computations, and 2) improve load-balance since
during every iteration of the merged algorithm, on each element of the quadrants
A00, A02 and A22 the same amount of computation is performed.
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4. DIFFERENT ALGORITHMS FOR DIFFERENT SITUATIONS

There are a number of reasons why different algorithms are more appropriate under
different circumstances. In this section we highlight a few.

4.1 Performance

The most prominent reason for picking one algorithm over another is related to
performance. Here we mention some high-level issues. Some experimental results
related to this are presented in Section 5. Please refer to Fig. 2 for the definition
of the BLAS and BLAS-like operations Gemv, Syr, Gepp, Sypp, etc.

Unblocked algorithms are typically used when the problem size is small and
the data fits in the L1 or L2 cache of the processor (for example, for the smaller
subproblems that occur as part of the blocked algorithms). Here it is the loading
and storing of data that critically impacts performance. The symmetric rank-1
update (Syr) requires the matrix to be read and written while the matrix-vector
multiply (Gemv) requires the matrix to only be read. This means that algorithms
that cast most computation in terms of Gemv incur half the memory operations
relative to those that use Syr.

Blocked algorithms cast most computation in terms of one of the matrix-matrix
multiplies (Gepp, Gemp, Gepm, Sypp, etc.) [Dongarra et al. 1990; Kågström et al.
1998; Anderson et al. 1999]. There are architectural reasons why the rank-k updates
(Gepp and Sypp) on current sequential architectures inherently attain somewhat
better performance than the other cases [Goto and van de Geijn 2002; Gunnels
et al. 001a]. As a result, it is typically best to pick the algorithmic variant that
casts most computation in terms of those cases of matrix-matrix multiplication.
(Note that this means a different algorithmic variant is preferred than was for the
corresponding unblocked algorithm.)

What property of an algorithmic variant yields high performance on an SMP
architecture is a topic of current study. Not enough experience and theory has
been developed to give a definitive answer. On distributed memory architectures
it appears that casting computation in terms of rank-k updates is again a good
choice.

For out-of-core computation (where the problem resides on disk) the issues are
again much like they were for the unblocked algorithms: The I/O is much less
for algorithms that are rich in the Gemp and/or Gepm cases of matrix-matrix
multiplication since the largest matrix involved in these operations is only read.

We have thus reasoned how performance depends not just on what operation is
performed, but even on the shape of the operands that are involved in the operation.
A taxonomy of operations that exposes the shape of the operands is given in Fig. 2.
The algorithms that were presented earlier in this paper were annotated to expose
the operations being performed and the legends of the graphs in Section 5 indicate
the operation in which most computation is cast, using this taxonomy.

4.2 Algorithmic fault-tolerance

There is a real concern that some future architectures will require algorithmic fault-
tolerance to be a part of codes that execute on them. There are many reasons
quoted, including the need for low power consumption, feature size, and the need
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to use off-the-shelf processors in space where they are subjected to cosmic radia-
tion [Gunnels et al. 001b]. Check-pointing for easy restart partially into the compu-
tation is most easily added to an algorithm that maintains a loop-invariant where
each quadrant is either completely updated or not updated at all. For such al-
gorithms it is easy to keep track of how far into the matrix the computation has
progressed.

4.3 Related operations

An operation closely related to the computation of the Cholesky factorization is
determining whether a symmetric matrix is numerically SPD. The cheapest way
for this is to execute the Cholesky factorization until a square root of a negative
number occurs. Variant 1 will execute the fewest operations if the matrix is not
SPD and is therefore a good choice if a matrix is suspected not to be SPD.

4.4 Impact on related computer science research and development

Dense linear algebra libraries are a staple domain for research and development
in many areas of computer science. For example, frequently-used linear algebra
routines are often employed to assess future architectures (through simulators) and
new compiler techniques. As a result, it is important that libraries used for such as-
sessments include all algorithms so that a poor choice of algorithm can be ruled out
as a source of an undesirable artifact that is observed in the proposed architecture
or compiler.

5. PERFORMANCE EXPERIMENTS

To evaluate the performance of the algorithms derived in the previous sections, both
serial and parallel implementations were tested on a variety of problem sizes and on
different architectures. Although the best algorithms for each operation attain very
good performance, this study is primarily about the qualitative differences between
the performance of different algorithms on different architectures.

5.1 Implementations

Implementing all the algorithms discussed in this paper on sequential, SMP, and
distributed memory architectures would represent a considerable coding effort if
traditional library development techniques were used. The APIs developed as part
of the FLAME project have the benefit that the code closely resembles the al-
gorithms as they are presented in this paper. Most importantly, they hide the
indexing that makes coding in a traditional style error-prone and time-consuming.

The FLAME/C (C) and PLAPACK (C interfaced with MPI) APIs [Bientinesi
et al. 005b; van de Geijn 1997; Chtchelkanova et al. 1997; Gropp et al. 1994;
Snir et al. 1996] were used for all the implementations, making the coding effort
manageable.

5.2 Platforms

The two architectures chosen for this study were picked to highlight performance
variations when using substantially different architectures and/or programming
models.
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Shared Memory. IBM Power 4 SMP System. This architecture consists of an
SMP node containing sixteen 1.3 GHz Power4 processors and 32 GBytes of shared
memory. The processors operate at four floating point operations per cycle for
a peak theoretical performance of 5.2 GFLOPS/proc (1 GFLOP = 1 billion of
floating point operations per second), with a sequential dgemm (double precision
matrix-matrix multiply) benchmarked by the authors at 3.7 GFLOPS/proc.

On this architecture, we compared performance when parallelism was attained in
two different ways: 1) Implementing the algorithms with PLAPACK, which employs
message passing via calls to IBM’s MPI library; and 2) invoking the sequential
FLAME/C implementations with calls to the multithreaded BLAS that are part of
IBM’s ESSL library as well as the GotoBLAS [Goto and van de Geijn ].

Distributed Memory. Cray-Dell Linux Cluster. This system consists of an array
of Intel PowerEdge 1750 Xeon processors operating at 3.06 GHz. Each compute
node contains two processors and has 2 GB of total shared memory (1 Gb/proc).
The theoretical peak for each processor is 6.12 GFLOPS (2 floating point operations
per clock cycle), with the sequential dgemm, as part of Intel’s MKL 7.2.1 library,
benchmarked by the authors at roughly 4.8 GFLOPS.

On this system we measured the performance of PLAPACK-based implemen-
tations, linked to the MPICH MPI implementation [Gropp and Lusk 1994] and
Intel’s MKL library as well as to the GotoBLAS. The system was also used to do
the performance comparison with ScaLAPACK reported in Fig. 1 and Section 5.9.

5.3 Data Distribution

ScaLAPACK uses the two-dimensional block cyclic data distribution [Blackford
et al. 1997]. PLAPACK uses the Physically Based Matrix Distribution, which is
a variation of the block cyclic distribution. The primary difference is that ScaLA-
PACK ties the algorithmic block size to the distribution block size, whereas PLA-
PACK does not. Because of this, PLAPACK may use a smaller distribution block
size to improve load balance.

5.4 Reading the graphs

The performance attained by the different implementations is given in Figs. 10–
14. The top line of most of the graphs represents the asymptotic performance
attained on the architecture by matrix-matrix multiplication (dgemm). Since all
the algorithms cast most computation in terms of this operation, its performance
is the limiting factor. In the case where different BLAS implementations were
employed, the theoretical peak of the machine was used as the top line of the
graph. The following operation counts were used for each of the algorithms: 1

3
n3

for each of Chol(A), R−1, and UUT , and n3 for the inversion of a SPD matrix. In
the legends, the variant numbers correspond to those used earlier in the paper and
the operations within parentheses indicate the matrix-matrix operation in which
the bulk of the computation for that variant is cast (See Fig. 2 for details).

5.5 Sequential performance

In Fig. 10 we show performance on a single CPU of the IBM Power 4 system. In
these experiments, a block size of 96 was used for all algorithms. From the graphs,
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Fig. 10. Sequential performance on the IBM Power4 system.

it is obvious which algorithmic variant was incorporated in LAPACK.

5.6 Parallel performance

In Figs. 11 and 12 we report performance results from experiments on a sixteen
CPU IBM Power 4 SMP system and on 16 processors (eight nodes with two pro-
cessors each) of the Cray-Dell cluster. Since the two systems attain different peak
rates of computation, the fraction of dgemm performance that is attained by the
implementations is reported.

On the IBM system, we used an algorithmic block size of 96 for the FLAME/C
experiments, while we used a distribution block size of 32 and an algorithmic block
size of 96 for the PLAPACK experiments. The results on the IBM system show
that linking to multithreaded BLAS yields better performance than the PLAPACK
implementations. One reason is that exploiting the SMP features of the system
avoids much of the overhead of communication and load-balancing.

For the Cholesky factorization the PLAPACK Variant 1 performs substantially
worse than the other variants. This is due to the fact that this variant is rich
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Fig. 11. Parallel Performance on the 16 CPU IBM Power 4 SMP system.

in triangular solves with a limited number of right-hand sides. This operation
inherently does not parallelize well on distributed memory architectures due to
dependencies. Interestingly, Variant 1 for the Cholesky factorization attains the
best performance in the sequential experiment on the same machine.

The PLAPACK implementations of Variants 1 and 2 for computing R−1 do not
perform well. Variant 1 is rich in triangular matrix times panel-of-columns multi-
ply where the matrix being multiplied has a limited number of columns. It is not
inherent that this operation does not parallelize well. Rather, it is the PLAPACK
implementation for that BLAS operation that is not completely optimized. Similar
comments apply to PLAPACK Variant 3 for computing UUT and PLAPACK Vari-
ant 1 for computing the inversion of a SPD matrix. This shows that a deficiency
in the performance of a specific routine in a parallel BLAS library (provided by
PLAPACK in this case) can be overcome by selecting an algorithmic variant that
casts most computation in terms of a BLAS operation that does attain high per-
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Fig. 12. Parallel Performance for PLAPACK-based implementations (C interfaced with MPI).

formance7. Note the cross-over between the curves for the SMP Variants 2 and 3
for the parallel triangular inverse operation. This shows that different algorithmic
variants may be appropriate for different problem sizes.

It is again obvious from the graphs which algorithmic variant is used for each of
the three sweeps as part of LAPACK. The LAPACK curve does not match either of
the FLAME variants in the SPD inversion graph since LAPACK uses a three-sweep
algorithm.

5.7 Scalability

In Fig. 13 we report the scalability of the best algorithmic variants for each of the
four operations when executed on the Cray-Dell cluster. It is well-known that for
these types of distributed memory algorithms it is necessary to scale the problem

7The techniques described in this paper still need to be applied to yield parallel BLAS libraries
that attain high performance under all circumstances.
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Fig. 14. Comparison of the Three-Sweep and Single-Sweep SPD inverse algorithms. The left
panel shows the performance difference for the case run on the Cray-Dell system linked to the
GotoBLAS. The right panel shows the wall-clock savings for all PLAPACK cases.

size with the square-root of the number of processors, so that memory-use per
processor is kept constant [Hendrickson and Womble 1994; Stewart 1990]. Notice
that as the number of processors is increased, the performance per node that is
attained eventually decreases very slowly, indicating that the implementations are
essentially scalable.

5.8 Comparison of the Three-Sweep and Single-Sweep Algorithms

We examined the benefits of consolidating the collective communications and im-
proving the load balancing in the single-sweep algorithm. In Fig. 14 (left) we show

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Inversion of a Symmetric Positive Definite Matrix · 19

improvements in raw performance on the Cray-Dell system. The improvement over
three-sweep algorithm is quite substantial, in the 15-30% range. Fig. 14(right)
shows the time savings gained for the PLAPACK implementations of the SPD
inverse algorithms.

On serial and SMP architectures, essentially no performance improvements were
observed by using the single-sweep algorithms over the best three-sweep algorithm.
This is to be expected, since for these architectures the communications and load
balancing are not an issue.

5.9 Comparison with ScaLAPACK

In Fig. 1 we had already shown a performance comparison with ScaLAPACK on
the Dell-Cray cluster. It verifies that our implementations rival and even surpass
those of a library that is generally considered to be of high quality and scalable.
ScaLAPACK requires the nodes to be logically viewed as an r × c mesh and uses a
block-cyclic distribution of matrices to the nodes. For the ScaLAPACK experiments
we determined that r = c attained the best performance and a block size of 32 or
64 was used depending on which achieved better performance. (A block size of 128
achieved inferior performance since it affected load balance.) For the PLAPACK
experiments r = c, a distribution block size of 32 and an algorithmic block size of
96 was used.

6. CONCLUSION

In this paper, we have shown the benefit of including a multitude of different al-
gorithmic variants for dense linear algebra operations in libraries, such as LA-
PACK/ScaLAPACK and FLAME/PLAPACK, that attempt to span a broad range
of architectures. The best algorithm can then be chosen, as a function of the archi-
tecture, the problem size, and the optimized libraries to which the implementations
are linked. The FLAME approach to deriving algorithms, discussed in a number
of other papers, enables a systematic generation of such families of algorithms.

Another contribution of the paper lies with the link it establishes between the
three-sweep and one-sweep approach to computing the inverse of a SPD matrix.
The observation that the traditional three-sweep algorithm can be fused together so
that only a single pass through the matrix is required has a number of advantages.
The single-sweep method provides for greater flexibility because the sequence of
operations can be arranged differently than they would be if done as three separate
sweeps. This allows the operations of the SPD inverse to be organized to optimize
load balance and communication. The resulting single-sweep algorithm outperforms
the three-sweep method on distributed memory architectures.

The paper raises many new questions. In particular, the availability of many
algorithms and implementations means that a decision must be made as to when
to use what algorithm. One approach is to use empirical data from performance
experiments to tune the decision process. This is an approach that has been applied
in the simpler arena of matrix-matrix multiplication (dgemm) by the PHiPAC and
ATLAS projects [Bilmes et al. 1997; Whaley and Dongarra 1998]. An alternative
approach would be to carefully design every layer of a library so that its performance
can be accurately modeled [Dackland and Kågström 1996]. We intend to pursue a
combination of these two approaches.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



20 · Paolo Bientinesi et al

7. ACKNOWLEDGEMENTS

The authors would like to acknowledge the Texas Advanced Computing Center
(TACC) for providing access to the IBM Power4 and Cray-Dell PC Linux cluster
machines, along with other computing resources, used in the development of this
study. As always, we are grateful for the support provided by the other members
of the FLAME team.

This research was partially sponsored by NSF grants CCF-0342369 and ACI-
0305163. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

More Information

For more information on FLAME and PLAPACK visit
http://www.cs.utexas.edu/users/flame

http://www.cs.utexas.edu/users/plapack

REFERENCES

Andersen, B. S., Gunnels, J. A., Gustavson, F. G., and Wasniewski, J. 2002. A recursive
formulation of the inversion of symmetric positive definite matrices in packed storage data
format. In Applied Parallel Computing New Paradigms for HPC in Industry and Academia,
Seventh International Workshop PARA 2002 Proceedings. Lecture Notes in Computer Science,
No. 2367. Springer, 287–296.

Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J.,
Croz, J. J. D., Greenbaum, A., Hammarling, S. J., McKenney, A., and Sorensen, D. C.

1999. LAPACK Users’ Guide, Third ed.

Bauer, F. L. and Reinsch, C. 1970. Inversion of positive definite matrices by the Gauss-Jordan
methods. In Handbook for Automatic Computation Vol. 2: Linear Algebra, J. H. Wilkinson
and C. Reinsch, Eds. Springer, New York, NY, USA, 45–49.

Bientinesi, P. 2006. Mechanical derivation and systematic analysis of correct linear algebra
algorithms. Ph.D. thesis, Department of Computer Sciences, The University of Texas.

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and van de Geijn, R. A.

2005a. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1
(March), 1–26.

Bientinesi, P., Gunter, B., and van de Geijn, R. 2006. Families of algorithms related to the
inversion of a symmetric positive definite matrix. FLAME Working Note #19 CS-TR-06-20,
Department of Computer Sciences, The University of Texas at Austin.

Bientinesi, P., Quintana-Ort́ı, E. S., and van de Geijn, R. A. 2005b. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans.
Math. Soft. 31, 1 (March).

Bientinesi, P. and van de Geijn, R. 2006. Representing dense linear algebra algorithms: A
farewell to indices. FLAME Working Note #17 CS-TR-06-10, Department of Computer Sci-
ences, The University of Texas at Austin.
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Kågström, B., Ling, P., and Loan, C. V. 1998. GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Soft. 24, 3,
268–302.

Quintana, E. S., Quintana, G., Sun, X., and van de Geijn, R. 2001. A note on parallel matrix
inversion. SIAM J. Sci. Comput. 22, 5, 1762–1771.

Sanso, R. and Rummel, R., Eds. 1989. Theory of Satellite Geodesy and Gravity Field Determi-
nation. Lecture Notes in Earth Sciences, vol. 25. Springer-Verlag, Berlin.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and Dongarra, J. 1996. MPI:
The Complete Reference. The MIT Press.

Stewart, G. 1990. Communication and matrix computations on large message passing systems.
Parallel Computing 16, 27–40.

Tapley, B., Schutz, B., and Born, G. 2004. Statistical Orbit Determination. Elsevier Academic
Press.

van de Geijn, R. A. 1997. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press.

Whaley, R. C. and Dongarra, J. J. 1998. Automatically tuned linear algebra software. In
Proceedings of SC’98.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.


