
CS 310H Computer Organization and Programming Spring 2010
Professor Fussell Due: Apr. 22, 2010

Assignment #8

Instructions: The assignment is due on the date shown above. Tips to remember: give the
assignments to your TA in section, remember your name, section number, TA name, and
assignment number (5 points). Also, make sure your assignment is neat, stapled, and is entirely
your own work.

1. In your favorite programming language, write a program that reads a number n from the
console and computes the nth fibonacci number. Recall that the fibonacci sequence f(n) is
defined as:

f(0) = 0
f(1) = 1
f(n) = f(n− 1) + f(n− 2)

Your program must be recursive, rather than iterative. This means that you must start with
f(n) and within it, call f(n−1) and f(n−2), and so on. Turn in a printout of your (commented)
recursive program, turn in your source code electronically, and answer the following questions:

(a) In what ways is this recursive program inefficient?

(b) What is the largest number n for which your program produces the correct answer?
Why?

1



2. Now implement the recursive fibonacci program in LC-3. Use the downloadable file fib-8.asm
as a template. You may assume that the memory location labeled INPUT holds the input
number n, and you should store the output to the memory location labeled OUTPUT before
calling HALT. You should use R6 as your stack pointer and be sure to load and boot the os
before loading and running your program (so that it can set up R6 for you):

(a) Draw a map of the activation record for your fibonacci call - make sure to include all of
the necessary components.

(b) Draw a diagram of the contents of the runtime stack after the following sequence of calls
and returns:

call fib(4)
call fib(3)
call fib(2)
call fib(1)
return fib(1)
call fib(0)
return fib(0)
return fib(2)
call fib(1)

(c) What’s the largest number n for which your program can compute the nth fibonacci
number? Why?

(d) At what number n would your program go off the rails? Why?

2



3. Given the C function listed below - describe what the function does and draw a diagram
of the activation record for the function (state any assumptions necessary). Note that ’a’
corresponds to the ASCII numerical code for the character a.

int baz(int inchar) {
int result_char;
if (inchar >= ’a’ && inchar <= ’z’)

result_char = inchar - (’a’ - ’A’);
else if (inchar >= ’A’ && inchar <= ’Z’)

result_char = inchar;
else

result_char = NULL;
return result_char;

}

3



4. Using the template provided in vec8.c (available on-line), write a function vector sum, that
takes as argument the length of a vector of integers and a pointer to the vector, and returns
the sum of its elements. Compile this program using the LC-3 C compiler as follows:

/p/bin/lcc/lcc -o vec8 vec8.c

Make sure your code produces the correct result by loading and running the vec8.obj file on
the LC-3 simulator (lc3db). Rename vec8.asm to vec8 lcc.asm and annotate the instructions
for the function lc3 vector sum with comments describing how the instructions implement
your corresponding C function. Be prepared to explain how each instruction contributes to
implementing the C function.

Hint: You might find it useful to step through the code using the simulator to figure out what
the instructions are doing.

(a) Turn in a printout of your C code and the annotated assembly code (only the function
lc3 vector sum need be shown in the printout of your assembly code). Don’t forget to
fill in the header with your name and section number.

(b) Your program should compile using the LC-3 C compiler on Unix and run on the Unix
version of the LC-3 simulator. Submit the files vec8.c and vec8 lcc.asm using the turnin
command.

(c) Describe the stack protocol used by the lcc compiler. Note that it is different from what
we discussed in class.

(d) You will notice from the above exercise that the translation of the C function to as-
sembly by the compiler produces very inefficient code. Write a hand optimized ver-
sion of the function directly in LC-3 assembly language using the template provided in
vec8 hand.asm, and filling in the code for the function vector sum. Your code should
assume that the length of the vector is available in register R0 and the address of the
first element of the vector is in R1. You should put the result in R2.

(e) Submit a printout of your file vec8 hand.asm. Don’t forget to fill in the header with
your name and section number.

(f) Measure the difference in running time (from the cycle counter available in the lc3db
simulator) between the lcc compiled and your hand-generated versions of the programs.
Quantitatively, what accounts for the difference?

(g) Ensure that your program works on the Linux version of the LC-3 simulator and submit
the file vec8 hand.asm, using the turnin program.

4


