CMOS Transistors and Boolean Logic Gates
CMOS Transistors

- Need circuits to represent 2 discrete values
 - 1,0 for binary representations
 - True, False for Boolean logic
- Let high voltage \((V_{dd})\) represent 1, or true
- Let low voltage (0 volts or gnd) represent 0, or false
- If we have some switches to control whether or not these voltages can propagate through a circuit, we can build a computer with them
 - Note, the earliest digital computers were electromechanical, made out of relays, so this is hardly a new idea
- Our switches will be CMOS transistors
Two kinds of transistors

N-type

P-type

1 (Vdd)

source
drain

gate

1 (Vdd)
s
d

g

1 (Vdd)
s
d

g
Two kinds of transistors

N-type

P-type

0 (gnd)
How they work as switches

N-type

+Vgs = 0

When gate is not at higher voltage than source:
• no excess electrons in channel under gate
• so no current can flow
• switch is open
How they work as switches

When $V_{gs} > V_{th}$, the threshold voltage
- excess electrons attracted into channel
- current flows and switch is closed
- drain voltage cannot be more than source voltage = $V_g - V_{th}$
- this is at most $V_{dd} - V_{th}$
- $V_{dd} - V_{th}$ is still considered a 1, but a weak 1
- if source voltage is 0, then drain voltage is too, so 0 still strong

N-type

CMOS transistor pictures from UT ECE VLSI course slides
CMOS circuit rules

- Never create a path from V_{dd} to gnd
- Don’t pass weak values
 - N-type transistors pass weak 1’s ($V_{dd} - V_{th}$)
 - N-type transistors pass strong 0’s (gnd)
 - Use N-type transistors only to pass 0’s (n to negative)
 - Conversely for P-type transistors
 - Pass weak 0’s (V_{th}), strong 1’s (V_{dd})
 - Use P-type transistors only to pass 1’s (p to positive)
- Never leave a wire undriven
 - Make sure there’s always a path to V_{dd} or gnd
Example CMOS gate - inverter

Truth table

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note how all 3 design rules are obeyed
Circuit amplifies weak input 1 or 0