Storage Elements and Memory

R-S Latch

Sa	A R S	a	b	A R S	a	b
B A D	0 0 0	1	1	x 0 0	1	1
$R \longrightarrow D$	0 0 1	0	1	x 0 1	0	1
	0 1 0	1	0	x 1 0	1	0
R S a b	0 1 1	0	1	0 1 1	0	1
0 0 1 1	1 0 0	1	1	1 1 1	1	0
0 1 0 1	1 0 1	0	1			
1 0 1 0	1 1 0	1	0			
1 1 ? ?	1 1 1	1	0			

WE	q	D	q	q'
0	0	X	0	1
0	1	X	1	0
1	X	0	0	1
1	X	1	1	0

Note: a **latch** is a **level-triggered** storage element. Level-triggered means the stored data can be changed when the clock is at a specified voltage.

Note: a **flip-flop** is an **edge-triggered** storage element. Edge-triggered means the stored data can be changed when the clock changes voltage, either from low to high (as here) or high to low.

Edge vs. level triggering

Cheaper Memory

- 8+ CMOS transistors per bit is too much for large scale memory (okay for registers, although we can trim the transistor count just a bit)
- I transistor per bit DRAM uses a single transistor to trap charge on a capacitor ("dangling wire"), and then read out whether or not there's charge there. The charge leaks out after a while, so it needs to be refreshed, and it's pretty slow since it needs lots of amplification.
- Called dynamic memory since it needs to be refreshed (as opposed to self-amplifying, static memory).

From Computer Desktop Encyclopedia

© 2005 The Computer Language Co. Inc.

Static bit in CMOS

- This is 8 transistors (verify). Can we do better?
- Let's "cheat" and do our designs with transistors as well as Boolean logic
- Now we only need 6 transistors, and it gives us a D latch (which took 16 or 18 the Boolean way)
 - Actually, the 6 transistor design you'll see in normal use doesn't quite work like this, but it's close.

Memory from bits

■ A 4-bit register using D latches

Memory organization

- \blacksquare Address space = 4
- Addressability = 3 bits
- The leftmost pink box is a decoder
- What are the other 3 pink boxes?

Memory organization

- Address space = 4
- Addressability = 3 bits
- The leftmost pink box is a decoder
- What are the other 3 pink boxes?

Reading word 3