State Machines

Another look at D latch/flip-flop

q_{old}	D	q_{new}	
0	0	0	This is an example of a state diagram
0	1	1	more specifically a Moore machine
1	0	0	$q_{new} = D$
1	1	1	

Synchronous state machines

If a system can both process and store information, then the values stored in the memory elements depend on both the inputs and the previous values in these elements. This is called a **sequential** system.

Such a system is also called a finite-state machine (FSM).

If all changes to memory values happen at the same time as determined by a global system clock, we have a **synchronous FSM**.

An FSM has the following components:

- A set of states
- A set of inputs
- A set of outputs
- A state-transition function (of the states and inputs)
- An output function (of the states and maybe inputs)
 - Moore machine function of states only
 - Mealy machine function of states and inputs

This can be represented by a state diagram

- States are circles
- Arcs show the state transition function
- Arcs are labeled with input values
- Outputs are labels on states (Moore) or arcs (Mealy)

Another example - 2-bit counter

Counter starts at 0 (green) and increments each time the clock cycles, until it gets to 3 and then overflows back to 0.

Only input is the clock, we don't show that.

H_{old}	L _{old}	H_{new}	L _{new}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

2-bit counter

H_{old}	L _{old}	H_{new}	L _{new}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$$L_{\text{new}} = H_{\text{old}}' L_{\text{old}}' + H_{\text{old}} L_{\text{old}}' = L_{\text{old}}'$$

$$H_{\text{new}} = H_{\text{old}}' L_{\text{old}} + H_{\text{old}} L_{\text{old}}'$$

2-bit counter with reset

R	H_{old}	L_{old}	H_{new}	L _{new}
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	X	X	0	0

$$L_{\text{new}} = R'H_{\text{old}}'L_{\text{old}}' + R'H_{\text{old}}L_{\text{old}}'$$
$$= R'L_{\text{old}}' = (R + L_{\text{old}})'$$

$$H_{\text{new}} = R'H_{\text{old}}'L_{\text{old}} + R'H_{\text{old}}L_{\text{old}}'$$
$$= R'(H_{\text{old}}'L_{\text{old}} + H_{\text{old}}L_{\text{old}}')$$

2-bit counter with reset

Counter with 7-segment display

Each segment in the display can be lit independently to allow all 10 decimal digits to be displayed (also hex)

2-bit counter will need to display digits 0-3, so will output a 1 for each segment to be lit for a given state

Counter with output functions

R	H_{o}	L_{o}	H_n	L_n	A	В	C	D	Е	F	G
0	0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	0	0	1	1	0	0	0	0
0	1	0	1	1	1	1	0	1	1	0	1
0	1	1	0	0	1	1	1	1	0	0	1
1	X	X	0 1 1 0 0	0	0	0	0	0	0	0	0

$$A = D = R'H_o'L_o'+R'H_oL_o'+R'H_oL_o = R'(H_o'L_o)'$$

$$B = R'$$

$$C = R'(H_o L_o')' \qquad E = R' L_o'$$

$$E = R'L_o'$$

$$F = R'H_o'L_o' = (R+H_o+L_o)'$$

$$G = R'H_o$$

7-segment output logic

Example - 101 lock

Combination lock with 101 being the combination

B is input signal to the lock, X is output signal to unlock

В	H_{o}	L_{o}	H_n	L_n	X
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	0

101 combination lock

$$X = H_oL_o$$

$$H_n = B'H_o'L_o + BH_oL_o'$$

$$L_n = BH_o'L_o + BH_oL_o' + BH_oL_o$$

$$= BH_o'L_o + BH_oL_o + BH_oL_o' + BH_oL_o$$

$$= BL_o + BH_o$$

LC-3 datapath

