
University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 2

How do we represent data in a computer?

At the lowest level, a computer is an electronic machine.
works by controlling the flow of electrons

Easy to recognize two conditions:
1. presence of a voltage – we’ll call this state “1”
2. absence of a voltage – we’ll call this state “0”

Could base state on value of voltage,
but control and detection circuits more complex.

compare turning on a light switch to
measuring or regulating voltage

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 3

Computer is a binary digital system

Basic unit of information is the binary digit, or bit.
Values with more than two states require multiple bits.

A collection of two bits has four possible states:
00, 01, 10, 11
A collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111
A collection of n bits has 2n possible states.

Binary (base two) system:
• has two states: 0 and 1

Digital system:
• finite number of symbols

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 4

What kinds of data do we need to represent?

Numbers – signed, unsigned, integers, floating point,
complex, rational, irrational, …
Text – characters, strings, …
Images – pixels, colors, shapes, …
Sound
Logical – true, false
Instructions
…
Data type:

representation and operations within the computer

We’ll start with numbers…

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 5

Unsigned Integers
Non-positional notation

could represent a number (“5”) with a string of ones
(“11111”)
problems?

Weighted positional notation
like decimal numbers: “329”
“3” is worth 300, because of its position, while “9” is only
worth 9

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 6

Unsigned Integers (cont.)

An n-bit unsigned integer represents 2n

values:
from 0 to 2n-1.

7111
6011
5101
4001
3110
2010
1100
0000

202122

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 7

Unsigned Binary Arithmetic
Base-2 addition – just like base-10!

add from right to left, propagating carry

10010 10010 1111
+ 1001 + 1011 + 1

11011 11101 10000

10111
+ 111

carry

Subtraction, multiplication, division,…

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 8

Signed Integers
With n bits, we have 2n distinct values.

assign about half to positive integers (1 through 2n-1)
and about half to negative (- 2n-1 through -1)
that leaves two values: one for 0, and one extra

Positive integers
just like unsigned – zero in most significant (MS) bit
00101 = 5

Negative integers
sign-magnitude – set MS bit to show negative,
other bits are the same as unsigned
10101 = -5
one’s complement – flip every bit to represent negative
11010 = -5
in either case, MS bit indicates sign: 0=positive, 1=negative

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 9

Two’s Complement
Problems with sign-magnitude and 1’s complement

two representations of zero (+0 and –0)
arithmetic circuits are complex

How to add two sign-magnitude numbers?
e.g., try 2 + (-3)

How to add to one’s complement numbers?
e.g., try 4 + (-3)

Two’s complement representation developed to make
circuits easy for arithmetic.

for each positive number (X), assign value to its negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring carry out

00101 (5) 01001 (9)
+ 11011 (-5) + 10111 (-9)

00000 (0) 00000 (0)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 10

Two’s Complement Representation
If number is positive or zero,

normal binary representation, zeroes in upper bit(s)
If number is negative,

start with positive number
flip every bit (i.e., take the one’s complement)
then add one

00101 (5) 01001 (9)
11010 (1’s comp) 10110 (1’s comp)

+ 1 + 1
11011 (-5) 10111 (-9)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 11

Two’s Complement Shortcut

To take the two’s complement of a number:
copy bits from right to left until (and including) the first
“1”
flip remaining bits to the left

011010000 011010000
100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 12

Two’s Complement Signed Integers
MS bit is sign bit – it has weight –2n-1.
Range of an n-bit number: -2n-1 through 2n-1 – 1.

The most negative number (-2n-1) has no positive counterpart.

0
0
0
0
0
0
0
0
-
23

7111
6011
5101
4001
3110
2010
1100
0000

202122

1
1
1
1
1
1
1
1
-
23

-1111
-2011
-3101
-4001
-5110
-6010
-7100
-8000

202122

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 13

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement
to get a positive number.

2. Add powers of 2 that have “1” in the
corresponding bit positions.

3. If original number was negative,
add a minus sign.

102410
5129
2568
1287
646
325
164
83
42
21
10
2nn

X = 01101000two
= 26+25+23 = 64+32+8
= 104ten

Assuming 8-bit 2’s complement numbers.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 14

More Examples

102410
5129
2568
1287
646
325
164
83
42
21
10

2nn

Assuming 8-bit 2’s complement numbers.

X = 00100111two
= 25+22+21+20 = 32+4+2+1
= 39ten

X = 11100110two
-X = 00011010

= 24+23+21 = 16+8+2
= 26ten

X = -26ten

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 15

Converting Decimal to Binary (2’s C)

First Method: Division
1. Find magnitude of decimal number. (Always positive.)
2. Divide by two – remainder is least significant bit.
3. Keep dividing by two until answer is zero,

writing remainders from right to left.
4. Append a zero as the MS bit;

if original number was negative, take two’s complement.

X = 104ten 104/2 = 52 r0 bit 0
52/2 = 26 r0 bit 1
26/2 = 13 r0 bit 2
13/2 = 6 r1 bit 3
6/2 = 3 r0 bit 4
3/2 = 1 r1 bit 5

X = 01101000two 1/2 = 0 r1 bit 6

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 16

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two
1. Find magnitude of decimal number.
2. Subtract largest power of two

less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit;

if original was negative, take two’s complement.

X = 104ten 104 - 64 = 40 bit 6
40 - 32 = 8 bit 5

8 - 8 = 0 bit 3
X = 01101000two

102410
5129
2568
1287
646
325
164
83
42
21
10
2nn

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 17

Operations: Arithmetic and Logical
Recall:
a data type includes representation and operations.
We now have a good representation for signed integers,
so let’s look at some arithmetic operations:

Addition
Subtraction
Sign Extension

We’ll also look at overflow conditions for addition.
Multiplication, division, etc., can be built from these
basic operations.
Logical operations are also useful:

AND
OR
NOT

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 18

Addition
As we’ve discussed, 2’s comp. addition is just
binary addition.

assume all integers have the same number of bits
ignore carry out
for now, assume that sum fits in n-bit 2’s comp.
representation

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + 11110111 (-9)

01011000 (98) 11101101 (-19)

Assuming 8-bit 2’s complement numbers.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 19

Subtraction
Negate subtrahend (2nd no.) and add.

assume all integers have the same number of bits
ignore carry out
for now, assume that difference fits in n-bit 2’s comp.
representation

01101000 (104) 11110110 (-10)
- 00010000 (16) - 11110111 (-9)

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + 00001001 (9)

01011000 (88) 11111111 (-1)

Assuming 8-bit 2’s complement numbers.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 20

Sign Extension
To add two numbers, we must represent them
with the same number of bits.
If we just pad with zeroes on the left:

Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 21

Overflow
If operands are too big, then sum cannot be represented
as an n-bit 2’s comp number.

We have overflow if:
signs of both operands are the same, and
sign of sum is different.

Another test -- easy for hardware:
carry into MS bit does not equal carry out

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)

10001 (-15) 01111 (+15)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 22

Logical Operations
Operations on logical TRUE or FALSE

two states -- takes one bit to represent: TRUE=1, FALSE=0

View n-bit number as a collection of n logical values
operation applied to each bit independently

1
1
0
0
A

11
00
01
00

A AND BB

1
1
0
0
A

11
10
11
00

A OR BB

1
0
A

0
1

NOT A

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 23

Examples of Logical Operations

AND
useful for clearing bits

AND with zero = 0
AND with one = no change

OR
useful for setting bits

OR with zero = no change
OR with one = 1

NOT
unary operation -- one argument
flips every bit

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

NOT 11000101
00111010

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 24

Hexadecimal Notation
It is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.

fewer digits -- four bits per hex digit
less error prone -- easy to corrupt long string of 1’s and 0’s

7
6
5
4
3
2
1
0

Hex

70111
60110
50101
40100
30011
20010
10001
00000

Decima
l

Binary

F
E
D
C
B
A
9
8

Hex

151111
141110
131101
121100
111011
101010
91001
81000

Decima
l

Binary

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 25

Converting from Binary to Hexadecimal

Every four bits is a hex digit.
start grouping from right-hand side

011101010001111010011010111

7D4F8A3

This is not a new machine representation,
just a convenient way to write the number.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 26

Fractions: Fixed-Point
How can we represent fractions?

Use a “binary point” to separate positive
from negative powers of two -- just like “decimal
point.”
2’s comp addition and subtraction still work.

if binary points are aligned

00101000.101 (40.625)
+ 11111110.110 (-1.25)

00100111.011 (39.375)

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125

No new operations -- same as integer arithmetic.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 27

Very Large and Very Small: Floating-Point

Large values: 6.023 x 1023 -- requires 79 bits
Small values: 6.626 x 10-34 -- requires >110 bits
Use equivalent of “scientific notation”: F x 2E

Need to represent F (fraction), E (exponent), and sign.
IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(

126

127exponent

=!!"=

##!!"=

"

"

S

S

N

N

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 28

Floating Point Example

Single-precision IEEE floating point number:
10111111010000000000000000000000

Sign is 1 – number is negative.
Exponent field is 01111110 = 126 (decimal).
Fraction is 0.100000000000… = 0.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.

sign exponent fraction

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 29

Floating-Point Addition

Will regular 2’s complement arithmetic work for
Floating Point numbers?
(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x 108?)

Step 1: match the exponents. We’ll prefer to do this by making the small
exponent match the large one since that means shifting the mantissa to the
right, and with finite precision representations any lost significant digits
will be at the low order end of the number
Step 2: Add the mantissas.
Step 3: Normalize the result if necessary.

!

3.75 "10
12

+ 9.125 "10
8

= 3.75 "10
12

+ .0009125 "10
12

= 3.7509125 "10
12

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 30

Floating-Point Addition
Will regular 2’s complement arithmetic
work for Floating Point numbers?
Same algorithm in binary

Let’s do it in IEEE 754

!

3.75 "10
12

+ 9.125 "10
8

= 3.75 "10
12

+ .0009125 "10
12

= 3.7509125 "10
12

!

3.75 "10
12
#11.11" 2

40
=1.111" 2

41

= 0 10101000 11100000000000000000000 = x54700000

!

9.125 "10
8
#1001.001" 2

27
=1.001001" 2

30

= 0 10000010 00100100000000000000000 = x41200000

!

1.111" 2
41

+1.001001" 2
30

=1.111" 2
41

+ 0.00000000001001001" 2
41

=1.11100000001001001" 2
41

= 0 10101000 11100000001001001000000 = x54701240

(note: binary and decimal not quite equal due to inexact
conversion of decimal exponents to binary)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 31

Floating-Point Multiplication
In decimal

Step 1: add exponents
Step 2: multiply mantissas
Step 3: normalize result

Same algorithm in binary
Let’s do it in IEEE 754

!

3.75 "10
12
" 9.125 "10

8

= 3.75 " 9.125 "10
20

= 34.21875 "10
20

= 3.421875 "10
21

!

1.111" 2
41
"1.001001" 2

30

=1.111"1.001001" 2
71

=10.001000111" 2
71

=1.0001000111" 2
72

= 0 11000111 00010001110000000000000 = x6388E000

(note: binary and decimal not quite equal due to inexact
conversion of decimal exponents to binary)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 32

Text: ASCII Characters
ASCII: Maps 128 characters to 7-bit code.

both printable and non-printable (ESC, DEL, …) characters

del7fo6f_5fO4f?3f/2fus1fsi0f
~7en6e^5eN4e>3e.2ers1eso0e
}7dm6d]5dM4d=3d-2dgs1dcr0d
|7cl6c\5cL4c<3c,2cfs1cnp0c
{7bk6b[5bK4b;3b+2besc1bvt0b
z7aj6aZ5aJ4a:3a*2asub1anl0a
y79i69Y59I49939)29em19ht09
x78h68X58H48838(28can18bs08
w77g67W57G47737'27etb17bel07
v76f66V56F46636&26syn16ack06
u75e65U55E45535%25nak15enq05
t74d64T54D44434$24dc414eot04
s73c63S53C43333#23dc313etx03
r72b62R52B42232"22dc212stx02
q71a61Q51A41131!21dc111soh01
p70`60P50@40030sp20dle10nul00

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 33

Interesting Properties of ASCII Code
What is relationship between a decimal digit ('0', '1', …)
and its ASCII code?

What is the difference between an upper-case letter
('A', 'B', …) and its lower-case equivalent ('a', 'b', …)?

Given two ASCII characters, how do we tell which comes first in
alphabetical order?

Are 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 34

Other Data Types
Text strings

sequence of characters, terminated with NULL (0)
typically, no hardware support

Image
array of pixels

monochrome: one bit (1/0 = black/white)
color: red, green, blue (RGB) components (e.g., 8 bits each)
other properties: transparency

hardware support:
typically none, in general-purpose processors
MMX -- multiple 8-bit operations on 32-bit word

Sound
sequence of fixed-point numbers

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 35

LC-3 Data Types

Some data types are supported directly by the
instruction set architecture.

For LC-3, there is only one hardware-supported data type:
16-bit 2’s complement signed integer
Operations: ADD, AND, NOT

Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, etc.,
in the software that we write.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Chapter 2

Bits, Data Types & Operations

 Integer Representation
 Floating-point Representation

 Logic Operations

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 37

Data types
Our first requirement is to find a way to represent information
(data) in a form that is mutually comprehensible by human and
machine.

Ultimately, we will have to develop schemes for representing all
conceivable types of information - language, images, actions, etc.

We will start by examining different ways of representing integers, and
look for a form that suits the computer.

Specifically, the devices that make up a computer are switches that can be
on or off, i.e. at high or low voltage. Thus they naturally provide us with
two symbols to work with: we can call them on & off, or (more usefully) 0
and 1.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 38

Decimal Numbers

“decimal” means that we have ten digits to use in our
representation (the symbols 0 through 9)

What is 3,546?
it is three thousands plus five hundreds plus four tens plus six ones.

i.e. 3,546 = 3.103 + 5.102 + 4.101 + 6.100

How about negative numbers?
we use two more symbols to distinguish positive and negative:

 + and -

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 39

Unsigned Binary Integers

0000010
0

001001004
0000001

1
000110113

0000001
0

000100102
0000000

1
000010011

0000000
0

000000000
8-bits5-bits3-bits

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:
0 ≤ i < 2N - 1

(where the digits a, b, c can each take on the values of 0 or 1 only)

Problem:
• How do we represent

negative numbers?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 40

Signed Magnitude

Leading bit is the sign bit

00100+4

10100-4
10011-3
10010-2

00011+3
00010+2
00001+1
00000+0
10000-0
10001-1

Range is:
-2N-1 + 1 < i < 2N-1 - 1

Y = “abc” = (-1)a (b.21 + c.20)

Problems:
• How do we do addition/subtraction?
• We have two numbers for zero (+/-)!

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 41

One’s Complement

Invert all bits

00100+4

11011-4

11100-3

11101-2

00011+3

00010+2

00001+1

00000+0

11111-0

11110-1

Range is:
-2N-1 + 1 < i < 2N-1 - 1

If msb (most significant bit) is 1 then the
number is negative (same as signed
magnitude)

Problems:
•Same as for signed magnitude

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 42

Two’s Complement

Transformation
To transform a into -a, invert all
bits in a and add 1 to the result

10000-16

……

01111+15

……

00011

00010

00001

00000

11111

11110

11101-3

-2

+3

+2

+1

0

-1Range is:
-2N-1 < i < 2N-1 - 1

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 43

Manipulating Binary numbers - 1
Binary to Decimal conversion & vice-versa

A 4 bit binary number A = a3a2a1a0 corresponds to:
 a3.23 + a2.22 + a1.21 + a0.20 = a3.8 + a2.4 + a1.2 + a0.1

(where ai = 0 or 1 only)

A decimal number can be broken down by iterative division by 2, assigning
bits to the columns that result in an odd number:
e.g. (13)10 => ((((13 - 1)/2 - 0)/2 - 1)/2 - 1) = 0 => (01101)2

In the 2’s complement representation, leading zeros do not affect the value
of a positive binary number, and leading ones do not affect the value of a
negative number. So:
01101 = 00001101 = 13 and 11011 = 11111011 = -5

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 44

Manipulating Binary numbers - 2
Binary addition simply consists of applying, to each column in
the sum, the rules:

0 + 0 = 0 1 + 0 = 0 + 1 = 1 1 + 1 = 10

With 2’s complement representation, this works for both positive and
negative integers so long as both numbers being added are represented
with the same number of bits.

e.g. to add the number 13 => 00001101 (8 bits) to -5 => 1011 (4 bits):
we have to sign-extend (SEXT) the representation of -5 to 8 bits:

00001101
11111011
00001000 => 8 (as expected!)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 45

Manipulating Binary numbers - 3
Overflow

If we add the two (2’s complement) 4 bit numbers representing 7 and 5 we
get :

0111 => +7
0101 => +5
1100 => -4 (in 4 bit 2’s comp.)

We get -4, not +12 as we would expect !!
We have overflowed the range of 4 bit 2’s comp. (-8 to +7), so the result is
invalid.
Note that if we add 16 to this result we get back 16 - 4 = 12

this is like “stepping up” to 5 bit 2’s complement representation

In general, if the sum of two positive numbers produces a negative result, or
vice versa, an overflow has occurred, and the result is invalid in that
representation.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 46

Limitations of fixed-point
Fixed point numbers are not limited to representing only integers

But there are other considerations:

Range:
The magnitude of the numbers we can represent is determined by how
many bits we use:

e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far
too small for many purposes.

Precision:
The exactness with which we can specify a number:

e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision
in decimal repesentation.

We need another data type!

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 47

Real numbers
Our decimal system handles non-integer real numbers
by adding yet another symbol - the decimal point (.) to
make a fixed point notation:

e.g. 3,456.78 = 3.103 + 5.102 + 4.101 + 6.100 + 7.10-1 + 8.10-2

The floating point, or scientific, notation allows us to
represent very large and very small numbers (integer or
real), with as much or as little precision as needed:

Unit of electric charge e = 1.602 176 462 x 10-19 Coul.
Volume of universe = 1 x 1085 cm3

the two components of these numbers are called the mantissa and the
exponent

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 48

Floating point numbers in binary
 We mimic the decimal floating point notation to create a “hybrid”
binary floating point number:

 We first use a “binary point” to separate whole numbers from fractional
numbers to make a fixed point notation:

 e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75
(2-1 = 0.5 and 2-2 = 0.25, etc.)

 We then “float” the binary point:
 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

 Now we have to express this without the extra symbols (x, 2, .)
 by convention, we divide the available bits into three fields:

sign, mantissa, exponent

 These are still fixed-precision, only approximate real numbers

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 49

IEEE-754 fp numbers - 1

Sign: 1 bit

Mantissa: 23 bits
We “normalize” the mantissa by dropping the leading 1 and recording only
its fractional part (why?)

Exponent: 8 bits
In order to handle both +ve and -ve exponents, we add 127 to the actual
exponent to create a “biased exponent”:

2-127 => biased exponent = 0000 0000 (= 0)
20 => biased exponent = 0111 1111 (= 127)
2+127 => biased exponent = 1111 1110 (= 254)

s biased exp. fraction

!

N = ("1)
s
#1. fraction# 2(biased exp."127)

1 8 bits 23 bits

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 50

IEEE-754 fp numbers - 2

Example:
 25.75 => 00011001.110 => 1.1001110 x 24

 sign bit = 0 (+ve)

 normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

 biased exponent = 4 + 127 = 131 => 1000 0011

 so 25.75 => 0 1000 0011 100 1110 0000 0000 0000 0000 => x41CE0000

Values represented by convention:
Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0
NaN (not a number): exponent = 255 and fraction ≠ 0

Zero (0): exponent = 0 and fraction = 0
 note: exponent = 0 => fraction is de-normalized, i.e no hidden 1

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 51

IEEE-754 fp numbers - 3

 Double precision (64 bit) floating point

64 bits:

 Range & Precision:
 32 bit:

 mantissa of 23 bits + 1 => approx. 7 digits decimal
 2+/-127 => approx. 10+/-38

 64 bit:
 mantissa of 52 bits + 1 => approx. 15 digits decimal
 2+/-1023 => approx. 10+/-306

s biased exp. fraction

!

N = ("1)
s
#1. fraction# 2(biased exp."1023)

1 11 bits 52 bits

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 52

Other Data Types
Other numeric data types

e.g. BCD

Bit vectors & masks
sometimes we want to deal with the individual bits themselves

Text representations
ASCII: uses 8 bits to represent main Western alphabetic characters &
symbols, plus several “control codes”,
Unicode: 16 bit superset of ASCII providing representation of many
different alphabets and specialized symbol sets.
EBCDIC: IBM’s mainframe representation.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 53

Hexadecimal Representation
 Base 16 (hexadecimal)

 More a convenience for us humans than a true data type
 0 to 9 represented as such
 10, 11, 12, 13, 14, 15 represented by A, B, C, D, E, F
 16 = 24: i.e. every hexadecimal digit can be represented by a 4-bit
binary (unsigned) and vice-versa.

 Example 16

3 2 1 0

10

(16AB) x16AB

 1.16 6.16 10.16 11.16

 (5803) #5803

 b0001 0110 1010 1011

=

= + + +

= =

=

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 54

Another use for bits: Logic

Beyond numbers

logical variables can be true or false, on or off, etc., and so are readily
represented by the binary system.

A logical variable A can take the values false = 0 or true = 1 only.

The manipulation of logical variables is known as Boolean Algebra, and
has its own set of operations - which are not to be confused with the
arithmetical operations of the previous section.

Some basic operations: NOT, AND, OR, XOR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 55

Basic Logic Operations

 Equivalent Notations
 not A = A’ = A
 A and B = A.B = A∧B = A intersection B
 A or B = A+B = A∨B = A union B

AND

111
001
010
000

A.BBA
OR

111
101
110
000

A+BBA
NOT

01
10
A'A

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 56

More Logic Operations

Exclusive OR (XOR): either A or B is 1, not both
A⊕B = A.B’ + A’.B

XOR

011
101
110
000

A⊕BBA
XNOR

111
001
010
100

(A⊕B)’BA

