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Memory Technology

Static RAM (SRAM)
0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB

Magnetic disk
5ms – 20ms, $0.20 – $2 per GB

Ideal memory
Access time of SRAM
Capacity and cost/GB of disk
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Principle of Locality

Programs access a small proportion of their address space
at any time
Temporal locality

Items accessed recently are likely to be accessed again soon
e.g., instructions in a loop, induction variables

Spatial locality
Items near those accessed recently are likely to be accessed soon
E.g., sequential instruction access, array data
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Taking Advantage of Locality

Memory hierarchy
Store everything on disk
Copy recently accessed (and nearby) items from disk to
smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU
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Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

Time taken: miss penalty
Miss ratio: misses/accesses
= 1 – hit ratio

Then accessed data supplied from upper level
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Cache Memory

Cache memory
The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

How do we know if the data
is present?
Where do we look?



University of Texas at Austin    CS352H  -   Computer Systems Architecture     Fall 2009   Don Fussell      7

Direct Mapped Cache

Location determined by address
Direct mapped: only one choice

(Block address) modulo (#Blocks in cache)

#Blocks is a power
of 2
Use low-order
address bits
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Tags and Valid Bits

How do we know which particular block is stored in a
cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location?
Valid bit: 1 = present, 0 = not present
Initially 0
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Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

N111
N110
N101
N100
N011
N010
N001
N000

DataTagVIndex
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Cache Example

N111
Mem[10110]10Y110

N101
N100
N011
N010
N001
N000

DataTagVIndex

110Miss10 11022
Cache blockHit/missBinary addrWord addr
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Cache Example

N111
Mem[10110]10Y110

N101
N100
N011

Mem[11010]11Y010
N001
N000

DataTagVIndex

010Miss11 01026
Cache blockHit/missBinary addrWord addr
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Cache Example

N111
Mem[10110]10Y110

N101
N100
N011

Mem[11010]11Y010
N001
N000

DataTagVIndex

010Hit11 01026
110Hit10 11022

Cache blockHit/missBinary addrWord addr
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Cache Example

N111
Mem[10110]10Y110

N101
N100

Mem[00011]00Y011
Mem[11010]11Y010

N001
Mem[10000]10Y000
DataTagVIndex

000Hit10 00016
011Miss00 0113
000Miss10 00016

Cache blockHit/missBinary addrWord addr
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Cache Example

N111
Mem[10110]10Y110

N101
N100

Mem[00011]00Y011
Mem[10010]10Y010

N001
Mem[10000]10Y000
DataTagVIndex

010Miss10 01018
Cache blockHit/missBinary addrWord addr
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Address Subdivision
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Example: Larger Block Size

64 blocks, 16 bytes/block
To what block number does address 1200 map?

Block address = 1200/16 = 75
Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits
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Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality

But in a fixed-sized cache
Larger blocks ⇒ fewer of them

More competition ⇒ increased miss rate
Larger blocks ⇒ pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help



University of Texas at Austin    CS352H  -   Computer Systems Architecture     Fall 2009   Don Fussell      18

Cache Misses

On cache hit, CPU proceeds normally
On cache miss

Stall the CPU pipeline
Fetch block from next level of hierarchy
Instruction cache miss

Restart instruction fetch
Data cache miss

Complete data access
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Write-Through

On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

Write through: also update memory
But makes writes take longer

e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes
100 cycles

 Effective CPI = 1 + 0.1×100 = 11
Solution: write buffer

Holds data waiting to be written to memory
CPU continues immediately

Only stalls on write if write buffer is already full
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Write-Back

Alternative: On data-write hit, just update the block in
cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory
Can use a write buffer to allow replacing block to be read first
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Write Allocation

What should happen on a write miss?
Alternatives for write-through

Allocate on miss: fetch the block
Write around: don’t fetch the block

Since programs often write a whole block before reading it (e.g.,
initialization)

For write-back
Usually fetch the block
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Example: Intrinsity FastMATH

Embedded MIPS processor
12-stage pipeline
Instruction and data access on each cycle

Split cache: separate I-cache and D-cache
Each 16KB: 256 blocks × 16 words/block
D-cache: write-through or write-back

SPEC2000 miss rates
I-cache: 0.4%
D-cache: 11.4%
Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches

Use DRAMs for main memory
Fixed width (e.g., 1 word)
Connected by fixed-width clocked bus

Bus clock is typically slower than CPU clock
Example cache block read

1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM
Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

4-word wide memory
Miss penalty = 1 + 15 + 1 = 17 bus cycles
Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

4-bank interleaved memory
Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Advanced DRAM Organization

Bits in a DRAM are organized as a rectangular array
DRAM accesses an entire row
Burst mode: supply successive words from a row with reduced
latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
Separate DDR inputs and outputs
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DRAM Generations

$501Gbit2007

$250512Mbit2004

$1000256Mbit2000

$4000128Mbit1998

$1000064Mbit1996

$1500016Mbit1992

$500004Mbit1989

$2000001Mbit1985

$500000256Kbit1983

$150000064Kbit1980

$/GBCapacityYear
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Measuring Cache Performance

Components of CPU time
Program execution cycles

Includes cache hit time
Memory stall cycles

Mainly from cache misses
With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

!!=

!!=
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Cache Performance Example

Given
I-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
I-cache: 0.02 × 100 = 2
D-cache: 0.36 × 0.04 × 100 = 1.44

Actual CPI = 2 + 2 + 1.44 = 5.44
Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time

Hit time is also important for performance
Average memory access time (AMAT)

AMAT = Hit time + Miss rate × Miss penalty

Example
CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles,
I-cache miss rate = 5%
AMAT = 1 + 0.05 × 20 = 2ns

2 cycles per instruction
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Performance Summary

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI
Greater proportion of time spent on memory stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance
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Associative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries
Block number determines which set

(Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)
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Associative Cache Example
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Spectrum of Associativity

For a cache with 8 entries
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Associativity Example

Compare 4-block caches
Direct mapped, 2-way set associative,
fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Mem[6]
Mem[6]

2
Cache content after access

Mem[8]miss08
Mem[0]miss26
Mem[0]miss00
Mem[8]miss08
Mem[0]miss00

310
Hit/missCache

index
Block

address
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Associativity Example

2-way set associative

Set 1
Cache content after access

Mem[6]Mem[8]miss08
Mem[6]Mem[0]miss06
Mem[8]Mem[0]hit00
Mem[8]Mem[0]miss08

Mem[0]miss00
Set 0

Hit/missCache
index

Block
address

Fully associative

Mem[6]
Mem[6]

Cache content after access

Mem[8]Mem[0]hit8
Mem[8]Mem[0]miss6
Mem[8]Mem[0]hit0
Mem[8]Mem[0]miss8

Mem[0]miss0

Hit/missBlock
address
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How Much Associativity

Increased associativity decreases miss rate
But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%
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Set Associative Cache Organization
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Replacement Policy

Direct mapped: no choice
Set associative

Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)
Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard beyond that
Random

Gives approximately the same performance as LRU for high
associativity
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3C Model of Cache Behavior
Compulsory misses: These are caused by the first access to a new
block.  They are also called cold-start misses.
Conflict misses:  These occur in non-full-associative caches when
multiple blocks compete for the same set.  These are also called
collision misses.  They are the misses that would be eliminated by use
of a fully associative cache.
Capacity misses: These are caused when the cache is too small to
contain all the blocks needed during execution.  They are non-conflict
misses that occur when blocks are replaced and later retrieved.
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Cache Control

Example cache characteristics
Direct-mapped, write-back, write allocate
Block size: 4 words (16 bytes)
Cache size: 16 KB (1024 blocks)
32-bit byte addresses
Valid bit and dirty bit per block
Blocking cache

CPU waits until access is complete

Tag Index Offset
03491031

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles
per access
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Finite State Machines

Use an FSM to sequence control
steps
Set of states, transition on each
clock edge

State values are binary encoded
Current state stored in a register
Next state
= fn (current state,

current inputs)
Control output signals
= fo (current state)
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Cache Controller FSM

Could
partition into

separate
states to

reduce clock
cycle time
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Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from primary cache
Larger, slower, but still faster than main memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache
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Multilevel Cache Example

Given
CPU base CPI = 1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)

Now add L-2 cache
Access time = 5ns
Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 500 cycles

CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

L-2 cache
Focus on low miss rate to avoid main memory access
Hit time has less overall impact

Results
L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

Out-of-order CPUs can execute instructions during cache
miss

Pending store stays in load/store unit
Dependent instructions wait in reservation stations

Independent instructions continue

Effect of miss depends on program data flow
Much harder to analyze
Use system simulation
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Interactions with Software

Misses depend on memory
access patterns

Algorithm behavior
Compiler optimization for
memory access
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Cache Coherence Problem

Suppose two CPU cores share a physical address space
Write-through caches

101CPU A writes 1 to X3

000CPU B reads X2

00CPU A reads X1

00

MemoryCPU B’s
cache

CPU A’s
cache

EventTime
step
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Coherence Defined

Informally: Reads return most recently written value
Formally:

P writes X; P reads X (no intervening writes)
⇒ read returns written value
P1 writes X; P2 reads X (sufficiently later)
⇒ read returns written value

c.f. CPU B reading X after step 3 in example
P1 writes X, P2 writes X
⇒ all processors see writes in the same order

End up with the same final value for X
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Cache Coherence Protocols

Operations performed by caches in multiprocessors to
ensure coherence

Migration of data to local caches
Reduces bandwidth for shared memory

Replication of read-shared data
Reduces contention for access

Snooping protocols
Each cache monitors bus reads/writes

Directory-based protocols
Caches and memory record sharing status of blocks in a directory
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Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

Broadcasts an invalidate message on the bus
Subsequent read in another cache misses

Owning cache supplies updated value

111Cache miss for XCPU B read X
01Invalidate for XCPU A writes 1 to X
000Cache miss for XCPU B reads X
00Cache miss for XCPU A reads X
0

MemoryCPU B’s
cache

CPU A’s
cache

Bus activityCPU activity
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Memory Consistency

When are writes seen by other processors
“Seen” means a read returns the written value
Can’t be instantaneously

Assumptions
A write completes only when all processors have seen it
A processor does not reorder writes with other accesses

Consequence
P writes X then writes Y
⇒ all processors that see new Y also see new X
Processors can reorder reads, but not writes
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Multilevel On-Chip Caches

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 256KB L2 cache

Intel Nehalem 4-core processor

0.25

0.25

0.25

0.25
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3-Level Cache Organization

n/a: data not available

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit time
32 cycles

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L2 unified
cache
(per core)

L1 I-cache: 32KB, 64-byte blocks,
2-way, LRU replacement, hit time
3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, LRU replacement,
write-back/allocate, hit time 9
cycles

L1 I-cache: 32KB, 64-byte blocks,
4-way, approx LRU replacement,
hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-back/allocate,
hit time n/a

L1 caches
(per core)

AMD Opteron X4Intel Nehalem
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Miss Penalty Reduction

Return requested word first
Then back-fill rest of block

Non-blocking miss processing
Hit under miss: allow hits to proceed
Miss under miss: allow multiple outstanding misses

Hardware prefetch: instructions and data
Opteron X4: bank interleaved L1 D-cache

Two concurrent accesses per cycle
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Pitfalls

Byte vs. word addressing
Example: 32-byte direct-mapped cache,
4-byte blocks

Byte 36 maps to block 1
Word 36 maps to block 4

Ignoring memory system effects when writing or
generating code

Example: iterating over rows vs. columns of arrays
Large strides result in poor locality
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Pitfalls

In multiprocessor with shared L2 or L3 cache
Less associativity than cores results in conflict misses
More cores ⇒ need to increase associativity

Using AMAT to evaluate performance of out-of-order
processors

Ignores effect of non-blocked accesses
Instead, evaluate performance by simulation
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Concluding Remarks

Fast memories are small, large memories are slow
We really want fast, large memories 
Caching gives this illusion 

Principle of locality
Programs use a small part of their memory space frequently

Memory hierarchy
L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

Memory system design is critical for multiprocessors


