
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Topic 12: Memory Hierarchy -
Virtual Memory and Virtual Machines

October 27, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Memory Technology

Static RAM (SRAM)
0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB

Magnetic disk
5ms – 20ms, $0.20 – $2 per GB

Ideal memory
Access time of SRAM
Capacity and cost/GB of disk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Principle of Locality

Programs access a small proportion of their address space
at any time
Temporal locality

Items accessed recently are likely to be accessed again soon
e.g., instructions in a loop, induction variables

Spatial locality
Items near those accessed recently are likely to be accessed soon
E.g., sequential instruction access, array data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Taking Advantage of Locality

Memory hierarchy
Store everything on disk
Copy recently accessed (and nearby) items from disk to
smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

Time taken: miss penalty
Miss ratio: misses/accesses
= 1 – hit ratio

Then accessed data supplied from upper level

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Virtual Memory

Use main memory as a “cache” for secondary (disk)
storage

Managed jointly by CPU hardware and the operating system (OS)
Programs share main memory

Each gets a private virtual address space holding its frequently
used code and data
Protected from other programs

CPU and OS translate virtual addresses to physical
addresses

VM “block” is called a page
VM translation “miss” is called a page fault

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Address Translation

Fixed-size pages (e.g., 4K)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Page Fault Penalty

On page fault, the page must be fetched from disk
Takes millions of clock cycles
Handled by OS code

Try to minimize page fault rate
Fully associative placement
Smart replacement algorithms

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Page Tables

Stores placement information
Array of page table entries, indexed by virtual page number
Page table register in CPU points to page table in physical memory

If page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, …)

If page is not present
PTE can refer to location in swap space on disk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Translation Using a Page Table

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Mapping Pages to Storage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Replacement and Writes

To reduce page fault rate, prefer least-recently used (LRU)
replacement

Reference bit (aka use bit) in PTE set to 1 on access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Fast Translation Using a TLB

Address translation would appear to require extra memory references
One to access the PTE
Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)
Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss,
0.01%–1% miss rate
Misses could be handled by hardware or software

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Fast Translation Using a TLB

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

TLB Misses

If page is in memory
Load the PTE from memory and retry
Could be handled in hardware

Can get complex for more complicated page table structures
Or in software

Raise a special exception, with optimized handler

If page is not in memory (page fault)
OS handles fetching the page and updating the page table
Then restart the faulting instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

TLB Miss Handler

TLB miss indicates
Page present, but PTE not in TLB
Page not preset

Must recognize TLB miss before destination register
overwritten

Raise exception

Handler copies PTE from memory to TLB
Then restarts instruction
If page not present, page fault will occur

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Page Fault Handler

Use faulting virtual address to find PTE
Locate page on disk
Choose page to replace

If dirty, write to disk first

Read page into memory and update page table
Make process runnable again

Restart from faulting instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

TLB and Cache Interaction

If cache tag uses physical
address

Need to translate before
cache lookup

Alternative: use virtual
address tag

Complications due to aliasing
Different virtual addresses
for shared physical address

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Memory Protection

Different tasks can share parts of their virtual address
spaces

But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions
Page tables and other state information only accessible in
supervisor mode
System call exception (e.g., syscall in MIPS)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Virtual Machines

Host computer emulates guest operating system and machine resources
Improved isolation of multiple guests
Avoids security and reliability problems
Aids sharing of resources

Virtualization has some performance impact
Feasible with modern high-performance computers

Examples
IBM VM/370 (1970s technology!)
VMWare
Microsoft Virtual PC

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Virtual Machine Monitor

Maps virtual resources to physical resources
Memory, I/O devices, CPUs

Guest code runs on native machine in user mode
Traps to VMM on privileged instructions and access to protected
resources

Guest OS may be different from host OS
VMM handles real I/O devices

Emulates generic virtual I/O devices for guest

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

Example: Timer Virtualization

In native machine, on timer interrupt
OS suspends current process, handles interrupt, selects and
resumes next process

With Virtual Machine Monitor
VMM suspends current VM, handles interrupt, selects and resumes
next VM

If a VM requires timer interrupts
VMM emulates a virtual timer
Emulates interrupt for VM when physical timer interrupt occurs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Instruction Set Support

User and System modes
Privileged instructions only available in system mode

Trap to system if executed in user mode
All physical resources only accessible using privileged
instructions

Including page tables, interrupt controls, I/O registers
Renaissance of virtualization support

Current ISAs (e.g., x86) adapting

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Pitfalls

Extending address range using segments
E.g., Intel 80286
But a segment is not always big enough
Makes address arithmetic complicated

Implementing a VMM on an ISA not designed for
virtualization

E.g., non-privileged instructions accessing hardware resources
Either extend ISA, or require guest OS not to use problematic
instructions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Concluding Remarks

Fast memories are small, large memories are slow
We really want fast, large memories
Caching gives this illusion

Principle of locality
Programs use a small part of their memory space frequently

Memory hierarchy
L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

Memory system design is critical for multiprocessors

