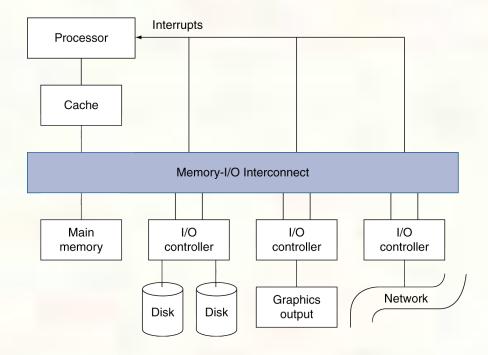
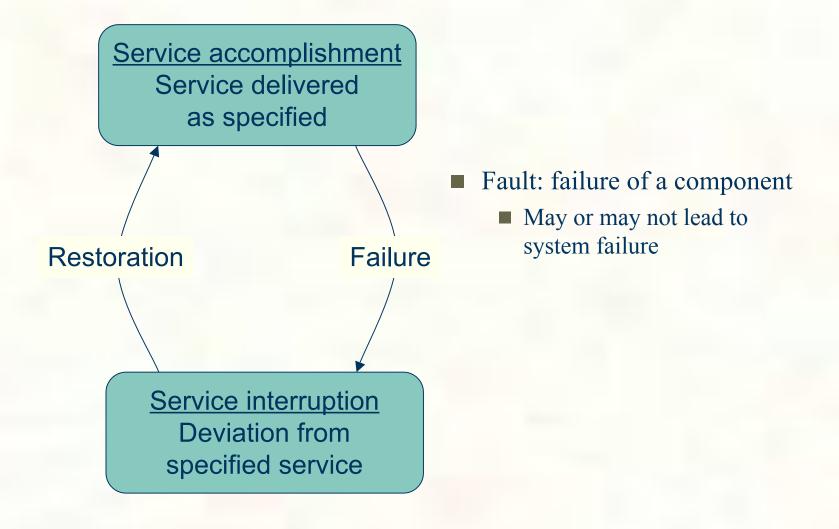
CS352H: Computer Systems Architecture


Topic 13: I/O Systems

November 3, 2009

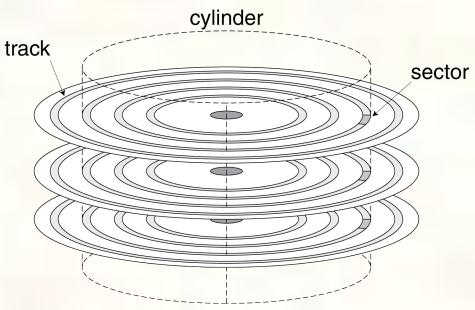
Introduction

- I/O devices can be characterized by
 - Behavior: input, output, storage
 - Partner: human or machine
 - Data rate: bytes/sec, transfers/sec
- I/O bus connections



I/O System Characteristics

- Dependability is important
 - Particularly for storage devices
- Performance measures
 - Latency (response time)
 - Throughput (bandwidth)
 - Desktops & embedded systems
 - Mainly interested in response time & diversity of devices
 - Servers
 - Mainly interested in throughput & expandability of devices


Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - \blacksquare MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair

■ Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Disk Access Example

- Given
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
 - 4ms seek time
 - $+\frac{1}{2}$ / (15,000/60) = 2ms rotational latency
 - +512/100MB/s = 0.005ms transfer time
 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - \blacksquare Average read time = 3.2ms

Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times
- Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI, ATA, SATA
- Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay

Disk Specs

Characteristics	Seagate ST33000655SS	Seagate ST31000340NS	Seagate ST973451SS	Seagate ST9160821AS
Disk diameter (inches)	3.50	3.50	2.50	2.50
Formatted data capacity (GB)	147	1000	73	160
Number of disk surfaces (heads)	2	4	2	2
Rotation speed (RPM)	15,000	7200	15,000	5400
Internal disk cache size (MB)	16	32	16	8
External interface, bandwidth (MB/sec)	SAS, 375	SATA, 375	SAS, 375	SATA, 150
Sustained transfer rate (MB/sec)	73–125	105	79–112	44
Minimum seek (read/write) (ms)	0.2/0.4	0.8/1.0	0.2/0.4	1.5/2.0
Average seek read/write (ms)	3.5/4.0	8.5/9.5	2.9/3.3	12.5/13.0
Mean time to failure (MTTF) (hours)	1,400,000 @ 25°C	1,200,000 @ 25°C	1,600,000 @ 25°C	_
Annual failure rate (AFR) (percent)	0.62%	0.73%	0.55%	_
Contact start-stop cycles	_	50,000	_	>600,000
Warranty (years)	5	5	5	5
Nonrecoverable read errors per bits read	<1 sector per 10 ¹⁶	<1 sector per 10 ¹⁵	<1 sector per 10 ¹⁶	<1 sector per 10 ¹⁴
Temperature, shock (operating)	5°–55°C, 60 G	5°–55°C, 63 G	5°–55°C, 60 G	0°-60°C, 350 G
Size: dimensions (in.), weight (pounds)	$1.0" \times 4.0" \times 5.8"$, 1.5 lbs	$1.0" \times 4.0" \times 5.8$ ", 1.4 lbs	$0.6" \times 2.8" \times 3.9$ ", 0.5 lbs	$0.4" \times 2.8" \times 3.9$ ", 0.2 lbs
Power: operating/idle/ standby (watts)	15/11/—	11/8/1	8/5.8/—	1.9/0.6/0.2
GB/cu. in., GB/watt	6 GB/cu.in., 10 GB/W	43 GB/cu.in., 91 GB/W	11 GB/cu.in., 9 GB/W	37 GB/cu.in., 84 GB/W
Price in 2008, \$/GB	~ \$250, ~ \$1.70/GB	~ \$275, ~ \$0.30/GB	~ \$350, ~ \$5.00/GB	~ \$100, ~ \$0.60/GB

Flash Storage

- Nonvolatile semiconductor storage
 - $100 \times -1000 \times$ faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

Characteristics	NOR Flash Memory	NAND Flash Memory
Typical use	BIOS memory	USB key
Minimum access size (bytes)	512 bytes	2048 bytes
Read time (microseconds)	0.08	25
Write time (microseconds)	10.00	1500 to erase +
		250
Read bandwidth (MBytes/second)	10	40
Write bandwidth (MBytes/second)	0.4	8
Wearout (writes per cell)	100,000	10,000 to 100,000
Best price/GB (2008)	\$65	\$4

Characteristics	Kingston SecureDigital (SD) SD4/8 GB	Transend Type I CompactFlash TS16GCF133	RiDATA Solid State Disk 2.5 inch SATA
Formatted data capacity (GB)	8	16	32
Bytes per sector	512	512	512
Data transfer rate (read/write MB/sec)	4	20/18	68/50
Power operating/standby (W)	0.66/0.15	0.66/0.15	2.1/—
Size: height × width × depth (inches)	$0.94 \times 1.26 \times 0.08$	$1.43 \times 1.68 \times 0.13$	$0.35 \times 2.75 \times 4.00$
Weight in grams (454 grams/pound)	2.5	11.4	52
Mean time between failures (hours)	> 1,000,000	> 1,000,000	> 4,000,000
GB/cu. in., GB/watt	84 GB/cu.in., 12 GB/W	51 GB/cu.in., 24 GB/W	8 GB/cu.in., 16 GB/W
Best price (2008)	~ \$30	~ \$70	~ \$300

Interconnecting Components

- Need interconnections between
 - CPU, memory, I/O controllers
- Bus: shared communication channel
 - Parallel set of wires for data and synchronization of data transfer
 - Can become a bottleneck
- Performance limited by physical factors
 - Wire length, number of connections
- More recent alternative: high-speed serial connections with switches
 - Like networks

- Processor-Memory buses
 - Short, high speed
 - Design is matched to memory organization
- I/O buses
 - Longer, allowing multiple connections
 - Specified by standards for interoperability
 - Connect to processor-memory bus through a bridge

Bus Signals and Synchronization

- Data lines
 - Carry address and data
 - Multiplexed or separate
- Control lines
 - Indicate data type, synchronize transactions
- Synchronous
 - Uses a bus clock
- Asynchronous
 - Uses request/acknowledge control lines for handshaking

I/O Bus Examples

	Firewire	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Intended use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Data width	4	2	2/lane	4	4
Peak bandwidth	50MB/s or 100MB/s	0.2MB/s, 1.5MB/s, or 60MB/s	250MB/s/lane 1×, 2×, 4×, 8×, 16×, 32×	300MB/s	300MB/s
Hot pluggable	Yes	Yes	Depends	Yes	Yes
Max length	4.5m	5m	0.5m	1m	8m
Standard	IEEE 1394	USB Implementers Forum	PCI-SIG	SATA-IO	INCITS TC T10

Typical x86 PC I/O System

- I/O is mediated by the OS
 - Multiple programs share I/O resources
 - Need protection and scheduling
 - I/O causes asynchronous interrupts
 - Same mechanism as exceptions
 - I/O programming is fiddly
 - OS provides abstractions to programs

I/O Commands

- I/O devices are managed by I/O controller hardware
 - Transfers data to/from device
 - Synchronizes operations with software
- Command registers
 - Cause device to do something
- Status registers
 - Indicate what the device is doing and occurrence of errors
- Data registers
 - Write: transfer data to a device
 - Read: transfer data from a device

I/O Register Mapping

Memory mapped I/O

- Registers are addressed in same space as memory
- Address decoder distinguishes between them
- OS uses address translation mechanism to make them only accessible to kernel

■ I/O instructions

- Separate instructions to access I/O registers
- Can only be executed in kernel mode
- Example: x86

- Periodically check I/O status register
 - If device ready, do operation
 - If error, take action
- Common in small or low-performance real-time embedded systems
 - Predictable timing
 - Low hardware cost
- In other systems, wastes CPU time

- When a device is ready or error occurs
 - Controller interrupts CPU
- Interrupt is like an exception
 - But not synchronized to instruction execution
 - Can invoke handler between instructions
 - Cause information often identifies the interrupting device
- Priority interrupts
 - Devices needing more urgent attention get higher priority
 - Can interrupt handler for a lower priority interrupt

I/O Data Transfer

- Polling and interrupt-driven I/O
 - CPU transfers data between memory and I/O data registers
 - Time consuming for high-speed devices
- Direct memory access (DMA)
 - OS provides starting address in memory
 - I/O controller transfers to/from memory autonomously
 - Controller interrupts on completion or error

DMA/Cache Interaction

- If DMA writes to a memory block that is cached
 - Cached copy becomes stale
- If write-back cache has dirty block, and DMA reads memory block
 - Reads stale data
- Need to ensure cache coherence
 - Flush blocks from cache if they will be used for DMA
 - Or use non-cacheable memory locations for I/O

- OS uses virtual addresses for memory
 - DMA blocks may not be contiguous in physical memory
- Should DMA use virtual addresses?
 - Would require controller to do translation
- If DMA uses physical addresses
 - May need to break transfers into page-sized chunks
 - Or chain multiple transfers
 - Or allocate contiguous physical pages for DMA

Measuring I/O Performance

- I/O performance depends on
 - Hardware: CPU, memory, controllers, buses
 - Software: operating system, database management system, application
 - Workload: request rates and patterns
- I/O system design can trade-off between response time and throughput
 - Measurements of throughput often done with constrained response-time

Transaction Processing Benchmarks

- Transactions
 - Small data accesses to a DBMS
 - Interested in I/O rate, not data rate
- Measure throughput
 - Subject to response time limits and failure handling
 - ACID (Atomicity, Consistency, Isolation, Durability)
 - Overall cost per transaction
- Transaction Processing Council (TPC) benchmarks (www.tcp.org)
 - TPC-APP: B2B application server and web services
 - TCP-C: on-line order entry environment
 - TCP-E: on-line transaction processing for brokerage firm
 - TPC-H: decision support business oriented ad-hoc queries

File System & Web Benchmarks

- SPEC System File System (SFS)
 - Synthetic workload for NFS server, based on monitoring real systems
 - Results
 - Throughput (operations/sec)
 - Response time (average ms/operation)
- SPEC Web Server benchmark
 - Measures simultaneous user sessions, subject to required throughput/session
 - Three workloads: Banking, Ecommerce, and Support

I/O vs. CPU Performance

Amdahl's Law

■ Don't neglect I/O performance as parallelism increases compute performance

Example

- Benchmark takes 90s CPU time, 10s I/O time
- Double the number of CPUs/2 years
 - I/O unchanged

Year	CPU time	I/O time	Elapsed time	% I/O time
now	90s	10s	100s	10%
+2	45s	10s	55s	18%
+4	23s	10s	33s	31%
+6	11s	10s	21s	47%

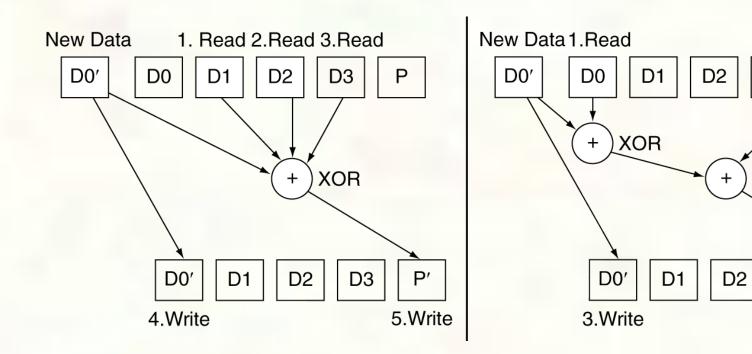
- Redundant Array of Inexpensive (Independent) Disks
 - Use multiple smaller disks (c.f. one large disk)
 - Parallelism improves performance
 - Plus extra disk(s) for redundant data storage
- Provides fault tolerant storage system
 - Especially if failed disks can be "hot swapped"
- RAID 0
 - No redundancy ("AID"?)
 - Just stripe data over multiple disks
 - But it does improve performance

■ RAID 1: Mirroring

- N + N disks, replicate data
 - Write data to both data disk and mirror disk
 - On disk failure, read from mirror
- RAID 2: Error correcting code (ECC)
 - \sim N + E disks (e.g., 10 + 4)
 - Split data at bit level across N disks
 - Generate E-bit ECC
 - Too complex, not used in practice

RAID 3: Bit-Interleaved Parity

- $\mathbb{N} + 1$ disks
 - Data striped across N disks at byte level
 - Redundant disk stores parity
 - Read access
 - Read all disks
 - Write access
 - Generate new parity and update all disks
 - On failure
 - Use parity to reconstruct missing data
- Not widely used



RAID 4: Block-Interleaved Parity

- $\mathbb{N} + 1$ disks
 - Data striped across N disks at block level
 - Redundant disk stores parity for a group of blocks
 - Read access
 - Read only the disk holding the required block
 - Write access
 - Just read disk containing modified block, and parity disk
 - Calculate new parity, update data disk and parity disk
 - On failure
 - Use parity to reconstruct missing data
- Not widely used

RAID 3 vs RAID 4

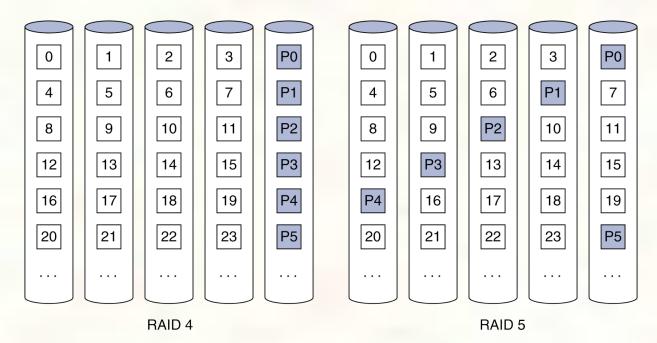
P'

4.Write

2.Read

Р

D3


XOR

D3

RAID 5: Distributed Parity

- $\mathbb{N} + 1$ disks
 - Like RAID 4, but parity blocks distributed across disks
 - Avoids parity disk being a bottleneck
- Widely used

RAID 6: P + Q Redundancy

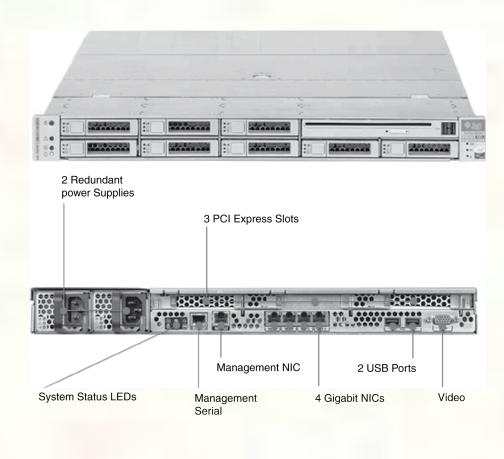
- \sim N + 2 disks
 - Like RAID 5, but two lots of parity
 - Greater fault tolerance through more redundancy
- Multiple RAID
 - More advanced systems give similar fault tolerance with better performance

- RAID can improve performance and availability
 - High availability requires hot swapping
- Assumes independent disk failures
 - Too bad if the building burns down!
- See "Hard Disk Performance, Quality and Reliability"
 - http://www.pcguide.com/ref/hdd/perf/index.htm

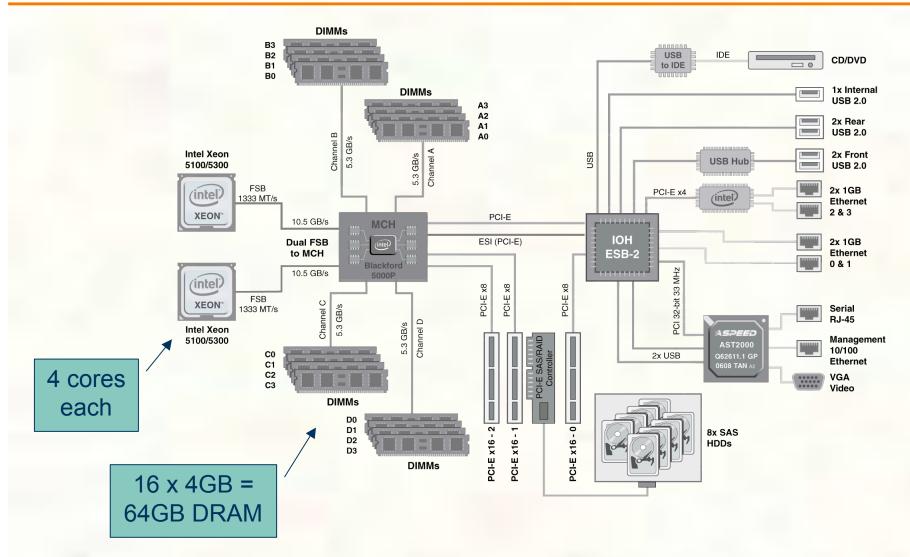
I/O System Design

- Satisfying latency requirements
 - For time-critical operations
 - If system is unloaded
 - Add up latency of components
- Maximizing throughput
 - Find "weakest link" (lowest-bandwidth component)
 - Configure to operate at its maximum bandwidth
 - Balance remaining components in the system
- If system is loaded, simple analysis is insufficient
 - Need to use queuing models or simulation

Server Computers


- Applications are increasingly run on servers
 - Web search, office apps, virtual worlds, ...
- Requires large data center servers
 - Multiple processors, networks connections, massive storage
 - Space and power constraints
- Server equipment built for 19" racks
 - Multiples of 1.75" (1U) high

Rack-Mounted Servers



Sun Fire x4150 1U server

Sun Fire x4150 1U server

I/O System Design Example

- Given a Sun Fire x4150 system with
 - Workload: 64KB disk reads
 - Each I/O op requires 200,000 user-code instructions and 100,000 OS instructions
 - Each CPU: 10⁹ instructions/sec
 - FSB: 10.6 GB/sec peak
 - DRAM DDR2 667MHz: 5.336 GB/sec
 - \blacksquare PCI-E 8× bus: 8 × 250MB/sec = 2GB/sec
 - Disks: 15,000 rpm, 2.9ms avg. seek time, 112MB/sec transfer rate
- What I/O rate can be sustained?
 - For random reads, and for sequential reads

Design Example (cont)

- I/O rate for CPUs
 - Per core: $10^9/(100,000 + 200,000) = 3,333$
 - 8 cores: 26,667 ops/sec
- Random reads, I/O rate for disks
 - Assume actual seek time is average/4
 - Time/op = seek + latency + transfer = 2.9 ms/4 + 4 ms/2 + 64 KB/(112MB/s) = 3.3 ms
 - 303 ops/sec per disk, 2424 ops/sec for 8 disks
- Sequential reads
 - \blacksquare 112MB/s / 64KB = 1750 ops/sec per disk
 - 14,000 ops/sec for 8 disks

Design Example (cont)

- PCI-E I/O rate
 - 2GB/sec / 64KB = 31,250 ops/sec
- DRAM I/O rate
 - 5.336 GB/sec / 64KB = 83,375 ops/sec
- FSB I/O rate
 - Assume we can sustain half the peak rate
 - 5.3 GB/sec / 64KB = 81,540 ops/sec per FSB
 - 163,080 ops/sec for 2 FSBs
- Weakest link: disks
 - 2424 ops/sec random, 14,000 ops/sec sequential
 - Other components have ample headroom to accommodate these rates

Fallacy: Disk Dependability

- If a disk manufacturer quotes MTTF as 1,200,000 hr (140yr)
 - A disk will work that long
- Wrong: this is the mean time to failure
 - What is the distribution of failures?
 - What if you have 1000 disks
 - How many will fail per year?

Annual Failure Rate(AFR) =
$$\frac{8760 \text{ hrs/disk}}{1200000 \text{ hrs/failure}} = 0.0073 \text{ failures/disk} \times 100\% = 0.73\%$$

■ So 0.73% x 1000 disks = 7.3 failures expected in a year

- Disk failure rates are as specified
 - Studies of failure rates in the field
 - Schroeder and Gibson: 2% to 4% vs. 0.6% to 0.8%
 - Pinheiro, et al.: 1.7% (first year) to 8.6% (third year) vs. 1.5%
 - Why?
- A 1GB/s interconnect transfers 1GB in one sec
 - But what's a GB?
 - For bandwidth, use $1GB = 10^9 B$
 - For storage, use $1GB = 2^{30}B = 1.075 \times 10^{9}B$
 - So 1GB/sec is 0.93GB in one second
 - About 7% error

Pitfall: Offloading to I/O Processors

- Overhead of managing I/O processor request may dominate
 - Quicker to do small operation on the CPU
 - But I/O architecture may prevent that
- I/O processor may be slower
 - Since it's supposed to be simpler
- Making it faster makes it into a major system component
 - Might need its own coprocessors!

Pitfall: Backing Up to Tape

- Magnetic tape used to have advantages
 - Removable, high capacity
- Advantages eroded by disk technology developments
- Makes better sense to replicate data
 - E.g, RAID, remote mirroring

Fallacy: Disk Scheduling

- Best to let the OS schedule disk accesses
 - But modern drives deal with logical block addresses
 - Map to physical track, cylinder, sector locations
 - Also, blocks are cached by the drive
 - OS is unaware of physical locations
 - Reordering can reduce performance
 - Depending on placement and caching

Pitfall: Peak Performance

- Peak I/O rates are nearly impossible to achieve
 - Usually, some other system component limits performance
 - E.g., transfers to memory over a bus
 - Collision with DRAM refresh
 - Arbitration contention with other bus masters
 - E.g., PCI bus: peak bandwidth ~133 MB/sec
 - In practice, max 80MB/sec sustainable

Concluding Remarks

- I/O performance measures
 - Throughput, response time
 - Dependability and cost also important
- Buses used to connect CPU, memory, I/O controllers
 - Polling, interrupts, DMA
- I/O benchmarks
 - TPC, SPECSFS, SPECWeb
- RAID
 - Improves performance and dependability